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Abstract— This paper is about an experimental set-up for
tracking a ground moving mobile object from a bird’s eye
view. In this experiment, an RGB and depth camera is used
for detecting moving points. The detected points serve as input
for a probabilistic extended object tracking algorithm that
simultaneously estimates the kinematic parameters and the
shape parameters of the object. By this means, it is easy
to discriminate moving objects from the background and the
probabilistic tracking algorithm ensures a robust and smooth
shape estimate. We provide an experimental evaluation of a
recent Bayesian extended object tracking algorithm based on a
so-called Random Hypersurface Model and give a comparison
with active contour models.

I. INTRODUCTION

Object tracking [1] treats the successive localization of a
moving object over time. Object tracking is a fundamental
task in many technical areas such as robotics or surveillance.

This work considers the marker-less tracking of a moving
object on the ground with an RGBD camera observing the
scene from a bird’s eye view. We set up a specific miniature
scenario in which a toy train moves on a table as shown in
Fig. 1. On top of the table, a Microsoft R© Kinect

TM
sensor

is mounted that provides RGB and depth images from the
table. In order to track the train, we detect moving points
in the RGB and depth images (see Fig. 2). As a result, a
set of noisy measurements from the train is obtained for
each frame. These measurements typically do not cover the
entire surface of the object and also false measurements not
stemming from the train may be obtained. Hence, we have to
deal with a so-called extended object tracking problem, i.e.,
the successive estimation of both the shape and kinematic
parameters of an object based on noisy measurements from
the surface. In particular, we will use a recently developed
approach called Random Hypersurface Model (RHM) [2] that
estimates a star-convex shape approximation of the object.

We believe that the presented experimental setting can
serve as a benchmark and evaluation scenario for extended
object tracking methods as its behavior is similar to larger
sensors such as Ground Moving Target Indicator (GMTI)
sensors [3]. But, in contrast to a radar device, the presented
scenario is easy to set up and affordable. Nevertheless,
there are many further applications of the suggested tracking
system, e.g., people tracking or traffic surveillance.

An obvious advantage of the proposed tracking system
is that non-moving objects are invisible in the sense that
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Fig. 1: Setup: Moving object, i.e., a toy train, observed with
an RGBD camera from a bird’s eye view.

they do not cause measurements. The combination of RGB
and depth data is in particular suitable for detecting moving
points as moving objects always differ from the background
in depth and usually also in color. Hence, typical problems of
vision-only algorithms are avoided, i.e., the proposed method
is more robust against light changes.

The method for extracting the moving points employs
rather basic image processing techniques as we follow the
philosophy of performing as less as possible preprocessing
as possible. The probabilistic tracking algorithm we suggest
is capable of dealing with the extracted data in a systematic
and sound manner based on a probabilistic model for the
generation of a single point measurement. No prior informa-
tion about the object is required as its shape is estimated
from scratch, and shape changes are followed based on
a probabilistic model for the temporal evaluation of the
shape. The presented approach is real-time capable as the
detection of moving points can be efficiently performed, and
the tracking algorithm is based on a recursive closed-form
measurement update.

A. Related Work

For a detailed overview of visual object tracking, we
refer to [4], [5]. For example, popular methods are active
contour models that determine an enclosing contour of the
object by minimizing an energy function [6]. Furthermore,
kernel methods such as [7] employ mean-shift algorithm



(a) RGB image. (b) Depth image. (c) Extracted measurements.

Fig. 2: RGB and depth images supplied by the Kinect Sensor and the extracted measurements. Only measurements from
the train are received as it is the only moving object in the scene.

to the spatial and color space. There exist several visual
tracking methods based on moving object detection in RGB
images (see [5], [8]). The easiest way to detect moving
points is to consider the difference between two consecutive
frames. More advanced techniques such as [9] learn the color
histogram of the background.

Apart from computer vision, moving object detection is
also known in surveillance. For example, Moving Target
Indication (MTI) [3] is a special mode of a radar that
discriminates an object from the background by exploiting
the Doppler effect. Special MTI sensors can be distinguished
by the environment in which they operate: For example,
a Ground MTI (GMTI) [3] aims at moving objects on the
ground, while an Airborne MTI (AMTI) targets flying objects.
In this context, there is also a concept called Visual MTI
(VMTI) [10], which is used for moving objects based on
visual data.

Some recent work on detection and tracking using com-
bined RGB and depth cameras can be found for example in
[11], [12], [13]. To the best of our knowledge, combined
RGB and depth data has not yet been used for tracking
ground moving objects based on moving object detection.

B. Overview

The remainder is structured as follows. In the next section,
we explain the signal processing algorithms used for mov-
ing point extraction. Section III shows how the extracted
measurements are used for tracking the object’s location and
shape based on a probabilistic shape tracking algorithm. In
Section V, we present a detailed evaluation of the proposed
method including a comparison with active contour models.

II. SIGNAL PROCESSING

In this section, we present the signal processing algorithm
for extracting moving points from the RGBD data stream
produced by the sensor. More precisely, the sensor provides
a series of RGB images Ik(x, y) ∈ R3 and depth images
Dk(x, y) ∈ R, where k is the time index and [x, y]T ∈
{1, 2, . . . , u}×{1, 2, . . . , v} denotes the pixel coordinates in
an image with resolution u × v. The purpose of the signal

processing algorithm is to detect moving points, i.e., a set of
pixel coordinates

Yk = {ŷ
k,1
, . . . , ŷ

k,nk
} ,

where ŷ
k,i
∈ {1, 2, . . . , u} × {1, 2, . . . , v} for all i ∈

{1, . . . , nk}. These points serve as measurements for the
tracking algorithm (see next section).

The signal processing algorithm consists of three major
parts, i.e., remove ground, detect moving points, and dismiss
clutter, which are discussed in the following.

a) Remove Ground: As the height of the table and the
sensor is known, it is obvious to exploit this knowledge to
remove pixels, which belong to the ground. This is done
by applying a (user-defined) threshold on the depth images,
i.e., each pixel, which exceeds a specific distances from the
sensor is marked as background. It is neglected in the further
processing as the ground does not move. Hence, the RGB
and depth images with subtracted background are

Dt
k(x, y) :=

{
Dk(x, y) if Dk(x, y) < tdepth
−1 otherwise ,

and

Itk(x, y) :=

{
Ik(x, y) if Dk(x, y) < tdepth
−1 otherwise ,

where −1 marks a pixel as “ground”.
b) Detect Moving Points: This is a central processing

step in which moving points are determined by applying an
optical flow algorithm, i.e., the Horn-Schunck method [14],
to the RGB images Itk(x, y) and depth images Dt

k(x, y)
separately. As a result, a velocity vector is obtained for
each pixel in the RGB and depth image. The velocity fields
are denoted with Ivk (x, y) ∈ R2 for the RGB images and
Dv

k(x, y) ∈ R2 for the depth images. Based on these velocity
vectors, moving pixels are determined by thresholding. A
pixel is considered as moving if the magnitude of its velocity
exceeds a use-specified threshold in its RGB or depth image,



i.e.,

Ytemp
k :=

{[
x, y

]T ∣∣∣∣ ||Ivk (x, y)|| > tvel

or ||Dv
k(x, y)|| > tvel

}
(1)

Note that it is also reasonable consider a point as moving
when both RGB and depth image exceed a threshold. It
is even possible to use only RGB or depth information for
moving point detection.

c) Dismiss Clutter: For small objects as considered in
our setting, the signal-to-noise ratio of the Kinect sensor is
rather low, i.e., the boundary contours of objects in the depth
image are very noisy. As a consequence, boundary points of
non-moving object often get classified as moving. In order
to solve this issue, an edge detection algorithm is used to
dismiss all points from the edges. For this purpose, a moving
point is dismissed if a specific number nedge of neighbor pixel
is also moving. A neighbor pixel is a pixel whose distance
to the considered pixel is less than redge. As a result, only
moving points from the inner part of the object are obtained,
i.e.,

Yk :=

{[
x, y

]T ∣∣∣∣ [x, y]T ∈ Ytemp
k and

|Ytemp
k ∩K

([
x, y

]T
, redge

)
| ≤ nedge

}
, (2)

where K(
[
x, y

]T
, redge) denotes a circular disc with center[

x, y
]T

and radius redge. The extracted set of pixels Yk now
serves as input for the tracking algorithm as described in
the following section. An example frame with the extracted
measurements Yk is shown in Fig. 2c.

A. Adjusting the Parameters

The proposed signal processing algorithm involves some
parameters to adjust. Obviously, the threshold for subtracting
the table ground tdepth is very easy to find. The thresholds for
removing the edges nedge and redge can be adjusted by visual
inspection. It has to be determined such that the edges of
non-moving objects disappear. The threshold on the velocity
tvel has to be determined such that a non-moving object does
not produce measurements, however, a moving object does.

Note that each radar devices involves a similar parameter,
the so-called detection threshold, which determines if a
received echo stems from a target. Finally, it is worth men-
tioning that automatic methods for determining the above
parameters are currently under development.

III. EXTENDED OBJECT TRACKING ALGORITHM

According to the previous section, a varying number of
noisy measurements Yk from the target surface is obtained
for each frame (see Fig. 2c). Typically, only a small number
of measurements is extracted, and the measurements do not
cover the entire surface at object. This is a consequence of
the sensor noise, which is rather large compared to the extent
of the object, and the limited resolution capabilities.

ŷ
k,l

zk,l

S(p
k
)

x∗
k

Fig. 3: Modeling the shape: The parameter vector for the
shape is given by p

k
, and x∗

k subsumes parameters for
the kinematic, i.e., position and velocity. The measurement
model specifies the generation of a measurement source zk,l
on the shape. The measurement itself, i.e., the detected mov-
ing point, ŷ

k,l
, is a noisy observation of this measurement

source. Note that the measurement may lie outside of the
shape due to noise.

The goal is to estimate the shape and kinematic parameters
of the object based on these measurements The problem is
called extended object tracking and can be frequently found
in surveillance. For example, when a radar device is close
to a target, a varying number of reflections from different
reflection centers may be obtained. In this context, a variety
of extended object tracking algorithms were developed in
the recent years (see for example [2]). These algorithms are
capable of estimating the shape and kinematic parameters
based on successively arriving point measurements.

In this work, we use an extended object tracking approach,
which is able to estimate a star-convex shape approximation
of the target as presented in [2] called Random Hypersurface
Model (RHM).

In the following, we will outline the underlying proba-
bilistic models for RHMs and briefly discuss the inference
mechanism. We also present some simple extensions for
track management on top of the algorithm proposed in [2].

A. Object Model

The object state is represented with a random vector xk =[
pT
k
, (x∗

k)
T
]T

, where pT
k

are parameters for the shape and
x∗
k are the kinematic parameters (e.g., position, velocity).
As in [2], the shape is represented with a radius function

rk(φ), which gives the distance from the object center to a
contour point depending on an angle φ. The shape parameters
p
k

consist of the first Fourier coefficients of the Fourier
expansion of the radius function rk(φ). We denote the shape
(including its interior) as S(p

k
).

B. Dynamic Model

The dynamic model specifies the temporal evolution of
the object, i.e., for a given state xk it says how to the state
xk+1 will be. In a Bayesian setting, the dynamic model is
specified by a conditional probability density. Here in this
work, we use a (nearly) constant velocity model for the
object center [15]. The shape parameters are assumed to be
constant over time, however, a noise term is added in order
to capture shape changes, e.g., rotation of the object.



C. Measurement Model

A special property of extended object tracking methods
is that the measurement model, models the generation of a
single measurement. If several measurements are received
for a frame, their generation is assumed to be independent.
A major benefit of this model is that the measurements do
not have to cover the entire surface at a particular frame.

The underlying measurement model relates the state vector
xk to a single measurement ŷ

k,l
. It is composed of two

parts called target extent model and the sensor model. The
target extent model specifies a measurement source on the
target surface, i.e., zk,l ∈ S(pk

), where zk,l denotes the l-
th measurements source in frame k. In this work, the target
extent model is given by an RHM, which assumes that each
measurement sources lies on a scaled version of the shape
boundaries. Details can be found in [2].

Given a measurement source zk,l obtained from the target
extent model, the sensor model gives the measurement ŷ

k,l
.

In this setting, it is suitable to treat the measurement as noisy
observation of a measurement source that is corrupted with
additive Gaussian noise, i.e.,

ŷ
k,l

= zk,l + vk,l , (3)

where vk,l denotes zero-mean white Gaussian noise.

D. Bayesian Inference

Based on the above model, a nonlinear Bayesian state
estimator can be used for recursively updating a probability
density the object state xk based on the measurements. For
this purpose, we use the Unscented Kalman filter (UKF)
[2], which represents the uncertainty of the state xk with
a Gaussian distribution (see [2]).

E. Track Management

On top of the shape tracking algorithm, we implemented
basic track management algorithms as discussed in the
following.

1) Gating: Even though the signal processing algorithm
aims at detecting only points on the object, false measure-
ments, which do not stem from the object, may arise due
to noise. A simple gating procedure based on the current
shape estimate is performed in order to dismiss these clutter
measurements. For this purpose, each measurement that is
an element of a scaled version of the star-convex contour is
considered as stemming from the object, i.e., we blow up the
shape for finding potential measurements.

2) Track Initialization: In this work, we only consider the
tracking of a single object, hence, a new track is initialized if
the number of measurements exceeds a specific user-defined
threshold. The prior location of the object estimate is set to
the mean of the measurements and the prior shape is given
by a circle.

3) Track Termination: A track is terminated if the number
of measurements in the validation gate falls below a user-
defined threshold for a specific number of frames.

(a) Example measurements. (b) Active contour
for smoothed
measurements.

Fig. 4: In order to apply active contour models to point sets,
we render a point set to a continuous intensity image by
placing a Gaussian at each measurement point.

IV. IMPLEMENTATION DETAILS

In this section, we briefly describe some implementation
details. As already mentioned earlier, we use the Microsoft
Kinect sensor. which provides RGB images with a resolution
of 640x480 (8-bit color depth) and depth images with a
resolution of 640x480 (11-bit depth). The frame rate of the
Kinect sensor is 30 frames per second.

Both the signal processing and tracking algorithm were
implemented on a basic desktop computer equipped with an
Intel Core 2 Quad-Core Q660 processor with 2.4 GHz, 8192
MB DDR2 ram, and an AMD Radeon HD 5750 graphic
card. The signal processing algorithm was implemented in
OpenCV [16], OpenCL [17] (for the optical flow algorithm)
and OpenGL [18]. The tracking algorithm was implemented
in C++ using the Eigen library [19].

With the above system and implementation, we reached
the achievable frame rate of 30 frames per second for
tracking the object (in the considered scenarios, see next
section). Of course, the frame rate depends on the number of
Fourier coefficients, i.e., dimension of state, and number of
measurements per time step. All told, the presented tracking
algorithm is real-time capable even on a standard desktop
computer. Note that there is a lot of room left for further run-
time optimizations, e.g., a simultaneous update with several
measurements could be performed.

V. EVALUATION

In this section, we provide a detailed evaluation of the
proposed tracking system. For this purpose, we compare the
new method with active contour models [20], [21], which are
widely spread object tracking methods in computer vision.
Of course, in the considered scenario, the tracking algorithm
does not know that a train is to be tracked. And, most
important, it will not exploit any knowledge about the tracks
or the adjusted velocity.

A. Random Hypersurface Model

Fig. 5 depicts the tracking result using the RHM as
described in the previous section. The results show that the
RHM gives precise and smooth shape estimates.



B. Active Contour Model on Point Measurements

In the following, we demonstrate the need for an extended
object tracking method such as an RHM for tracking the
object in case of a few measurements per frame. We compare
the RHM (see Fig. 5) with an active contour model [21].
The active contour model employs the same point measure-
ments Yk as the RHM. Active contour models are not directly
applicable when a set of point measurements is given as
they are usually defined for intensity images. However, we
can interpret the measurements Yk as an intensity image by
placing a Gaussian kernel at each measurement as illustrated
in Fig. 4. The kernel width is tuned to get the best results.
Note that this kernel width in fact depends on the (unknown)
size of the object.

The shape estimates provided by the active contour model
are depicted in Fig. 6. Active contour models will definitely
work worse than an extended object tracking method in case
of a few measurements per frame. For example, if only one
measurement per frame, would be available, active contour
models are bound to fail. This behavior can be seen when
comparing both methods in Fig. 5 and Fig. 6. RHMs provide
a smooth and precise shape estimates, while active contour
models suffer from imprecise and too small shape estimates
(due to the less measurements). Of course, if a large amount
of measurements that covers the entire surface of the object
would be available, active contour models would give much
better results. Then there is actually no need for a methods
like RHMs, although RHMs would also give precise results
in this case.

C. Active Contours on RGB image

A reasonable method for tracking an object would be
to use active contour models only for the RGB images.
However, this method is bound to fail as the tracks prevent
the active contour models to work properly due to the similar
optical appearance. In general, active contour models will
only work well if the object to be tracked differs in color
from the background.

D. Active Contours on Depth image

An alternative is the application of an active contour
model to the depth images. This approach works well in the
considered scenario, if the object significantly differs from
the background in height. A situation in which this scenario
fails is depicted in Fig. 7, when the train passes a non-moving
object that is located next to the tracks.

VI. CONCLUSION

In this work, we described an experimental setup for
tracking ground moving objects using RGBD data. For this
purpose, RGB and depth information has been used for
detecting moving points. As a result, an extended object
tracking problem is obtained, where the detected moving
points serve as measurements from the object surface. In
particular, we used a recently developed extended object
tracking method based on RHMs in order to estimate a star-
convex shape approximation of the object. The benefits of

the tracking method have been elucidated with respect to
active contour models. Prospective work will be focused
on an automatic procedure for parameter adaption and an
extension to a three-dimensional scenario is planned.
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(d) (e) (f)

Fig. 5: Tracking results using a Random Hypersurface Model.

(a) (b) (c)

(d) (e) (f)

Fig. 6: Tracking results using an active contour model.

(a)

 

(b) (c)

Fig. 7: Comparison: RHM applied to point measurements vs. active contour model applied to depth image.


