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Karlsruhe in Germany
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Karlsruhe Institute of Technology (KIT)
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South Campus (formerly
Universität Karlsruhe (TH), 
founded in 1825)

North Campus 
(formerly Research 
Center Karlsruhe, 
founded in 1956)

• Merged in October 2009
• 9,500 Staff
• 25,000 Students
• Budget 850 Mio. Euro



Motivation
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1. Nonlinear filter: 
Sample-based nonlinear Kalman filter

2. Combination: 
Direct fusion of empirical estimates

3. Association-free filter:
Symmetrization of measurement equation



 All methods based on novel distance measure

 Comparison of densities

• Continuous / continuous

• Continuous / discrete

• Discrete / discrete

 Continuously differentiable

 Discrete / discrete case:

• Invariant to permutations of points

• Efficient closed-form calculation

 Uses generalized cumulative distributions for comparison

Foundation: Distance Measure
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Reference: [1]
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Application: Human Tracking (1)
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Reference: [2], [3]



Application: Human Tracking (2)
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Reference: [2], [3]



 Given:

• Nonlinear measurement equation

• Gaussian prior density for    :

• Measurement noise    with Gaussian density:

• Specific measurement

 Desired:

• Gaussian posterior density for    :

 Complicated problem: Exact solution rarely possible

 Simplification:

Nonlinear Filtering: Problem
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Additional Gaussian assumption 
between state and measurement

Nonlinear Kalman Filter

Our Matlab Toolbox available.

See reference [4]



 Calculate joint density of        by augmented measurement 
equation

 Gaussian approximation cannot always be analytically 
calculated → Simplifications inevitable

Analytic Nonlinear Kalman Filter
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Reference: [5]



 Use samples to approximate Gaussian prior and noise

 Samples can easily be propagated

 Remaining challenge: Suitable sample approximation

 Standard approximations: Random sampling, quadrature

Sample-based Nonlinear Kalman Filter
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 Goal: 

• Arbitrary number of samples

• Homogeneous coverage of given Gaussian density

• Systematic approximation by minimization of distance measure

 Challenge:

• Standard distance measures typically not suitable for comparing 
continuous / discrete densities

• Wasserstein distance suitable, but very complex
(distance requires optimization itself)

 Here:

• Employ novel distance measure

• Use optimization method to minimize distance between given 
Gaussian and desired Dirac mixture

→ Yields sample positions

New Sampling Method: Idea
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Reference: [6], [7]



New Sampling Method: Results

Uwe D. Hanebeck @ Sensors 2015 14

− 4

− 2

0

2

4

− 2− 200− 222− 2000000−00000000020022000000000000000

y

− 4 − 2 0 2 4− 200 2−−− 22002200000000−−−0000 22222−0000000000000

2

0022000022220000000

x

− 4

− 2

0

2

4

− 2− 200− 222− 2000000−00000000020022000000000000000

y

− 4 − 2 0 2 4− 200 2−−− 22002200000000−−−0000 22222−0000000000000

2

0022000022220000000

x

− 4

− 2

0

2

4

− 2− 200− 222− 2000000−00000000020022000000000000000

y

− 4 − 2 0 2 4− 200 2−−− 22002200000000−−−0000 22222−0000000000000

2

0022000022220000000

x

− 4

− 2

0

2

4

− 2− 200− 222− 2000000−00000000020022000000000000000

y
− 4 − 2 0 2 4− 200 2−−− 22002200000000−−−0000 22222−0000000000000

2

0022000022220000000

x

x

− 4

− 2

0

2

4

− 2− 200− 222− 2000000−00000000020022000000000000000

y

− 4 − 2 0 2 4− 200 2−−− 22002200000000−−−0000 22222−0000000000000

2

0022000022220000000

− 4

− 2

0

2

4

− 2− 200− 222− 2000000−00000000020022000000000000000

y

− 4 − 2 0 2 4− 200 2−−− 22002200000000−−−0000 22222−0000000000000

2

0022000022220000000

x

Reference: [6], [7]
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Terex AC 1000 (1200 t)

Application: Crane Monitoring
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Direct Fusion: Problem Formulation (1)
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Prior Density 1

Prior Density 2

Posterior Density

Reference: [8]



 Goal: Direct Bayesian Fusion

 However, multiplication not well defined for Dirac mixtures

 For Dirac mixture: „Density“ coded in distances and weights
(when non-equally weighted)

 Both given densities are discrete

 In general: No joint support

 What we do not want:

• Reconstruct both continuous underlying densities

• Multiply the continuous densities
→ Posterior continuous density

• Discretize posterior

Direct Fusion: Problem Formulation (2)
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Reference: [8]



Direct Fusion: Problem Formulation (3)
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Reference: [8]



Direct Fusion: Solution
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Reference: [8]



Direct Fusion: Results
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Red: True densities

(unknown to the filter)

Blue: Histogram of samples

Reference: [8]
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 Sorting bulk material

 Belt sorter

 Use camera for tracking
objects on belt

 Challenge: Many objects
and high belt speed

Application: TrackSort (1)
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Reference: [9]



Application: TrackSort (2)
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Reference: [9]



 Beating Heart Surgery

• coronary artery bypass

 Stopped heart

• use of heart lung
machine

• additional risks for
patient

 Beating heart

• more difficult for
surgeon

Application: Beating Heart Surgery (1)

Goal: Robot automatically compensates for heart motion

Reference: [10]-[12]
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Application: Beating Heart Surgery (2)

manipulator

sensor

surgeon

haptic interface

beating heart

stopped
heart

patient

Reference: [10]-[12]
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Application: Beating Heart Surgery (3)
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Reference: [10]-[12]



 Given:

• Prior estimates of      objects

• Set of measurements

• Association of measurements to objects is unknown:
Taken care by unknown permutation 

• Measurement equations

 Desired:

• Posterior estimates of objects

Association-free Data Fusion: Problem
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Reference: [13]



 Number of permutations:         e.g.

 Standard approaches

• Hard assignment

- Local nearest neighbors (simple)

- Global nearest neighbors (complex)

• Soft assignment

- Probabilistic matching (exponential grow over time)

 Here: no assignment at all

Association-free Data Fusion: Challenge
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Association-free data fusion

Based on permutation-invariant

distance measure

Reference: [13]



 Several fundamental approaches possible, e.g.,
integral design of filter

 Here: Transformation of measurement equation to get rid 
of unknown permutation (literature: SME)

 Idea:

• Consider set of given measurements

• Calculate predicted measurements based on

• Minimize distance measure (is permutation invariant)

 Gradient vector gives new set of measurement equations 
without unknown permutation

 Apply standard filter to estimate object states

Association-free Data Fusion: Solution
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Reference: [13]



Association-free Data Fusion: Result
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Three moving objects, high noise

Association fully known Association unknown

Reference: [13]



Conclusions
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Three hot topics:

1. Nonlinear filter: 
Sample-based nonlinear Kalman filter

2. Combination: 
Direct fusion of empirical estimates

3. Association-free filter:
Symmetrization of measurement equation

All methods based on:

Novel distance measure for continuous / discrete densities
• permutation invariant 
• continuously differentiable





The End
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