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Abstract—We consider the task of recursively estimating the
pose and shape parameters of 3D objects based on noisy point
cloud measurements from their surface. We focus on objects
whose surface can be constructed by transforming a plane curve,
such as a cylinder that is constructed by extruding a circle.
However, designing estimators for such objects is challenging,
as the straightforward distance-minimizing approach cannot
observe all parameters, and additionally is subject to bias in
the presence of noise. In this article, we first discuss these issues
and then develop probabilistic models for cylinder, torus, cone,
and an extruded curve by adapting related approaches including
Random Hypersurface Models, partial likelihood, and symmetric
shape models. In experiments with simulated data, we show that
these models yield unbiased estimators for all parameters even
in the presence of high noise.

I. INTRODUCTION

The major task when designing a tracking algorithm for
objects in 3D boils down to defining a probabilistic model that
takes a set of pose and shape parameters and then relates
them to the potentially sparse, noisy point measurements.
In literature, there are roughly two lines of research to this
task. On the one side, non-parametric models can represent
detailed shapes by occupancy grids, point clouds, or polygon
meshes. However, varying the shape complexity requires non-
trivial refinement and coarsening operations. On the other
side, parametric models allow for specifying simple shapes
such as ellipsoids or bounding boxes using a small number of
parameters. In this article, we follow the parametric approach
and propose to construct the surface of more general 3D objects
by transforming plane curves (see Fig. 1). There are similar
approaches in the context of surface reconstruction [1], [2]
and extended object tracking [3], [4]. However, developing a
probabilistic model that relates the curve- and its transformation-
parameters to measurements in the presence of high noise is
challenging and may cause issues such as bias or unobservable
parameters.

Our main contribution is a thorough discussion of the
decision process for a suitable probabilistic model and com-
patible estimator. Specifically, we develop recursive Bayesian
estimators for the objects in Fig. 1, whose shapes are obtained
by translating, rotating, and scaling closed curves. For these
estimators, we incorporate insights and methods from our
previous research [3–10]. Note that these estimators can

(a) Cylinder (b) Torus (c) Cone (d) Extrusion

Figure 1: All of these blue objects can be constructed by
translating, rotating, and scaling the black plane curves.

be easily extended to full Bayesian tracking algorithms by
including motion models [11].

II. MODELING OBJECTS AS TRANSFORMED PLANE CURVE

In this section, we show how to use plane curves to construct
the surface of an object. A plane curve is one that can be
embedded into a 2D plane, such as the circle in Fig. 1(a-c).
All involved parameters that are required to specify the pose
and shape of the surface are aggregated in a state vector x.
Technically, modeling a surface then refers to the task of (i)
specifying a function φx : R→ R2 that lets us iterate through
all points in the curve, and (ii) embedding it into 3D space
by applying a transformation Φx : R2 → R3. Specifically, we
consider transformations in the form of

Φx(u, s) = Ru

[
fu · φx(s)

0

]
+ cu . (1)

In this formula, the variable s ∈ S ⊆ R iterates through the
curve and u ∈ U ⊆ R controls the transformation.

Using these parameters, the plane curve can be translated
and rotated using the vector cu ∈ R3 and the 3 × 3 rotation
matrix Ru, respectively. The scalar fu ∈ R allows for scaling
operations for a given curve, and by using different curve
functions φx(s), the shape itself can be modified. Note that
for (1), we considered the object in its local coordinate system.
Arbitrary object poses can be implemented by applying a rigid
transformation RxΦx(u, s) + cx to the surface function. In the
following, we derive specific instances of (1) for the shapes in
Fig. 1.

A. Translation (Cylinder)

Let us start with modeling the mantle of the cylinder in
Fig. 1a, which can be characterized by the state vector x =



[r, d]T where r is the radius and d is the length of the extrusion.
For the object coordinate system, let the bottom of the cylinder
be centered on the origin, axis aligned, and let y3 be the axis
of extrusion. For the circular plane curve (black), we can use
the function φx(s) = r · [cos(s), sin(s)]T with s ∈ [0, 2π].
The translation can be modeled as a linear shift according to
cu = [0, 0,u·d]T with u ∈ [0, 1]. The remaining transformation
mechanisms for rotation and scaling are not needed and set
to their respective identities Ru = I and fu = 1. Plugging all
into the general formula (1) yields

Φx(u, s) =


r · cos(s)

r · sin(s)

u · d

 , (2)

where each u refers to a circle in a plane that lies parallel to
the y1y2-plane and is shifted along the y3-axis.

B. Translation and Rotation (Torus)

By allowing translation and rotation, we can model more
complex surfaces such as the torus in Fig. 1b. Its surface can
be specified by the state vector x = [r1, r2]T where r1 is
the central radius and r2 is the lateral radius. For the object
coordinate system, let the center of mass lie in the origin
and the central circle lie in the y1y2-plane. For the circular
plane curves (black), we can again use the function φx(s) =
r2 · [cos(s), sin(s)]T with s ∈ [0, 2π]. The translation can be
modeled as a circular function cu = r1 · [cos(u), sin(u), 0]T

with u ∈ [0, 2π]. Then, the rotation matrix Ru can be obtained
using the tangent vector to the central circle at cu. Finally, by
setting the scaling to fu = 1, we arrive at

Φx(u, s) =


(r1 + r2 · cos(s)) · cos(u)

(r1 + r2 · cos(s)) · sin(u)

r2 · sin(s)

 . (3)

C. Translation and Scaling (Cone)

The cone in Fig. 1c can be constructed in a similar way as the
cylinder, except from an additional scaling term that controls
the circle radius. The state vector is given by x = [r, d]T,
where r is the radius at the bottom and d is the height of the
cone. Then, we can modify the cylinder model from (2) by
replacing the formerly constant scaling factor by fu = 1− u
which yields the cone model

Φx(u, s) =


(1− u) · r · cos(s)

(1− u) · r · sin(s)

u · d

 , (4)

where again s ∈ [0, 2π] and u ∈ [0, 1].

D. Translation of Star-convex Closed Curve (Extruded Curve)

Instead of using circular plane curves, we could also use
more general curves. In [6], it was proposed to use polar
functions for star-convex curves in R2. Star-convex means that
there is a point within the shape, where each line segment to

any point on the boundary remains in the shape. This allows for
a convenient representation by means of a polar function r(s)
that returns the radius for a given angle s ∈ [0, 2π]. Specifically,
r(s) can be implemented by means of a Fourier series

r(s) =
a0
2

+

M∑
m=1

am cos(m · s) + bm sin(m · s) (5)

that is controlled by a list of 2M + 1 coefficients a, b.
Using this polar function, we can iterate through all points

on the curve by φx(s) = r(s)·[cos(s), sin(s)]T. For the special
case of M = 0, the corresponding function r(s) = a0

2 specifies
the constant radius of a circle.

For a cylinder based on star-convex curves, the state vector
is given by x = [d, a0, a1, b1, . . . , aM , bM ]T, where d is the
height. Adapting the cylinder formula from (2), we obtain

Φx(u, s) =


r(s) · cos(s)

r(s) · sin(s)

u · d

 . (6)

Next, we discuss the task of estimating the state parameters
x for the considered objects based on noisy measurements of
the modeled surfaces.

III. RECURSIVE BAYESIAN ESTIMATION

In Bayesian estimation, the relationship between object
parameters x and measurements y

1
, . . . , y

n
is usually expressed

in terms of a likelihood p(y
1
, . . . , y

n
|x). This likelihood can

then be used to update a prior distribution p(x) on the state
parameters by applying Bayes’ rule

p(x|y
1
, . . . , y

n
) ∝ p(y

1
, . . . , y

n
|x) · p(x) . (7)

This allows for developing a recursive Bayesian estimator [12]
by using the posterior distribution as the prior for the next
update. In addition, by incorporating prediction steps between
the measurement update steps, the recursive estimator can be
extended to a tracking algorithm.

In the following, we assume the sensor noise to be additive
Gaussian N (0,Cv,i) and mutually independent among the
measurements y

i
. This allows us to factorize the likelihood

p(y
1
, . . . , y

n
|x) = p(y

1
|x) · . . . · p(y

n
|x) and to consider each

measurement individually.

IV. PROBABILISTIC MODEL

In this section, we derive a likelihood p(y|x) for shapes,
modeled according to (1). In doing so, we discuss the
association problem of measurements to the surface and its
existing solutions.

A. Likelihood Prototype

Let us start with developing a likelihood prototype for (1).
For this purpose, we have to model for a given state vector x,
how likely its corresponding surface Φx(u, s) with u ∈ U and
s ∈ S will produce a measurement y ∈ R3. As we assume



additive Gaussian sensor noise, the generative measurement
model can be written as

y = Φx(u, s) + v , (8)

where v ∼ N (0,Cv) is the noise variable. This generative
model can be rewritten to the likelihood

p(y|x) =

∫
U

∫
S

p(y|x, s,u) · p(s,u|x) ds du

=

∫
U

∫
S

N
(
y; Φx(u, s),Cv

)︸ ︷︷ ︸
sensor model

· p(s,u|x)︸ ︷︷ ︸
source model

ds du (9)

by assuming u and s are probabilistically known. The sensor
model then specifies the expected Gaussian sensor noise with
covariance matrix Cv when measuring a specific Φx(u, s), and
the source model specifies how likely it is that this source is
measured at all. However, when designing the source model
p(s,u|x), we are faced with the so-called association problem
[7], as it is generally not known from which point in the surface
a measurement originates.

B. The Association Problem and its Solutions

a) Spatial Distribution Model (SDM): An intuitive solu-
tion to the association problem is to make the assumption that
measurements will originate uniformly from the entire surface
[13], or from the part that is visible to the sensor [14]. In doing
so, p(s,u|x) is modeled as a uniform distribution in (9) and
yields unbiased estimators [13] even in the presence of high
noise (given the true distribution is uniform as well). Note
that the popular Random Matrices approach [15] for ellipses
is an instance of SDM. However, SDMs are not suitable for
the shapes in this article as, due to the involved integrals, they
are computational expensive when it comes to more complex
shapes. In addition, in situations where p(s,u|x) is not known
and modeled incorrectly, the resulting estimator will find biased
estimates [7].

b) Greedy Association Model (GAM): A less expensive,
yet naı̈ve solution to the association problem refers to the
assumption that each measurement y originates from its most
likely (or closest) source Φx(û, ŝ) on the surface, which
simplifies the likelihood prototype [10] to

p(y|x) = N
(
y; Φx(û, ŝ),Cv

)
. (10)

The resulting estimator then will find parameters that minimize
a distance measure between the measurements and the object
surface. Approaches using (10) include orthogonal least
squares and geometric fitting. However, these approaches are
known to be biased in the presence of noise [16] and unable
to observe specific extent parameters of objects, such as the
length of a line segment [13].

c) Partial Information Model (PIM): The third elemental
solution to the association problem refers to the idea of first
dividing the likelihood into “how well” measurements fit to
the object and “where” on the object they are related to, and
then only use the “how well” part for the measurement update.

Figure 2: Sketch of an RHM for a cylinder.

This approach can be seen as an instance of partial likelihood
[7] and yields

p(y|x) = N (ly; E{ly} , Var{ly}) (11)

where (for isotropic noise) the signed Euclidean distance
ly = ±‖y − Φx(û, ŝ)‖ naturally implements the “how well”
component. This partial likelihood yields an unbiased estimator
according to the criterion from [17] and is a systematic way to
justify the bias correction techniques in [16] and [10]. However,
analogously to the GAM, it is still not capable of estimating
specific extent parameters.

d) Random Hypersurface Model (RHM): In [4], [6], we
proposed to combine elemental models by first factorizing the
likelihood prototype from (9) according to

p(y|x) =

∫
U

∫
S

p(y|x, s,u) · p(s|x,u) ds · p(u|x) du , (12)

and then using an SDM for the u variable and an instance of
GAM or PIM for the s variable. The idea is visually explained
in Fig. 2 for the cylinder from (2). Each transformed curve u
is assigned a probability p(u|x) that it will be measured by
the sensor, right in the fashion of an SDM. Then, within each
curve, the distribution p(s|x,u) that refers to the originating
source in the curve is ignored (by using a GAM or PIM).

As a result, we can combine the likelihood for SDM and
PIM by replacing the inner integral over s in (12) by (11)

p(y|x) =

∫
U

N
(
ly; E

{
ly
}

, diag
(
Var
{
ly
}))
· p(u|x) du .

(13)

Note that we replaced the scalar distance ly by a vector-
valued expression ly ∈ R2, as it is not straightforward to define
a signed distance between a 3D measurement and a 1D curve
in 3D. Instead, ly is composed of the signed Euclidean distance
of the measurement to the plane that contains the curve, and
the signed Euclidean distance of the measurement’s projection
onto the plane to the curve. In the following, we will refer to
(13) as “RHM-PIM”.

V. PROPOSED APPROACH

In this section, we discuss the suitability of the probabilistic
models for a given object and identify the “simplest” that still
works. Essentially, there are two major issues that may occur
when designing an estimator.

Issue 1 (The estimator cannot find a parameter at all)
In order to enable the estimator to find the value of a parameter,
the likelihood must produce different values as the parameter



(a) Overestimated length. (b) Parameter bias.

Figure 3: Issues that may occur when designing the estimator.

changes. However, when ignoring the distributions for u, s, and
using distances instead (GAM and PIM), the likelihood could
become invariant to parameter changes. This issue is visually
explained for a cylinder in Fig. 3a. The closest distance of
measurements to the object surface is identical for the true
(black) and overestimated (red) height parameter. That is, when
varying a parameter does not effect the closest distances, this
parameter is likely to be unobservable. This issue can be either
resolved by regularization terms or by incorporating knowledge
about the distribution of measurement sources [5], [8], [9],
[13] in the fashion of SDMs and RHMs.

Issue 2 (The estimator finds a biased parameter)
It is well-known that when using a GAM, estimates of curvature
parameters are likely to be biased in the presence of noise
[16]. This issue is illustrated in Fig. 3b, where the black
and red curves respectively mark the true boundary and its
biased estimate. According to the sensor noise (filled circle),
measurements of the black source are more likely to occur on
the concave side of the boundary. However, the GAM-estimator
will find a biased boundary that, “roughly speaking”, balances
the probability mass on both sides [10]. That is, bias will
occur when the surface has a significant curvature within the
magnitude of the noise. In these situations, we can use an SDM
or a PIM [7], [10], [16] that do not suffer from this issue.

We can now design probabilistic models for the considered
objects that will not cause these issues in the estimator. In
doing so, we also propose compatible recursive Bayesian
estimators, including the Unscented Kalman Filter (UKF)
[18], the Smart Sampling Kalman Filter (S2KF) [19], and the
Progressive Gaussian Filter (PGF) [20]. We want to emphasize
that estimation based on the proposed models is not restricted to
these filters. They are rather a recommendation to the required
complexity of the filter. While UKF and S2KF both are “Sigma
Point Kalman Filters” (the latter with a variable number of
deterministic samples), the PGF is a sophisticated nonlinear
estimator that uses a particle-filter like measurement update.

A. Proposed Cylinder Estimator

A cylinder is potentially subject to both issues, i.e., an
unobservable length and a biased radius. In consequence, we
propose to use an RHM-PIM according to (13), where the
known distribution for u enables the length estimation and
the PIM component prevents bias. If measurements originate
uniformly from the cylinder mantle, p(u|x) can be modeled
as U(0, 1) with E{u} = 1

2 and Var{u} = 1
12 . In this form

[4], the RHM-PIM can be used with a nonlinear estimator,

such as the PGF [5]. However, in [8], [9] we showed how to
exploit the reflectional symmetry of the cylinder in order to
use a simpler S2KF. Here, we use an instance of this estimator
with 20n deterministically drawn samples [21].

B. Proposed Torus Estimator

In contrast to the cylinder, the torus is not affected by Issue 1,
as there is no length parameter and varying the radii will always
have an effect on the closest distances of points to the surface.
However, as both radii are subject to Issue 2, we propose to
use a PIM according to (11). Then, the torus parameters can
be estimated with a standard UKF.

C. Proposed Cone Estimator

Similar to the cylinder, the cone is subject to both issues, i.e.,
an unobservable height and a biased radius. In consequence, we
again propose to use an RHM-PIM according to (13), where the
known distribution for u enables the height estimation and the
PIM component prevents bias. The probability p(u|x) of each
scaled circle is proportional to its perimeter 2π · (1−u) · r and
scales linearly with u. As such, the variable u can be modeled
as a triangle distribution between 0 and 1 with E{u} = 1

3 and
Var{u} = 1

18 . Then, an S2KF can be used for estimation.

D. Proposed Extruded Curve Estimator

Being essentially a cylinder, the extruded curve is subject to
both issues, as well. Again, we propose to use an RHM-PIM
according to (13) with p(u|x) as U(0, 1). For deriving the
closest Euclidean distances between measurement and curves,
the polar Fourier curve can be approximated by a polygon.
Due to the higher complexity in the shape, we propose to use
a PGF instead of the S2KF.

VI. EVALUATION

For evaluation, we conducted two experiments with low
noise and high noise. In both experiments, we compared the
proposed approach to traditional approaches.

A. Traditional Approaches

For a static object, the “Traditional Batch” approach would
be processing all measurements using an instance of GAM (10)
together with a maximum likelihood estimator. A reference im-
plementation for cylinder, torus, and cone is publicly available
in the LSGE toolbox [22]. For a potentially dynamic object, the
“Traditional Recursive” approach would be using an instance of
GAM (10) together with a recursive Bayesian estimator such
as a particle filter [12]. For the ease of a lower computational
complexity, we use a similar PGF implementation [21] instead.

B. Experiments

For ground truth, we modeled all objects at position
[0.1, 0.4, 0.2] with an orientation [0, 0.5, 0] in axis-angle rep-
resentation. The shape parameters were set to [r, d] = [1, 2]
(cylinder), [r, d] = [1.5, 4] (cone), [r1, r2] = [1, 0.5] (torus),
[a0, a1, b1, d] = [4, 0, 1, 6] (extruded curve with 2-axial symme-
try [9]). Then, we simulated 1250 measurements of each object
by uniformly drawing measurement sources from the surface



Trad. Batch Trad. Recursive Proposed Recursive
Model Filter Model Filter

Cylinder LSGE GAM PGF RHM-PIM S2KF
Torus LSGE GAM PGF PIM UKF
Cone LSGE GAM PGF RHM-PIM S2KF
Extr. Curve - GAM PGF RHM-PIM PGF

Table I: Overview of the implemented estimators.
Low noise High noise

T. B. T. R. P. R. T. B. T. R. P. R.

Cylinder r 5.9 6.3 3.7 52 53 12

Torus r1, r2 8.0 8.3 6.1 86 90 31

Cone top 63 70 201 594 616 330

Extr. Curve a0, a1, b1 - 62 45 - 425 223

Table II: RMSE of selected parameters ×10−3 units.

and then adding Gaussian sensor noise with Cv = 0.01 ·I (low
noise) and Cv = 0.1 · I (high noise).

For estimation, we implemented the approaches in Table I.
We initialized all parameters with Gaussian random values,
drawn from the ground truth using variances of 5 · 10−2. The
Fourier coefficients for the extruded curve were initialized as a
circular curve with a0 = 5 and a1 = b1 = 0. In the recursive
approaches, we incorporated a random walk model [12] into the
prediction step, which inflates the state covariance matrix with
process noise in order to prevent local minimums. Specifically,
we chose a logarithmically decreasing diagonal covariance in
the magnitude from 10−2 to 10−12. Measurement updates were
performed in 250 steps with packages of 5 measurements. The
following results are obtained from 100 Monte-Carlo runs.

C. Results

The average estimation result after processing all measure-
ments is illustrated in Fig. 4. It can be seen that all estimators
can find the object orientation very accurately. This accuracy
also applies to the position estimates, except from a random
linear shift along the length axis (cylinder, cone, extr. curve)
in the traditional approaches, which is due to the missing
capability of estimating the length (Issue 1).

From the second and fourth column in Fig. 4, it can be seen
that the proposed approach finds accurate parameters for all
objects, even in the presence of high noise. In these situations,
the estimated curvature parameters of the traditional approaches
are biased (Issue 2), as Table II numerically confirms. This
result can be explained by the PIM-component that accounts
for the bias in the proposed approach. However, the PIM-
component is relatively sophisticated and might perform worse
than a simpler model in some situations. An example can be
found when considering the top of the cone, which is estimated
more accurately by the traditional approaches for low noise.

In sum, traditional GAM-based approaches are suitable when
the problematic length parameters are known in advance, and
when the surface has a negligible curvature with respect to
the magnitude of the noise. Otherwise, the experiments show
that RHM and PIM components can effectively compensate
for Issue 1 and Issue 2, respectively. Note that in situations

with low noise and the task of estimating length parameters, it
might be also reasonable to combine an RHM with a GAM
instead of a PIM.

VII. CONCLUSION

In this article, we developed tracking algorithms for 3D
objects that can be constructed by plane curves. We discussed
two issues that may occur when designing the estimator, i.e.,
unobservable and biased parameters. As main contribution, we
showed how to avoid both issues when designing probabilistic
models for a cylinder, torus, cone, as well as an extruded
curve. For this purpose, we incorporated ideas from related
approaches including Random Hypersurface Models, partial
likelihood, and symmetric shape models.

In the evaluation, we showed that the proposed tracking
algorithms are capable of finding unbiased estimates for all
modeled parameters of all considered objects. Compared to a
state-of-the-art fitting approach, we could reduce the RMSE in
the curvature parameters by 44%-77% in the presence of high
noise.
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