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Abstract— Almost all multi-target tracking systems have to
generate point estimates for the targets, e.g., for displaying
the tracks. The novel idea in this paper is to consider point
estimates for multi-target states that are optimal according to a
kernel distance measure. Because the kernel distance is a metric
on point sets and ignores the target labels, shortcomings of
Minimum Mean Squared Error (MMSE) estimates for multi-
target states can be avoided. We show how the calculation of
these point estimates can be casted as an optimization problem
and it turns out that it corresponds to the problem of reducing
the Probability Hypothesis Density (PHD) function to a Dirac
mixture density. Finally, we discuss a generalization of the kernel
distance called LCD distance, which does not require to choose
a specific kernel width. The presented methods are evaluated
in a Multiple-Hypotheses Tracker (MHT) setting with up to ten
targets.

I. INTRODUCTION

Multi-target tracking [1] deals with the problem of esti-
mating the kinematic parameters of multiple targets based on
noisy measurements while the measurement-to-target associ-
ation is unknown. A multi-target tracking system usually has
to generate point estimates for the target states [2], e.g., for
displaying an operator or decision making. Unfortunately, the
widely-used global Minimum Mean Squared Error (MMSE)
estimate turned out to be unsuitable for multi-target tracking
needs as demonstrated in the following example.

Example 1. Consider two one-dimensional targets with state
variables xk,1 and xk,2, where k denotes the time index. A
multi-target tracking algorithm such as the Multiple Hypothe-
ses Tracker (MHT) [3] may maintain a probability density
function for the stacked vector [xk,1, xk,2]T , i.e.,

p(xk,1, xk,2|Yk) ,

where Yk denotes all available measurements up to time
step k. Fig. 1 shows an example for the probability density
function, which in this case consists of a Gaussian mixture
with two components. This is a typical situation, which arises
when two targets are close to each other, because then the
target identities get lost. Unfortunately, the mean of the
density, i.e., the MMSE estimate, is given by [1.5, 1.5]T ,
which says both targets are at position 1.5. This so-called
Mixed Labelling Problem [4], [5] is a serious problem as the
positions of the targets are actually known more precisely,
only their identities/labels are not known.

In this work, we consider methods for determining point
estimates when we are not interested in the target labels;
we do only want to know their positions. In this manner,
the coalescence of the trackes can be prevented. Note that
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Fig. 1: Example of a joint density for two target states x1 and
x2. The mean of the density is [1.5, 1.5]T .

there is a variety of applications in which the target identities
themselves are not relevant, e.g. collision avoidance and group
target tracking.

II. PROBLEM FORMULATION

We consider the problem of determining point estimates
for multi-target states that are represented with a probability
density for the stacked single target states or with a Probability
Hypothesis Density (PHD) function. We assume the number
of targets to be given, e.g., an estimate of the target number
is available. Furthermore, we will omit the time index k in
the following.

Stacked Single Target States: A wide class of Bayesian
multi-target tracking algorithms represent the state as an
ordered random vector. χ =

[
xT1 , . . . ,x

T
N

]T
, where xi ∈ Rn

denotes the state vector of target i (with 1 ≤ i ≤ N ). The
tracking algorithm maintains a probability density function for
x conditioned on the received data Y

p
(
χ|Y

)
. (1)

For instance, a Multiple Hypotheses Tracker (MHT) [3]
maintains Gaussian mixture, and particle filters methods [6]
are based on a particle approximation. A point estimate is
supposed to be optimal in the sense that it minimizes the ex-
pectation of risk function, e.g., well-known Minimum Mean-
Squared-Error (MMSE) estimate [1] is defined as χ̂MMSE :=

arg minχ̂ E
{
||χ̂− χ||2|Y

}
= E

{
χ|Y

}
.

Probability Hypothesis Density (PHD): Besides multi-
target tracking algorithms that estimate the stacked single
target states, there are algorithms such as the Probability
Hypotheses Density (PHD) filter [7] that manage a Probability
Hypothesis Density (PHD) D(x), which is the first-order



posterior multi-target moment. For a given number of targets,
the PHD can be computed from (1) as follows

D(x|Y) =
∑
i

p(xi|Y) . (2)

III. RELATED WORK

In [8], [9], [10], [11] it was suggested to employ Minimum
Mean OSPA estimates, where OSPA denotes the Optimal
Subpattern Assignment Metric [12]. In [4], [5], Maximum A
Posteriori (MAP) estimates were used instead of the MMSE
estimate. In [13] it was shown that each symmetric state
transformations on multiple target states defines a metric on
the set of unlabeled target states. For those metrics, optimal
estimates can be computed rather easily by performing proba-
bilistic forward inference. For a PHD that is represented with
particles, a point estimate is typically extracted with a cluster-
ing algorithm such as k-means or expectation maximization
[14], [15]. For PHDs represented with Gaussian mixtures, the
means of the Gaussians with the largest weights can serve as
point estimates [7].

IV. KERNEL DISTANCE FOR MULTI-TARGET STATES

As pointed out in Section I, MMSE estimates may be
unsuitable for multi-target states as the MMSE incorporates
the labels. Hence, we are looking for alternative risk functions
that do not take the labeling of the targets into account. More
precisely, for two multi-target states χ =

[
xT1 , . . . , x

T
N

]T
and

ν = [yT
1
, . . . , yT

N
]T , we need a distance function d(·, ·), which

satisfies

d(χ, ν) = d(χ, νπ) , for all π ∈ ΠN (3)

where νπ denotes the vector ν with permuted single tar-
get states according to the permutation π, i.e., νπ :=
[yT
π(1)

, . . . , yT
π(N)

]T .
First, we will employ the kernel distance for constructing

such a risk function. As the kernel distance requires to choose
a specific kernel width, we will later in Section VIII consider
a generalization called LCD distance.

The kernel distance is a widely-used distance measure
[16], [17]. For example, in machine learning probability
distributions [16] are compared with the kernel distance and
in shape analysis [18] the kernel distance is used for point
sets, curves or surfaces. One of the main benefits of the
kernel distance, besides of its theoretical justification, are its
intuitive meaning and low computational complexity. In order
to introduce the kernel distance for multi-target states, we
start with a more general definition of the kernel distance for
distribution functions.

Definition 1 (Kernel Distance). The kernel distance between
two distributions f1(x) and f2(x) with x ∈ Rn is defined as

dKernel(f1, f2)2 := ||F1 − F2||2L2 =∫
Rn

(F1(m)− F2(m))
2

dm , (4)

where the so-called kernel density Fi for i ∈ {1, 2} denotes
the density fi after the convolution with a kernel function
Kb(·, ·), i.e.,

Fi(m) :=

∫
Rn

f(x)Kb(x−m) dx . (5)
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(a) MMOSPA estimate (exponent 2
and no cut-off value).
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(b) MMKD estimate for kernel width
1 (green cross) and 0.5 (blue aster-
isk).

Fig. 2: Comparison of MMOSPA and MMKD estimate.

Remark 1. In this work, we only consider an isotropic
(unnormalized) Gaussian kernel function

Kb(x−m) = exp

(
−1

2

(x−m)T (x−m)

b2

)
with one-dimensional parameter b for the width.

Based on the above general definition of the kernel distance
for distributions, we can define the kernel distance for multi-
target states, i.e., a set of single target states, by interpreting
the multi-target state as a Dirac mixture distribution.

Definition 2 (Kernel Distance for Multi-Target States).
The kernel distance between two multi-target states χ =[
xT1 , . . . , x

T
N

]T
and ν = [yT

1
, . . . , yT

n
]T is defined as the

kernel distance between the two Dirac distributions fχ(x) :=∑
i δ(x− xi) and fν(x) :=

∑
i δ(x− yi), i.e.,

dKernel(χ, ν)2 := ||Fχ − Fν ||2L2 , (6)

where Fχ and Fν denote the kernel densities of fχ(x) and
fν(x) after a convolution with a kernel function.

Remark 2. The kernel distance between the two multi-target
state in Definition 2 can be written as

dKernel(χ, ν)2 = const ·
(∑

i

∑
j

K
√
2b(xi − xj)−

2
∑
i

∑
j

K
√
2b(xi − yj) +

∑
i

∑
j

K
√
2b(y

i
− y

j
)

)
, (7)

Remark 3. It is obvious that the kernel distance satisfies the
permutation invariance defined in (3).

The kernel distance has an intuitive meaning for multi-
target states. Essentially, the kernel is placed at each single
target state and then the L2 distance of the resulting functions
is computed.

V. MINIMUM MEAN KERNEL DISTANCE (MMKD)
ESTIMATE

Based on the kernel distance, we can define the Mean
Kernel Distance to a point estimate.



Remark 4. For the sake of simplicity, we do not explicitly
state that the densities are conditioned on the data Y , i.e., we
use p

(
χ
)

for p
(
χ|Y

)
.

Definition 3 (MKD). The Mean Kernel Distance (MKD) to
a point estimate χ̂ and the density p

(
χ
)

is defined as

MKD(χ̂) := E
{
d2Kernel(χ̂,χ)

}
. (8)

Definition 4 (MMKD). The Minimum Mean Kernel Distance
(MMKD) estimate for p

(
χ
)

is given by

χ̂MMKD := arg minχ̂ E
{
d2Kernel(χ̂,χ)

}
.

Remark 5. All permutations of χ̂MMKD are also MMKD
estimates (because the order does not matter). Hence, there
are N ! equal MMKD estimates.

Note that these definitions are analogous to the Mean
OSPA (MOSPA) [8] and Minimum Mean OSPA (MMOSPA)
estimate [8]. For well-separated targets, the MMKD estimate
coincides with the MMSE estimate. We argue that the kernel
width has an influence on the resulting point estimate. In case
b → ∞, each χ̂ ∈ RN×n is a minimum, and when b → 0,
the single target estimates will be located at the maximum of
the PHD (see the next section).

Discussion: A main benefit of the kernel distance is
that it can be computed by means of adding kernels. As a
consequence, the mean kernel distance to a point estimate
(8) and its derivative can be calculated in closed form. We
will show that it is no problem to extract point estimates for
ten targets with respect to the kernel distance in Section IX.
Experiments indicate that MMKD estimates can serve as good
approximation for MMOSPA estimates. The MMKD estimate
can be extracted from the corresponding PHD (see the next
section). Hence, the MMKD estimate offers a theoretical
well-grounded way for extracting point estimates from a PHD.

Example 2. Fig. 2 compares the MMOSPA estimate with the
MMKD estimate for kernel widths 0.5 and 1. The MMOSPA
estimate [8], [9], [10] was computed using an exponent of 2
and no cut-off value. Note again that there are two MMOSPA
and MMKD estimates as the target states can be switched. It
can be seen that the MMKD estimate is close to the MMOSPA
estimate for both kernel widths. Furthermore, the influence of
the kernel width is not significant.

VI. MMKD ESTIMATE FOR A PHD

A main result is that the Minimum Mean Kernel Distance
(MMKD) estimate for posterior probability density p(χ) can
be computed by considering the corresponding PHD. In order
to prove this, we first show that the expected kernel density
equals the kernel density of the PHD.

Theorem 1. For a multi-target state vector χ =[
xT1 , . . . ,x

T
N

]T
, where xi ∈ Rn with probability density

p(χ) and corresponding (uncertain ) Dirac density fχ(x) =∑
i δ(x− xi), the following holds

E
{
Fχ(·)

}
= FDχ (·) .

PROOF.

E
{
Fx(s)

}
=

∫
Fx(s)p(x)dx

=

∫ ∫ ∑
i

δ(x∗ − xi) ·Kb(x∗ − s) dx∗ p(x)dx

=

∫ ∫ ∑
i

δ(x∗ − xi) p(x)dxKb(x∗ − s) dx∗

=

∫
Dχ(s)Kb(x∗ − s) dx∗ = FDχ (s)

�
Based on the above theorem, we can show that extracting

the point estimate corresponds to finding the optimal approx-
imation of the PHD with N Diracs according to the kernel
distance. This highlights an interesting connection between
probability density approximation and point estimates.

Theorem 2. For a multi-target state random vector χ =[
xT1 , . . . ,x

T
N

]T
, where xi ∈ Rn with probability density p(x)

χ̂MMKD = arg min
χ̂

dKernel(fχ̂, Dχ) . (9)

PROOF. Per definition for all χ̂, we have

E
{
dKernel(χ̂,χ)

}
=

∫ ∫ (
Fχ̂(m)− Fχ(m)

)2
dm · p(χ) dχ∫ ∫ (

Fχ̂(m)
)2
− 2 · Fχ(m) · Fχ̂(m)

+Fχ(m)2 dm · p(χ) dχ .

The outer integral can be switched with the inner one and
terms independent of χ̂ can be summarized in a factor c1∫

Fχ̂(m)2 − 2 · E
{
Fχ(m)

}
· Fχ̂(m)dm+ c1

A factorization then yields the desired term∫ (
Fχ̂(m)− E

{
Fχ(m)

})2
+ c− E

{
Fχ(m)

}
dm

= dKernel(fχ̂, Dχ) + c2 ,

where c2 is a constant independent of χ̂. �

VII. COMPUTING THE MMKD ESTIMATE

Based on Theorem 2, we can define an optimization
problem for finding the MMKD estimate. If a probability
density for stacked single target states (1) is given, first
the corresponding PHD has to be computed according to
(2). Then the MMKD estimate can be found by solving
the minimization problem specified in Equation (9). It is
important to note that there are closed-form expressions for
evaluating the kernel distance from fχ̂ to the PHD Dχ given
by dKernel(fχ̂, FDχ ) in case the PHD is given by a Gaussian
mixture. The reason is that, if the PHD is Gaussian mixture
FDχ is a Gaussian mixture as well and explicit formulas for
computing the kernel distance between two Gaussian mixtures
are for example given in [18], [19]. It is even possible to
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Fig. 3: MMLCD estimate for Example 1.

calculate the derivative of dKernel(fχ̂, Dχ) with respect to χ̂,
which is very useful for many optimization algorithms such
as Newton methods [19].

VIII. A GENERALIZATION OF THE KERNEL DISTANCE -
THE LCD DISTANCE

The kernel distance requires to specify a kernel width. In
order to overcome this issue, we propose to use a generaliza-
tion of the kernel distance, the so-called Localized Cumulative
Distribution (LCD), which was introduced [20] for the sake of
comparing multivariate probability densities. The basic idea
is to use all kernel widths and not only one specific width.
Hence, the kernel density (5) now also depends on both the
kernel width and kernel center [20], [19].

Definition 5. For a density f(x), the LCD [20] is defined as
the function F (., .) : Rn×R+ → [0, 1] with

FLCD(m, b) =

∫
Rn

f(x)Kb(x−m) dx , (10)

where Kb(x − m) is a suitable kernel with location m and
width b ∈ R+.

Based on the LCD, we can define a distance measure on
densities using weighted L2 distance of two LCDs.

Definition 6 (Modified Cramér–von Mises Distance [20]).
The distance dLCD(f1, f2) between two densities f1 and f2 is
defined by means of their LCDs FLCD

1 (m, b) and FLCD
2 (m, b)

as [20]

dLCD(f1, f2)2 := ||FLCD
1 − FLCD

2 ||2L2(w) =∫
R+

w(b)

∫
Rn

(
FLCD
1 (m, b)− FLCD

2 (m, b)
)2

dm db ,

(11)

where w(b) : R+ → [0, 1] is a suitable weighting function.

A suitable weighting function is employed for decreasing
the influence of large kernel widths [20]. The LCD distance on
sets is defined in the same way as (2) by interpreting the sets
as Dirac densities. The LCD has an intuitive interpretation as
a distance measure on sets: Two sets are similar if a particular
region (specified by the kernel) contains a similar number of
points. This is a generalization of a kernel distance [16] as a
usual kernel distance is obtained if the weighting function is a
point mass. The Minimum Mean LCD estimate (MMLCD) is
defined in analogy to Definition 2. Note that proper versions

of Theorem 2 and Theorem 1 for the LCD distance can also
be proven. Hence, the MMLCD estimate can be obtained by
approximating the PHD with a Dirac mixture according to the
LCD distance. A very intuitive distance measure for multi-
target states is obtained if the weighting factor w(b) in (11)
is chosen to be 1

bN
.

Definition 7 (LCD Distance for multi-target states). The LCD
distance between two multi-target states χ =

[
xT1 , . . . , x

T
N

]T
and ν = [yT

1
, . . . , yT

n
]T

dLCD(χ, ν)2 := −
(∑

i

∑
j

‖xi − xj‖

− 2
∑
i

∑
j

‖xi − yj‖+
∑
i

∑
j

‖y
i
− y

j
‖
)
. (12)

The main benefit of this distance measure is that it does
not depend on a kernel width and does not contain any
minimization over permutations. However, there are no closed
form expressions for calculating the LCD distance between a
Dirac mixture density and an arbitrary Gaussian mixtures, i.e.,
for Equation (6). Nevertheless, (6) can be calculated in closed
form for Dirac mixture densities [19] and also the derivates
are available.

Example 3. Fig. 3 shows the MMLCD estimate for Exam-
ple 1. It can be seen that the MMKD estimate is close to the
MMOSPA and MMKD estimates in Fig. 2.

IX. EVALUATION

For the purpose of evaluation, we use a Multiple Hy-
potheses Tracker (MHT) for tracking multiple targets based
on noisy position measurements. The single target motion
is modeled with a constant velocity model (variance of the
system noise: diag([0.076, 0.076])) and Cartesian position
measurements corrupted with additive Gaussian noise with
variance diag([0.5, 0.5]) are obtained. The MHT tracker main-
tains a Gaussian mixture density for the stacked single target
states (1). The methods for extracting point estimates are only
used for displaying the tracks.

Scenario 1: Ten Targets: This scenario demonstrates that
the MMKD estimates and MMLCD estimates are suitable for
a large number of targets, i.e. ten targets. Fig. 4 shows the
tracks of ten targets plus the position measurements received
from the targets. The plotted point estimates for the target
positions in Fig. 7b are the MMSE estimates. Exactly the
same probability densities were used for extracting MMLCD
estimates in Fig. 7b. It can be seen that the MMLCD estimates
do not suffer from coalescence, and the quality of the track
output is significantly improved.

Scenario 2: Two Targets: In this scenario, we com-
pare the MMSE estimate with the MMOSPA, MMKD, and
MMLCD estimate extracted from the same Gaussian mixture
for (1). Fig. 5a depicts the estimation results of a MHT
tracker for two targets. The plotted point estimates for the
target positions are the MMSE estimates. In this scenario,
the targets are closely-spaced such that the track estimates
collapse into one position. In Fig. 5d, Fig. 5c, and Fig. 5c the
same run is plotted, however, now the MMOSPA, MMKD and
MMLCD estimates are used. We can see that all three prevent
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the tracks from coalescing and they yield comparable position
estimates. However, small differences can be seen when the
targets are close to each other. This impression is emphasized
the Fig. 6 that shows the Mean OSPA distance of the true
target position to the point estimates (MMOSPA, MMLCD
and MMSE). Of course, the MMOSPA estimate gives the
lowest Mean OSPA distance. However, the MMLCD estimate
is close to the MMOSPA estimate. The Mean OSPA errror of
the MMSE estimate increases due to track coalescence. Note
that the MMLCD estimate would be the best when evaluated
with the Mean LCD distance, and the MMSE estimate would
be the best when evaluated with Mean Squared Error (MSE).

X. CONCLUSIONS

As MMSE estimation implicitly considers target labels,
track coalescence may occur when tracking multiple closely-
spaced targets. In order overcome this issue, a distance
measure that does not incorporate the target labels can be
used. In this work, we have shown that the kernel distance is
an intuitive and computationally attractive distance measure

for extracting unlabeled point estimates. Furthermore, it also
provides a systematic, theoretically well-grounded approach
for extracting point estimates from PHDs. Future work con-
sists of calculating the uncertainty for the point estimate and
the incorporation of labels.
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Fig. 5: Two targets: Comparison of MMSE, MMKD, MMLCD, and MMOSPA estimates (point estimates are plottet as
crosses).
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Fig. 7: Comparison of MMSE estimate and MMLCD estimate for ten targets (point estimates are plottet as dots).


