

Hot Topics in Multisensor Data Fusion

Uwe D. Hanebeck

> Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
> Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology (KIT), Germany
http://isas.uka.de

Karlsruhe in Germany

ißls

Karlsruhe Institute of Technology (KIT)

North Campus (formerly Research Center Karlsruhe, founded in 1956)

- Merged in October 2009
- 9,500 Staff
- 25,000 Students
- Budget 850 Mio. Euro

South Campus (formerly Universität Karlsruhe (TH), founded in 1825)

Motivation

3) Measurement association unknown

Associationfree filter

1. Nonlinear filter: Sample-based nonlinear Kalman filter
2. Combination:

Direct fusion of empirical estimates
3. Association-free filter:

Symmetrization of measurement equation

1) Nonlinear motion / measurement models

Nonlinear filter
2) Several estimates

Combination
Uwe D. Hanebeck @ Sensors 2015

- All methods based on novel distance measure
- Comparison of densities
- Continuous / continuous
- Continuous / discrete
- Discrete / discrete
- Continuously differentiable

$$
\underline{G}\left(\underline{\eta}_{1}, \underline{\eta}_{2}\right)=\frac{\partial D\left(\underline{\eta}_{1}, \underline{\eta}_{2}\right)}{\partial \underline{\eta}_{2}}
$$

Distance measure

$$
D\left(\underline{\eta}_{1}, \underline{\eta}_{2}\right)
$$

- Discrete / discrete case:
- Invariant to permutations of points

$$
D\left(\underline{\eta}_{1}, \underline{\eta}_{2}\right)=D\left(P_{1}\left(\underline{\eta}_{1}\right), P_{2}\left(\underline{\eta}_{2}\right)\right) \quad \text { with permutations } \quad P_{1}(.), P_{2}(.)
$$

- Efficient closed-form calculation
- Uses generalized cumulative distributions for comparison

Kalman Filt

Application: Human Tracking (1)

Kinematic model: state dimension: 46

Application: Human Tracking (2)

 S²KF-Based Tracking

Nonlinear Filtering: Problem

- Given:
- Nonlinear measurement equation $\underline{y}=\underline{h}(\underline{x})+\underline{v}$
- Gaussian prior density for $\underline{x}: f_{p}(\underline{x})$
- Measurement noise \underline{v} with Gaussian density: $f_{v}(\underline{v})$
- Specific measurement $\underline{\hat{y}}$
- Desired:
- Gaussian posterior density for $\underline{x}: f_{e}(\underline{x})$
- Complicated problem: Exact solution rarely possible
- Simplification:

Additional Gaussian assumption between state and measurement

Nonlinear Kalman Filter

Analytic Nonlinear Kalman Filter

- Calculate joint density of $\underline{y}, \underline{z}$ by augmented measurement equation

$$
\left[\underline{y}\left[\begin{array}{c}
\underline{z}
\end{array}\right]=[\underline{h}(\underline{x})+\underline{v}] \quad \text { and } \quad \underline{z}=\underline{x}\right.
$$

- Gaussian approximation cannot always be analytically calculated \rightarrow Simplifications inevitable

Sample-based Nonlinear Kalman Filter

- Use samples to approximate Gaussian prior and noise
- Samples can easily be propagated

- Remaining challenge: Suitable sample approximation
- Standard approximations: Random sampling, quadrature

New Sampling Method: Idea

- Goal:
- Arbitrary number of samples
- Homogeneous coverage of given Gaussian density
- Systematic approximation by minimization of distance measure
- Challenge:
- Standard distance measures typically not suitable for comparing continuous / discrete densities
- Wasserstein distance suitable, but very complex (distance requires optimization itself)
- Here:
- Employ novel distance measure
- Use optimization method to minimize distance between given Gaussian and desired Dirac mixture
\rightarrow Yields sample positions

New Sampling Method: Results

Reference: [6], [7]

Application: Crane Monitoring

Direct Fusion: Problem Formulation (1)

First prior Gaussian density, $L=20$

Prior Density 1

Second prior Gaussian density, $L=20$

Prior Density 2

Posterior Density

Direct Fusion: Problem Formulation (2)

- Goal: Direct Bayesian Fusion
- However, multiplication not well defined for Dirac mixtures
- For Dirac mixture: „Density" coded in distances and weights (when non-equally weighted)
- Both given densities are discrete
- In general: No joint support
- What we do not want:
- Reconstruct both continuous underlying densities
- Multiply the continuous densities
\rightarrow Posterior continuous density
- Discretize posterior

Direct Fusion: Problem Formulation (3)

Direct Fusion: Solution

Reconstruct density values at component locations (use k-nearest neighbors)

Minimize distance measure between \bar{f}^{e} and f^{e}

Direct Fusion: Results

Red: True densities (unknown to the filter)

Blue: Histogram of samples

ciation-free Data Fusion

Application: TrackSort (1)

- Sorting bulk material
- Belt sorter
- Use camera for tracking objects on belt
- Challenge: Many objects and high belt speed

Application: TrackSort (2)

Reference: [9]

Application: Beating Heart Surgery (1)

- Beating Heart Surgery
- coronary artery bypass
- Stopped heart
- use of heart lung machine
- additional risks for patient
- Beating heart
- more difficult for surgeon

Goal: Robot automatically compensates for heart motion

Application: Beating Heart Surgery (2)

haptic interface

surgeon

Application: Beating Heart Surgery (3)

stabilized

original

Association-free Data Fusion: Problem

- Given:
- Prior estimates of N objects $\mathcal{X}^{p}=\left\{\underline{x}_{1}^{p}, \underline{x}_{2}^{p}, \ldots, \underline{x}_{N}^{p}\right\}$
- Set of measurements $\hat{\mathcal{Y}}=\left\{\underline{\hat{y}}_{1}, \underline{\hat{y}}_{2}, \ldots, \underline{\hat{y}}_{N}\right\}$
- Association of measurements to objects is unknown: Taken care by unknown permutation P
- Measurement equations

$$
\begin{aligned}
\underline{\hat{y}}_{P(1)} & =h_{1}\left(\underline{x}_{1}\right)+\underline{v}_{1} \\
\underline{\hat{y}}_{P(2)} & =h_{2}\left(\underline{x}_{2}\right)+\underline{v}_{2} \\
& \vdots \\
\hat{\underline{y}}_{P(N)} & =h_{N}\left(\underline{x}_{N}\right)+\underline{v}_{N}
\end{aligned}
$$

- Desired:
- Posterior estimates of objects $\mathcal{X}^{e}=\left\{\underline{x}_{1}^{e}, \underline{x}_{2}^{e}, \ldots, \underline{x}_{N}^{e}\right\}$

Association-free Data Fusion: Challenge

- Number of permutations: N ! e.g. 10 ! $=3,628,800$
- Standard approaches
- Hard assignment
- Local nearest neighbors (simple)
- Global nearest neighbors (complex)
- Soft assignment
- Probabilistic matching (exponential grow over time)
- Here: no assignment at all

Association-free data fusion

Based on permutation-invariant distance measure

Association-free Data Fusion: Solution

- Several fundamental approaches possible, e.g., integral design of filter
- Here: Transformation of measurement equation to get rid of unknown permutation (literature: SME)
- Idea:
- Consider set of given measurements

$$
\hat{\mathcal{Y}}=\left\{\underline{\hat{y}}_{1}, \underline{\hat{y}}_{2}, \ldots, \underline{\hat{y}}_{N}\right\}
$$

- Calculate predicted measurements based on \mathcal{X}^{p}

$$
\mathcal{Y}^{p}=\left\{\underline{y}_{1}^{p}, \underline{y}_{2}^{p}, \ldots, \underline{y}_{N}^{p}\right\}
$$

- Minimize distance measure (is permutation invariant)

$$
D\left(\hat{\mathcal{Y}}, \mathcal{Y}^{p}\right)
$$

- Gradient vector gives new set of measurement equations without unknown permutation
- Apply standard filter to estimate object states

Association-free Data Fusion: Result

Three moving objects, high noise

Association fully known

Association unknown

Conclusions

Three hot topics:

1. Nonlinear filter:

Sample-based nonlinear Kalman filter
2. Combination:

Direct fusion of empirical estimates
3. Association-free filter: Symmetrization of measurement equation

All methods based on:
Novel distance measure for continuous / discrete densities

- permutation invariant
- continuously differentiable

\section*{| 듣 |
| :--- |
| 등 |
| $\bar{ㅇ}$ |
 Thank You for 1

 A
 tion! Sensor-Actuator-Systems} IKIT

iZN

The End

References

[1] Uwe D. Hanebeck and Vesa Klumpp,

Localized Cumulative Distributions and a Multivariate Generalization of the Cramér-von Mises Distance

Proceedings of the 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), August 2008.
[2] Jannik Steinbring, Christian Mandery, Nikolaus Vahrenkamp, Tamim Asfour, and Uwe D. Hanebeck
High-Accuracy Real-Time Whole-Body Human Motion Tracking Based on Constrained Nonlinear Kalman Filtering
(submitted) also available as arXiv preprint: Systems and Control (cs.SY), November 2015
[3] Jannik Steinbring and Uwe D. Hanebeck
LRKF Revisited: The Smart Sampling Kalman Filter (S2KF)
Journal of Advances in Information Fusion, 9(2):106-123, December 2014.
[4] Jannik Steinbring

Nonlinear Estimation Toolbox

Available at: https://bitbucket.org/nonlinearestimation/toolbox
[5] Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck
Semi-Analytic Gaussian Assumed Density Filter
Proceedings of the 2011 American Control Conference (ACC 2011), June 2011.
[6] Uwe D. Hanebeck, Marco F. Huber, and Vesa Klumpp
Dirac Mixture Approximation of Multivariate Gaussian Densities
Proceedings of the 2009 IEEE Conference on Decision and Control (CDC 2009), December 2009.
[7] Igor Gilitschenski, Jannik Steinbring, Uwe D. Hanebeck, and Miroslav Simandl
Deterministic Dirac Mixture Approximation of Gaussian Mixtures
Proceedings of the 17th International Conference on Information Fusion (Fusion 2014), July 2014.
[8] Uwe D. Hanebeck

Bayesian Fusion of Empirical Distributions Based on Local Density Reconstruction

Proceedings of the 2015 IEEE International Conference on Multisensor Fusion and Information Integration (MFI 2015), September 2015.
[9] Florian Pfaff, Marcus Baum, Benjamin Noack, Uwe D. Hanebeck, Robin Gruna, Thomas Längle, and Jürgen Beyerer
TrackSort: Predictive Tracking for Sorting Uncooperative Bulk Materials
Proceedings of the 2015 IEEE International Conference on Multisensor Fusion and Information Integration (MFI 2015), September 2015.
[10] Gerhard Kurz, Marcus Baum, and Uwe D. Hanebeck
Real-time Kernel-based Multiple Target Tracking for Robotic Beating Heart Surgery
Proceedings of the Eighth IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2014), June 2014.
[11] Gerhard Kurz, Geneviève Foley, Péter Hegedüs, Gábor Szabó, and Uwe D. Hanebeck
Evaluation of Image Stabilization Methods in Robotic Beating Heart Surgery
13. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC14), September 2014.
[12] Video Footage [0:00-0:17] and Images: da Vinci Surgical System, Intuitive Surgical, Inc. (http://www.intuitivesurgical.com/)
[13] Uwe D. Hanebeck and Marcus Baum
Association-Free Direct Filtering of Multi-Target Random Finite Sets with Set Distance Measures Proceedings of the 18th International Conference on Information Fusion (Fusion 2015), July 2015.

