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Abstract—In this paper, we consider the problem of jointly
tracking the pose and shape of objects based on noisy data from
cameras and depth sensors. Our proposed approach formalizes
object silhouettes from image data as measurements within a
Bayesian estimation framework. Projecting object silhouettes
from images back into space yields a visual hull that constrains
the object. In this work, we focus on the 2D case. We derive
a general equation for the silhouette measurement update that
explicitly considers segmentation uncertainty of each pixel. By
assuming a bounded error for the silhouettes, we can reduce
the complexity of the general solution to only consider uncer-
tain edges and derive an approximate measurement update. In
simulations, we show that the proposed approach dramatically
improves point-cloud-based estimators, especially in the presence
of high noise.

Index Terms—Silhouettes, Point Clouds, Extended Object
Tracking, Shape and Pose Estimation

I. INTRODUCTION

Object tracking based on data from cameras and depth
sensors has several applications in health care, automotive
safety, telepresence, entertainment, and surveillance. Especially
since the launch of the Microsoft Kinect in 2010, tracking
objects with RGBD-cameras has become very popular. These
sensors use structured light as their measurement principle.
Unfortunately, interference between multiple depth sensors
with overlapping views is an inherent problem of the structured
light. As a consequence, the sensors are often scheduled by
sequentially turning on and off the depth stream [1], [2].
However, while the depth becomes occasionally unavailable,
the color stream remains online, though often unused.

In this work, we incorporate this image information from a
camera into a Bayesian object tracking algorithm. In doing so,
we focus on the 2D case and simply connected objects. The
resulting algorithm can be applied to the described scenario as
well as to arbitrary heterogeneous sensor networks with depth
sensors and cameras. We start from a general formulation for
silhouette measurements in a Bayesian sense that models a
pixel-wise segmentation uncertainty for each pixel. However,
these formulas turn out to be rather inconvenient as each
pixel has to be considered explicitly and, in addition, the
evaluation carries numeric instabilities. We propose to simplify
the problem by making a few assumptions on the segmentation.
In more detail, we assume that the object can be extracted
from the image very accurately up to a certain bounded

error. This allows approximating the silhouette by its edge
and transforming the pixel-wise uncertainty into a spatial
uncertainty. This reduces the dimension of the measurement
from all image pixels to only two edge pixels, as we consider
the 2D case.

A. Related Work

The concept of shape estimation from silhouettes by means of
the visual hull was introduced in [3] and formalizes geometric
constraints on an object. These constraints were applied to
image based shape estimation [4] in a Bayesian framework.
Incorporation geometric constraints into shape estimation was
also proposed by applying projection onto convex sets (POCS)
[5]. Another approach [6] presented a recursive Bayesian pose
estimation based on feature projections. Exploiting edges and
discontinuities in images in order to infer the object pose
was also proposed in [7]. Fusing depth and color images for
segmentation and tracking based on mean-shift was discussed
in [8]. A grid based surface reconstruction was presented in [9]
by fusing time-of-flight data with multiple images. In [10], a
similar strategy of fusing depth with image data is pursued that
aims at estimating the pose of a human. However this approach
does not explicitly model the noise, and thus fusion of multiple
sensors is not straight forward. The point-cloud-based estimator
for ellipses presented in our previous work [11] is used for
comparison in the simulation. The measurement update for
point clouds of the estimator proposed in this work is also
quite similar, with exception of the employed distance measure.
In [12], they estimate the shape of extended objects based
on radar measurements and infer different target types. Also
related is the work of [13], where the object shape is inferred
from support and diameter function measurements. This work
differs from related work in the sense that

1) measurement uncertainty of silhouettes is explicitly
modeled,

2) and thus, fusion with point clouds can be performed
in a natural and mathematically sound way within the
Bayesian estimation framework.

B. Overview

The remainder of this paper is structured as follows. In
Sec. II, we outline given and desired parameters and introduce
silhouette measurements. Based on the problem formulation,



Figure 1: Sketch of the problem formulation. Given: Noisy
silhouette ŶcS,k and point cloud Ẑdk measurements of an object,
measured at time k by camera c and depth sensor d, respectively.
Desired: Shape and pose parameters xk of the object.

theoretic concepts for a point-cloud-based and silhouette-based
Bayesian estimator are explained in Sec. III. Starting from
these theoretic concepts, the novel silhouette-based estimator
is derived step-by-step in Sec. IV. Sec. V considers a specific
instance of the proposed estimator for ellipse objects objects. In
Sec. VI, an extensive comparison to a state-of-the-art approach
is performed. Finally, Sec. VII concludes with a short summary
and an outlook to future work.

II. PROBLEM FORMULATION

We consider the problem of estimating the pose and shape
of an object based on silhouette data from cameras and point
clouds from depth sensors. An illustration is given in Fig. 1.

The state xk of the object is to be determined as a set of
pose (position, orientation) and shape parameters at each time
k with

xk =

[
xpose
k

xshape
k

]
.

Shape parameters could be, e.g., the radius of a circle, or the
axes lengths of an ellipse. As mentioned, two measurement
modalities, point clouds and silhouettes, are considered.

Point Cloud Data

A measurement of depth sensor d at time k is a set of surface
points

Ẑdk = {ẑdi,k|i = 1, . . . ,ndk}

of the object1. Each point is assumed to be generated by a
source on the object surface zsrc by

ẑ = zsrc +wzsrc
(1)

1Note that when possible, time indices k, sensor indices and measurement
indices i have been omitted for clarity.

that is subject to an additive, zero-mean Gaussian noise term
wzsrc

∼ N (0,Czsrc
).

Silhouette Data
The second modality, i.e., a silhouette measurement of

camera c at time k is a set of image coordinates

ŶcS,k = {ŷci,k|i = 1, . . . ,nck}

of pixels that lie within the projected object. All other pixels
are aggregated to a set of background pixel coordinates Ŷc¬S,
so that ŶS ∩ Ŷ¬S = ∅. All silhouette pixels have a certain
probability to be classified correctly p(TP), denoted as true
positive. Analogously, all background pixels have a probability
p(TN) to be true negative. An example of this classification
for each pixel of an image is shown in Fig. 2.

Figure 2: Close-up of the silhouette measurement that is shown
in Fig. 1. Each pixel is marked as true positive (TP), true
negative (TN), false positive (FP), or false negative (FN). The
dashed line reflects the real object edge.

In addition, the extrinsic parameters

H =

[
R t
0T 1

]
with rotation matrix R and translation vector t, are assumed
to be known for all sensors, as well as the intrinsic parameters
K for each camera.

III. THEORETICAL CONCEPT

In this section, we look at the theoretical concept of
estimating x from a Bayesian point of view. Based on a prior
estimate of the object parameters p(x) a measurement update
is derived for both types of measurements.

A. Point-Cloud-Based Estimator
Fitting a parametric shape x to noisy points Ẑ is a well-

studied problem [11], [14]. The general solution by means of
a Bayes update can be written as

p(x|Ẑ) = p(Ẑ|x)∫
p(Ẑ|x)·p(x)dx

· p(x)

∝ p(Ẑ|x) · p(x) .

In accordance to related work we assume all measured points
ẑ ∈ Ẑ to be independent. This leads to

p(x|Ẑ) ∝ p(x) ·
∏
i

p(ẑi|x) .

In order to evaluate the likelihood p(ẑi|x), the relationship
between points and the object x has to be considered. This
can be done by a signed distance function (SDF), such that

SDF(x, z) =

{
+ ‖ zx − z ‖, z inside or on contour,
− ‖ zx − z ‖, z outside contour,



where zx is the closest point to z on the object contour,
according to the specific distance ‖ ‖. Especially, for all points
zsrc that lie on the object contour

SDF(x, zsrc) = 0

holds. Together with (1), this leads to a nonlinear measurement
equation with multiplicative noise

SDF(x, ẑ −wzsrc
) = 0 .

Statistical linearization [15] can be applied to approximately
calculate the update by means of a sample-based filter, e.g.,
the Unscented Kalman Filter (UKF) [16].

B. Silhouette-Based Estimator

Let us consider the estimation of x based on silhouette
measurements. Given the measurement ŶS, Ŷ¬S for a certain
camera c, the prior estimate p(x) can be updated according to

p(x|ŶS, Ŷ¬S) =
p(ŶS, Ŷ¬S|x)∫

p(ŶS, Ŷ¬S|x)·p(x)dx
· p(x) (2)

∝p(ŶS, Ŷ¬S|x) · p(x) .

Under the assumption that all pixels are measured indepen-
dently, the likelihood function p(ŶS, Ŷ¬S|x) can be written
as

p(ŶS, Ŷ¬S|x) = p(ŶS|x) · p(Ŷ¬S|x) (3)

=
∏
i

p(ŷS,i|x) ·
∏
j

p(ŷ¬S,j |x) .

For evaluating (3), the relationship between an object and its
silhouette has to be defined.

Definition 1 (Silhouette)
For a given object represented by the parameters x and a
given camera, the mapping S(x) determines a set of pixel
coordinates in the camera image that belong to the object with

S : Rnx → P(Nn)
x 7→ {yi | yi ∈ projection of x} .

All pixels with yi ∈ S(x) form the silhouette of object x in the
camera image.

Employing this silhouette mapping leads to

p(ŷS,i|x) =

{
p(TP), ŷS,i ∈ S(x)
1− p(TN), ŷS,i ∈ ¬S(x)

, (4)

and

p(ŷ¬S,j |x) =

{
p(TN), ŷ¬S,j ∈ ¬S(x)
1− p(TP), ŷ¬S,j ∈ S(x)

. (5)

Due to the nonlinearity of (4) and (5), the Bayes update cannot
be derived analytically. Instead, as an approximation, a sample-
based update can be performed. However, applying (3) directly
causes numeric instabilities as a consequence of multiplying
a huge number of probability values between 0 and 1. In the
following section, we show that the problem can be dramatically
reduced by stating a few simplifying assumptions.

IV. PROPOSED SILHOUETTE-BASED ESTIMATOR

The key idea of this work is to simplify the presented
silhouette-based estimator from Sec. III-B by approximating the
pixel-wise segmentation uncertainty with a spatial uncertainty
in the image domain. In a first preliminary step, the relationship
between the edge and measured pixels is defined.

Definition 2 (Edge)
For a given object that is represented by the parameters x that
is visible to a given camera (so that S(x) 6= ∅), the mapping
E∗(x) determines the pixel coordinate of the left silhouette
edge

E∗ : Rnx → N
x 7→ min(S(x)) ,

and E∗(x) the coordinate of the right edge

E∗ : Rnx → N
x 7→ max(S(x)) .

See Fig. 3 for a visualization.

Figure 3: Sketch of a silhouette S(x) that is generated by an
object x. The left edge pixel E∗(x) is marked, as well as an
area E∗(x)± δ around this edge.

The segmentation is assumed to produce no clutter measure-
ments (false positive) outside of a sensor- and segmentation-
specific distance δ around the object [17], i.e., for ŷ¬S /∈
E∗(x)± δ and ŷ¬S /∈ E∗(x)± δ, p(TN) = 1 holds. This can
be achieved by employing prior knowledge by means of, e.g.,
gating. In addition, we assume that the object is sufficiently
large so that E∗(x)±δ∩E∗(x)±δ = ∅ holds. The edge pixels
of ŶS are determined according to

ŷE∗ = min(ŶS), ŷE∗ = max(ŶS) .

Note that these edges only can be evaluated when the object
is visible to the camera. An example is shown in Fig. 4.

Figure 4: Measurement ŷE∗ of the left edge, derived as the
minimum of all silhouette pixels ŶS.

Mathematically, the key idea is to translate the problem of
estimating (2), i.e., p(x|ŶS, Ŷ¬S), to estimating p(x|ŷE∗ , ŷE∗)
by solving

p(x|ŷE∗ , ŷE∗) ∝ p(ŷE∗ , ŷE∗ |x) · p(x) . (6)



For this purpose, we have to derive the likelihood
p(ŷE∗ , ŷE∗ |x) starting from p(ŶS, Ŷ¬S|x) . Due to the fact
that all pixels are segmented independently, we can write

p(ŷE∗ , ŷE∗ |x) = p(ŷE∗ |x) · p(ŷE∗ |x) .

These likelihoods can be derived by marginalizing

p(ŷE∗ |x) =
∑
ŶS,Ŷ¬S

p(ŶS, Ŷ¬S, ŷE∗ |x) , (7)

and
p(ŷE∗ |x) =

∑
ŶS,Ŷ¬S

p(ŶS, Ŷ¬S, ŷE∗ |x) .

An analytic derivation for arbitrary δ is given in the appendix.
Essentially, the resulting likelihood gives for each pixel
in the boundary around the predicted silhouette edge the
corresponding probability to be the measured edge. Thus, the
likelihood function can be seen as a Dirac-mixture density in
the image domain around the edge E∗(x). A Gaussian density

p(ŷE∗ |x) = N (E∗(x)− ŷE∗ ; 0,Varδ) (8)

is used as an approximation and can be obtained from the Dirac-
mixture by means of moment matching. Due to symmetry, this
likelihood can easily be adapted to the right edge, i.e.,

p(ŷE∗ |x) = N (E∗(x)− ŷE∗ ; 0,Varδ) . (9)

Fig. 5 gives a visualization. Deriving a Bayes update for (6)

Figure 5: Gaussian approximation (gray) of the analytic
likelihood (black) for a bounded error of δ = 5 pixel. This
analytic likelihood can only be evaluated at discrete pixels.

can be performed by a sample-based estimator, e.g., a UKF.

Remark 1 (Interpretation)
From a geometric point of view, the derived likelihoods (8), (9)
force the edge of the estimated object silhouette to coincide
with the measured edges. This is equivalent to constrain the
estimated object parameters according to the visual hull. The
derived spatial uncertainty in the image domain directly affects
the hull. In Fig. 6, an example of a visual hull, generated by
two cameras is shown.

Figure 6: Geometric interpretation of the proposed approach.
The object contour is forced to touch its projected silhouette
edges, i.e., the visual hull.

V. EXAMPLE: ELLIPSE ESTIMATION

In order to demonstrate the proposed approach, we consider
the specific problem of estimating the shape and pose parame-
ters of an ellipse. For this purpose, we first define a proper state
representation and a time update. Subsequently we show, how
to apply the presented concepts to perform the measurement
update with silhouette and point cloud measurements.

A. State Representation

An ellipse in 2D space can be represented by five parameters,
where the current pose is given by an angle φk and the
translation of the ellipse center tk. The shape is determined
by the length of the two axes ak and bk. According to Sec. II,
this yields a system state with

xpose
k =

[
φk
tk

]
, xshape

k =

[
ak
bk

]
.

The uncertain knowledge of xk is modeled by a Gaussian
random vector xk ∼ N (x̂k,Cxk

).

B. Time Update

We make no assumptions on the ellipse behavior, and thus
use the random walk model

xk+1 = xk + v ,

with zero-mean Gaussian system noise v ∼ N (0,Cv).

C. Measurement Update for Silhouettes

In the sample-based estimator, evaluating the likelihoods
(8), (9) requires the explicit calculation of the edge functions
E∗(x), E∗(x) for given ellipse instances x and cameras. The
ellipse has to be projected onto the camera and the minimum
and maximum pixel has to be found. This can be done by
approximating the ellipse as a polygon Poly(x) = {p

i
|i =

1, . . . ,np}. Based on this polygon, the edges can be easily be
computed

E∗(x) = min
i
(K · (RT · p

i
−RT · t)) ,

and
E∗(x) = max

i
(K · (RT · p

i
−RT · t)) ,



Figure 7: Experimental setup: An ellipse (black) moves clock-
wise along a circular path and is observed by a depth sensor
(red) and a camera (blue). Note the viewing frustums are
depicted in the respective colors. For some selected locations,
the ellipse and point cloud measurements are drawn.

respectively. The variance term Varδ can be computed, using
the formulas in the appendix.

D. Measurement Update for Point Clouds

According to Sec. III-A, an SDF has to be found for relating
point measurements to a given ellipse. This SDF can be
calculated analytically by means of the Mahalanobis distance
[11]. However, in simulations we observed a better convergence
by using the Euclidian distance, even though it can only be
computed approximately. Approximations could be done either
iteratively or by discretization of the ellipse [18]. In order
to determine a proper covariance matrix Czsrc

for measured
points, a sensor model similar to [1] can be employed.

VI. EVALUATION

In this section, we compare the proposed approach to the
approach [11] that only uses point cloud information. The
experimental setup consists of a depth sensor with an aligned
camera that observes a moving ellipse within its fields of view.
The ellipse starts at [0m, 2m] and moves clock-wise 360◦

along a circular path. The axes of the ellipse are [0.2m, 0.1m].
An illustration of the setup is shown in Fig. 7. Simulated
point cloud measurements are affected by stochastic noise
and quantization errors according to a realistic sensor model
[1]. Especially, this model reflects how measurement quality
decreases with distance (see Fig. 7). For the edge measurements,
a camera with a resolution of 640 pixels and 60◦ field of view
was simulated. The resulting measurements were distorted
with an additive, zero-mean Gaussian noise with a variance of
2 pixel2. This corresponds to a δ = 5 pixel and p(TP) = 0.95,
p(TN) = 0.95.

Error Point cloud only approach Proposed approach
Position Avg. 6.28 cm 2.9 cm
Position Std. 4.68 cm 2.06 cm

Orientation Avg. 9.90 ◦ 5.0 ◦

Orientation Std. 5.90 ◦ 3.42 ◦

Shape Avg. 5.33 cm 2.25 cm
Shape Std. 3.27 cm 1.48 cm

Table I: Average estimation error over all 100 runs and all
angles.

A. Results

The following results are based on 100 Monte-Carlo runs of
the described simulation. Fig. 8 visualizes the median result of
one lap for both approaches. An interesting result is that the
point-cloud-based approach is not able to follow the change
in orientation (Fig. 8a). Instead, it flips the axes of the ellipse,
assuming a shape change (Fig. 8c). This behavior is also
reflected in the error diagram in Fig. 9, where the average
error of each parameter is drawn over a full lap. Looking at
the errors, two main improvements by incorporating silhouette
measurements can be highlighted:

1) Better initial convergence, and
2) better estimation in the presence of high noise.

Overall, the average estimation error in this scenario can be
reduced by a factor of two (see Table I for details).

VII. CONCLUSION

In this work, we presented a novel approach2 for incorporat-
ing silhouette information in Bayesian shape and pose estima-
tion of extended objects. Starting from a general expression of
the silhouette likelihood function that assumes segmentation
uncertainty for each pixel, we derived an approximative
likelihood function that models spatial uncertainty for the
silhouette edge in the image domain. In doing so, only the
edge pixels of a silhouette have to be considered for the update
instead of the whole image. This reduces the complexity as
well as the numerical instabilities of the general update.

Our approach comes with two major highlights. First, the
uncertainty for silhouette measurements is explicitly modeled.
This allows for consideration of sensor and segmentation
properties. Second, this explicit uncertainty model allows
fusing other measurement modalities, i.e., point clouds, in
a mathematically sound way, as both types of information are
individually weighted by its corresponding uncertainty. In sim-
ulations, we demonstrated the improvements of incorporating
silhouettes in a point-cloud-based Bayesian pose and shape
estimator. In summary, the proposed approach yields better
initial convergence and an overall reduced estimation error,
especially in the presence of high noise.

A. Future Work

The next step would be extending the algorithm for estimat-
ing 3D objects. For this purpose, a suitable representation for

2Code is available online: http://www.cloudrunner.eu/algorithm/120/
silhouette-measurements-for-bayesian-object-tracking-in-noisy-point-clouds/



(a) Pose estimation of point cloud only approach. (b) Pose estimation of proposed approach.

(c) Ellipse estimation of point cloud only approach. (d) Ellipse estimation of proposed approach.

Figure 8: Illustration of the simulated experiment. Median of the estimated ellipse parameters over 100 Monte-Carlo runs is
shown for the point-cloud only (a,c) and the proposed (b,d) approach. For comparison, the ground truth is also drawn in black.
Note that the point cloud only approach fails in capturing the orientation (a) by adjusting the shape instead (b).

2D silhouette edges has to be chosen. A second interesting
aspect would be to apply silhouette measurements directly to
the depth sensor. As many depth sensors measure organized
point clouds, i.e., depth images, information about object
silhouettes is available. However, this would require an analysis
of statistical correlations between point cloud measurements
and silhouettes from the same sensor.

APPENDIX

This section considers the analytic derivation of the edge
likelihood p(ŷE∗ |x) for a given segmentation quality, i.e.,
bounded error δ and probabilities p(TP), p(TN). According to
(7), the variance Varδ has to be determined. Due to symmetry,

the calculation for the right edge p(ŷE∗ |x) is analogous.
The abbreviation e∗ denotes the signed distance between the
calculated edge E∗(x), and the measured edge ŷE∗ with

e∗ = E∗(x)− ŷE∗ .

The bounded segmentation error ensures e∗ ≤ δ. Three cases
can be distinguished: if e∗ = 0, the measured and calculated
edge match

p(e∗ = 0) = p(TN)δ · p(TP) · (p(FN) + p(TP))δ︸ ︷︷ ︸
=1

= p(TN)δ · p(TP) ,



(a) Position error. (b) Orientation error. (c) Shape error.

Figure 9: Average error over 100 runs of a full clock-wise circle, by starting at the closest point to the sensors. The proposed
approach features a fast initial convergence in all parameters and an overall improved estimation. The point-cloud-based
approach fails in estimating the orientaion between 90◦ and 270◦.

i.e., all δ pixels left of E∗(x) have been measured correctly as
true negative. If e∗ < 0 the measured edge is a false positive
as it lies left of the calculated

p(e∗ < 0) = p(TN)δ+e∗ · p(FP)

· (p(FN) + p(TP))δ+1︸ ︷︷ ︸
=1

· (p(FP) + p(TN))
|e∗|−1︸ ︷︷ ︸

=1

= p(TN)δ+e∗ · p(FP) .

Analogously, if e∗ > 0, the measured edge lies right of the
calculated

p(e∗ > 0) = p(TN)δ · p(FN)e∗ · p(TP)

· (p(FN) + p(TP))δ−e∗︸ ︷︷ ︸
=1

= p(TN)δ · p(FN)e∗ · p(TP) .

In Fig. 5, these probabilities are evaluated for δ = 5 and drawn
in black. Then, the variance Varδ of the approximated Gaussian
(gray) can be computed by means of moment matching.
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