
The Kernel-SME Filter with
False and Missing Measurements

Marcus Baum, Shishan Yang
Institute of Computer Science

University of Göttingen, Germany
Email: {marcus.baum, shishan.yang}@cs.uni-goettingen.de

Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

Email: uwe.hanebeck@ieee.org

Abstract—The recently proposed Kernel-SME filter for multi-
object tracking is a further development of the Symmetric
Measurement Equation (SME) idea introduced by Kamen in
the 1990s. The Kernel-SME constructs a symmetric, i.e., per-
mutation invariant, measurement equation by transforming the
measurements to a kernel mixture function. This transformation
is scalable to a large number of objects and allows for deriving an
efficient closed-form Gaussian filter based on the Kalman filter
formulas. This work shows how the Kernel-SME approach can
systematically incorporate false and missing measurements.

Keywords—Multi-Object Tracking, Data Association, Symmetric
Measurement Equation.

I. INTRODUCTION

Multi-object tracking deals with the problem of succes-
sively estimating the number and states of multiple objects
based on noisy unlabeled measurements [3], [15]. One of the
main challenges in multi-object tracking is that the measure-
ments are unlabeled, i.e., it is unknown which measurement
belongs to which object. As the number of feasible association
hypotheses explodes with the number of objects and mea-
surements, sophisticated approximations are required in order
to obtain efficient algorithms. In this context, many different
multi-object tracking algorithms have been developed, e.g.,
the Joint Probabilistic Data Association Filter (JPDAF) [1]
computes a Gaussian approximation of the posterior density
of the objects states and the Probability Hypothesis Density
(PHD) filter [14], [18] is based on Finite Set Statistics (FISST).

The Kernel-SME [4], [10] filter discussed in this paper is
based on the key idea of the Symmetric Measurement Equation
(SME) filter [8], [9], [12], [13], [17], [19], [20]. The SME filter
avoids an explicit enumeration of data association hypothe-
ses by constructing a pseudo-measurement with a symmetric
transformation. A symmetric transformation is permutation
invariant to the order of its arguments, so that the correct
permutation, i.e., association, is not required. We argue that
the original SME approach comes with three main problems:
(i) existing SMEs suffer from strong nonlinearities, (ii) do not
scale well with the number of measurements, and (iii) cannot
systematically deal with false and missing measurements. We
note that [11] introduces an approach for incorporating false
and missing measurements in the original SME approach based
on explicit enumeration of association hypotheses.

In our previous work about the Kernel-SME filter [4], [5],
we addressed problem (i) and (ii) by proposing a novel SME

that maps the measurements to a kernel mixture function.
In this manner, a data-dependent symmetric transformation is
constructed that scales well with the number of measurements.
In this work, we address problem (iii): We show that clutter
and missed detections can be systematically incorporated in
the Kernel-SME framework, i.e., modeled within the sym-
metric transformation without the enumeration of association
hypotheses.

In the following section, we describe the considered multi-
object tracking problem. Section III introduces the novel sym-
metric measurement equation for false and missing measure-
ments. Based on this measurement equation, we subsequently
derive a Gaussian state estimator using the Kalman filter
formulas in Section IV. After presenting numerical simulations
that demonstrate the performance of the Kernel-SME filter in
Section V, the paper is concluded in Section VI.

II. PROBLEM FORMULATION

We treat the tracking of multiple objects based on noisy
unlabeled measurements, i.e., the measurement-to-object as-
sociation is unknown. Furthermore, we impose the following
assumptions:

A1 The number of objects N is known.

A2 Each object gives rise to at most one measurement
per scan/frame. The detection probability is denoted
as pd.

A3 The number of false measurements is Poisson dis-
tributed with mean λ.

The dx-dimensional object state vectors are denoted as
x1
k, . . . ,x

N
k , where k denotes the discrete time index.1 The

single object states are stacked in a joint state vector xk =[
(x1

k)T , . . . , (xN
k )T

]T ∈ IRdx·N .

A. Measurement Model

At each time k, a set of Mk measurements

Yk = {y1
k
, . . . ,yMk

k
} ⊆ IRdy

1 Vectors are underlined, e.g., x, and random variables are
printed in bold, e.g., x and x.



is available. The measurement set is related to the states
according to

Yk = Ck ∪
⋃

1≤l≤N

Θl
k (1)

where

• Ck consists of M c
k clutter measurements that are uni-

formly distributed in the tracking region. The number
of clutter measurements M c

k is Poisson distributed
with mean λ.

• Θl
k consists of the measurement from object l (if

detected), i.e.,

Θl
k =

{
Hi

kx
l
k + vl

k if detected
∅ otherwise

, (2)

where Hl
k is the measurement matrix and vl

k zero-
mean noise with covariance matrix Σv

k,l.

B. System Model

The motion model of an individual object is specified by

xl
k+1 = Al

kx
l
k + wl

k , (3)

where Al
k is the system matrix and wl

k is additive white noise
with covariance matrix Σwl

k . All individual motion models (3)
can be stacked into a single vectorx

1
k+1
...

xN
k+1


︸ ︷︷ ︸

=xk+1

=

A
1
k

. . .
AN

k


︸ ︷︷ ︸

:=Ak

·

x
1
k
...

xN
k


︸ ︷︷ ︸

=xk

+

w
1
k

...
wN

k


︸ ︷︷ ︸

=wk

. (4)

III. KERNEL-SME

The measurement equation (1) relates the object states with
the measurements. However, it relates two sets and it is not
clear which element on the left-hand side is associated to which
element on right-hand side, i.e., the association is not known.
The basic idea of the Kernel-SME approach is to convert the
set-valued equation (1) to an equivalent vector-valued equation
using a symmetric transformation of the measurements. This
transformation is composed of sums of kernels according to

SY (z) =
∑
y∈Y
N (z − y; Γ) , (5)

where Γ is a suitable kernel width and z ∈ IRdy is a free
parameter. Intuitively, (5) interprets the measurements as a
Gaussian mixture function, where the means coincide with the
measurements. Also note that the order of the measurements in
Y does not affect the result of SY (z) in (5); it is a symmetric
transformation, i.e., a set function.

The application of (5) to (1) yields to

SYk
(z) = SCk

(z) + S{
⋃

1≤l≤N Θl
k}

(z) (6)

= SCk
(z) +

∑
1≤i≤N

SΘi
k
(z) (7)

= SCk
(z) +

∑
1≤i≤N

di
k · S{Hi

kx
i
k+vi

k}(z) , (8)

where dik ∈ {0, 1} indicates if the object is detected, i.e.,
p(dik = 1) = pd and p(dik = 0) = 1− pd.

The transformed measurement in (6) is scalar and still
involves the free parameter z. In order to get a sufficient
number of measurement equations, we suggest to instantiate z
with different test vectors a1

k, . . . , a
Na

k , which yields

 SYk
(a1

k)
...

SYk
(aNa

k )


︸ ︷︷ ︸

sk

=

 SCk
(a1

k)
...

SCk
(aNa

k )


︸ ︷︷ ︸

ck

+


∑

1≤i≤Na

di
kS{Hi

kx
i
k+vi

k}(a
1
k)

...∑
1≤i≤Na

di
kS{Hi

kx
i
k+vi

k}(a
Na

k )

 .

(9)

Intuitively, the test vectors are supposed to lie close to the
predicted target locations in order to capture the shape of the
transformed measurements.

IV. GAUSSIAN ESTIMATOR FOR THE KERNEL-SME

In the same manner as in [4], we derive a (nonlinear)
Kalman filter for recursive estimation based on the mea-
surement equation (9). For this purpose, we assume that the
posterior probability density function of xk is Gaussian, i.e.,

p(xk |Sk) = N
(
xk;µx

k
,Σx

k

)
, (10)

where µx
k

is the mean, Σx
k is the covariance matrix, and Sk =

{s1, . . . , sk} all pseudo-measurements up to time k.

1) Time Update: The time update step determines
p(xk |Sk−1) = N

(
xk;µx

k|k−1
,Σx

k|k−1

)
based on the previ-

ous density p(xk−1 |Sk−1). Due to the linear system model,
the prediction can be performed according the Kalman filter
formulas

µx
k|k−1

= Ak · µx
k−1

, and (11)

Σx
k|k−1 = AkΣx

k−1(Ak)T + Σw
k , (12)

where Σw
k denotes the covariance matrix of the stacked system

noise wk.

2) Measurement Update: In the measurement update step,
the prediction N

(
xk;µx

k|k−1
,Σx

k|k−1

)
is updated with the

pseudo-measurement sk. For this purpose, we apply the
Kalman filter formulas [2] to the measurement equation (9),
i.e., the updated estimate becomes

µx
k

= µx
k|k−1

+ Σxs
k (Σss

k )−1
(
sk − µs

k

)
, and (13)

Σx
k = Σx

k|k−1 − Σxs
k (Σss

k )−1Σsx
k , (14)

with

• predicted pseudo-measurement µs
k
,

• cross-covariance Σxs
k between the state xk and

pseudo-measurement sk, and

• covariance Σss
k of the pseudo-measurement sk.

Closed-form expressions for the above moments can be derived
similar to the case without missing and false measurements,
see [4]. The detection indicator dk can be incorporated in



the moment calculations in a straightforward manner as it
is mutually independent to all other involved random vari-
ables. Furthermore, the clutter measurements are independent
of object-related measurements, i.e., ck is independent to
the transformed object-related measurements. The following
theorem derives the moments for the transformed clutter
measurements.

Theorem 1. Let Ck =
{
y1
k
, . . . ,y

Mc
k

k

}
in (9) be a set of M c

k

independent identically distributed random variables, where
M c

k is Poisson distributed with mean λ > 0. Then, the mean
and covariance of the transformed clutter ck in (9) is given
by

µci
k

= λE
{
Sy

k
(z)
}

Σ
cicj
k = λCov{Sy

k
(aik), Sy

k
(ajk)}+

λE
{
Sy

k
(aik)

}
E
{
Sy

k
(ajk)

}
with i, j ∈ {1, . . . , Na}, where y

k
has the same distribution

as the random variables of Ck.

Proof: Let M c
k ∼ Bin(n, p) be Binomial distributed with

n trials of probability p. It is well known that the Binomial
distribution converges to a Poisson distribution with λ = np
for n→∞ and p→ 0. Hence, we obtain for the mean

E{SCk
(z)} = E

{
n∑

i=1

diSyi
k
(z)

}
= npE

{
Sy

k
(z)
}

→ λE
{
Sy

k
(z)
}

and for the covariance

Cov{SCk
(z1), SCk

(z2)}

=
n∑

i=1

Cov{diSyi
k
(z1),diSyi

k
(z2)}

=
n∑

i=1

E
{
d2
iSyi

k
(z1)Syi

k
(z2)

}
− E

{
diSyi

k
(z1)

}
E
{
diSyi

k
(z2)

}
=

n∑
i=1

pd E
{
Syi

k
(z1)Syi

k
(z2)

}
− p2

d E
{
Syi

k
(z1)

}
E
{
Syi

k
(z2)

}
= npd E

{
Sy

k
(z1)Sy

k
(z2)

}
− np2

d E
{
Sy

k
(z1)

}
E
{
Sy

k
(z2)

}
→ λE

{
Sy

k
(z1)Sy

k
(z2)

}
= λCov{Sy

k
(z1), Sy

k
(z2)}+ λE

{
Sy

k
(z1)

}
E
{
Sy

k
(z2)

}
.

Fig. 1 depicts pseudo-code of the overall algorithm for
the measurement update under the assumption that the ob-
ject estimates are mutually uncorrelated, which is a standard
assumptions in multi-object tracking, i.e., Σ

xixj

k = 0 for all
i 6= j. However, we note that this assumption is actually not
necessary for the Kernel-SME filter; it just leads to simpler
formulas, see also [4]. The overall run-time of the algorithm
is O((Na

k )2 ·N +Mk), which is pretty efficient compared to
other multi-object trackers. With further approximations, even

more efficient algorithms could be achieved, e.g., assuming
Σss

k to be diagonal would lead to a linear-time algorithm in
the number test-points and objects.

For each predicted object location, the pseudo-code in
Fig. 1 selects two test vectors for each axis. In this manner,
the number of test vectors does not depend on the number
of measurements. More advanced methods for selecting test
vectors might be reasonable. In general, an increasing number
of test vectors leads to an increased performance of the Kernel-
SME filter.

V. EVALUATION

In order to assess the performance of the Kernel-SME
filter, we consider a scenario with six two-dimensional target
objects. The objects move according to the trajectory depicted
in Fig. 2a. For the tracker, a nearly constant velocity model is
employed, i.e., the state vector is

xl
k =

[
(pl

k
)T , (ṗl

k
)T
]T

,

with l ∈ {1, . . . , N} , where pl
k
∈ R2 is the position and

ṗl

k
∈ R2 the velocity. Furthermore, for the process model (3),

we have
Al

k =

[
I2 I2

02 I2

]
with two-dimensional identity matrix I2 and null matrix 02.
The process noise covariance matrix is

Σw
k,l = q0

[
I2
4

I2
2

I2
2 I2

]
with parameter q0 = 0.00004.

At each time k, noisy position measurements are received,
i.e., Hl

k = [I2,02], with Σv
k,l = 0.2I2. The probability

of detection is 0.95 and the number of false measurement
is Poisson distributed with mean λ = 7, where the false
measurements are uniformly distributed in the tracking area.
Fig. 2b shows the overall measurements for an example run
of 50 time steps. The Kernel-SME filter uses the kernel width
Γ = 1.

The Kernel-SME filter falls into the category of compu-
tationally cheap and simple multi-object tracking algorithms.
Hence, we compare the results with the Cheap JPDAF [6],
which is a traditional fast approximation of the weights in the
JPDAF filter. Both trackers are initialized close to the ground
truth. For the comparison, we show the average OSPA error
[16] for 50 Monte Carlo runs.

VI. CONCLUSIONS AND FUTURE WORK

This paper is about the Kernel-SME filter [4] – a new
method for multi-object tracking algorithm based on Kamen’s
Symmetric Measurement Equation (SME) idea. The Kernel-
SME employs a fundamental new construction of SMEs that
aims at solving the typical problems associated to the tra-
ditional SME approach. Specifically, in this paper we show
how false and missing measurements can be incorporated in
the Kernel-SME filter. This is a significant step forward as
nearly all real-world applications come with false and missing
measurements.



Input:
• Predicted states µx1

k|k−1
, . . . , µxN

k|k−1
of N objects with covariance matrices Σx1

k|k−1, . . . ,Σ
xN

k|k−1

• Measurements y1
k
, . . . ,yM

k
(order of measurements is irrelevant)

Output:
• Updated state estimates µx1

k
, . . . , µxN

k
of N objects with covariance matrices Σx1

k , . . . ,Σ
xN

k

Algorithm:
1) Determine test vectors a1

k, . . . , a
Na

k with Na = 2 · dy ·N according to

al+i−1
k := Hl

kµ
xl

k|k−1
+
(√

dyΓ
)
i

and a
l+2(i−1)
k := Hl

kµ
xl

k|k−1
−
(√

dyΓ
)
i

for i = 1, . . . , N and l = 1, . . . , dy , where
(√

dyΓ
)
i

denotes the i-th column of
√
dyΓ.

2) Compute pseudo-measurement sk =
[
s1
k, . . . , s

Na

k

]T
with

sik =

N∑
l=1

N
(
aik;yl

k
,Γ
)

for i = 1, . . . , Na

3) Determine PΓ
l (z) := N

(
z;Hl

kµ
x
l
,Hl

kΣxl

k|k−1(Hl
k)T + Σv

k + Γ
)

for all l = 1 . . . N

4) Determine moments of pseudo-measurements:

a) Mean µs
k

=
[
µs1
k
, . . . , µ

sNa

k

]T
of predicted pseudo-measurement:

µs
k,i

= pd ·
∑

l=1...N

PΓ
l (aik) + µci

k
for i = 1, . . . , Na

b) Covariance Σss
k = (Σ

sisj
k )i,j=1,...,Na

of predicted pseudo-measurement:

Σ
sisj
k = pdN

(
aik; ajk, 2Γ

)
·
∑

l=1...N

P 0.5Γ
l ( 1

2 (aik + ajk))− p2
dP

Γ
l (aik) · PΓ

l (ajk) + Σ
cicj
k

5) Perform update for all objects l = 1 . . . N :
a) Cross-covariance Σxls

k =
[
Σxls1

k , . . . ,Σ
xlsNa

k

]
between predicted pseudo-measurement:

Σxlsi
k = −µxl

k
· µsi

k
+ pd · PΓ

l (aik) · (µxl

k|k−1
+ Kl

k(aik −Hl
kµ

xl

k
)) ,where

Kl
k = Σxl

k|k−1H
l
k ·
(
Hl

kΣxl

k|k−1(Hl
k)T + Γ + Σv

k

)−1

b) Kalman filter update

µxl

k
= µxl

k|k−1
+ Σxls

k (Σss
k )−1

(
sk − µs

k

)
, and

Σxl

k = Σxl

k|k−1 − Σxls
k (Σss

k )−1Σsxl

k .

Fig. 1: Summary of the measurement update of the Kernel-SME filter.

The Kernel-SME filter is very efficient and involves rather
simple formulas. Experiments show that the tracking quality
can compete with traditional fast and simple multi-object
tracking algorithms. Of course, the evaluation of multi-object
tracking algorithms is in general quite complex and many
different aspects have to be considered. Future evaluations and
experiments will bring up the advantages and disadvantages of
the Kernel-SME filter. Of course, due to its low computational
demands, one cannot expect too much with regards to tracking
quality. Obviously, the number and locations of the test vectors
influences the quality of the Kernel-SME filter. Hence, future
work shall analyze and discuss different methods for selecting
test vectors. We also intend to extend the Kernel-SME filter to

the case of an unknown number of objects and to the case of
multiple measurements per object per time frame. Furthermore,
Kernel-SME ideas have inspired new association-free multi-
object tracking methods that are inherently association-free
such as [7] that will be further investigated in the future.
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