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Motivation

Nonlinear filter: .
3) Measurement So Ieab cel I Kal filt 1) Nonlinear
ey e ample-based nonlinear Kalman filter motion /
unknown measurement
2. Combination: models
Direct fusion of empirical estimates
Association- 3 = Aggqciation-free filter: Nonlinear
free filter . . . filter
Symmetrization of measurement equation
2) Several
estimates

Combination
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Foundation: Distance Measure

All methods based on novel distance measure

= Comparison of densities y Parameter Parameter
. ) vector vector
e Continuous / continuous ‘ n, ‘ n,
e Continuous / discrete .

v

e Discrete / discrete

= Continuously differentiable Distance measure
dD(n,,n.,)
G(n,.n,) = @_771 : D(n,:n,)
+2

Discrete / discrete case:
e Invariant to permutations of points
D(n,.n,) = D(Pi(n,), P2(n,)) with permutations Pi(.), P»(.)
o Efficient closed-form calculation
= Uses generalized cumulative distributions for comparison

Reference: [1]
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Application: Human Tracking (1)

- Recon-
Measured Y structed
markers: pose
50

Kinematic model:
state dimension: 46

Reference: [2], [3]
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Measurements (with Occlusions) S2?KF-Based Tracking

Reference: [2], [3]




Nonlinear Filtering: Problem

= Given:
* Nonlinear measurement equation y = h(z) + v
 Gaussian prior density for z : f,(z)
e Measurement noise v with Gaussian density: f,(v)
e Specific measurement y

= Desired:

e Gaussian posterior density for z : f.(z)

Complicated problem: Exact solution rarely possible
Simplification:

Additional Gaussian assumption
between state and measurement

Nonlinear Kalman Filter

Our Matlab Toolbox available.
See reference [4]
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Analytic Nonlinear Kalman Filter

= Calculate joint density of y,z by augmented measurement

equation
H _ {h(&) - y] and 2=z
£ Y
Measurement
Joint density Specific Joint density equation
AU AU fpv (CU, 'U) measurement . U/ fpy (33, y) /\/

Noise density X yA _____________________________
<~ . N

fv (’U approximation
— > >
Prior 4 Posterior ,
density density
fo(2) /\ Je(@) /\
> >

= Gaussian approximation cannot always be analytically
calculated - Simplifications inevitable

Reference: [5]
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Sample-based Nonlinear Kalman Filter

= Use samples to approximate Gaussian prior and noise
= Samples can easily be propagated

Measurement
Joint density Joint density

Specific equation
AU AU fpv (CL'g U) measurement . U fpy (;13’ y) /\/

i nsi 'y Re
Noise density - . Ey ________________ _‘__0_‘_0 ______
0e°
R LN
) o ® .:.‘ Gaussian

fv (fU approximation
— > >
Prior 4 Posterior ,
density density
fp(@) /\ Jfe(x) /\
> >

= Remaining challenge: Suitable sample approximation
= Standard approximations: Random sampling, quadrature

Reference: [3]
o
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New Sampling Method: Idea

= Goal:
e Arbitrary number of samples
e Homogeneous coverage of given Gaussian density
e Systematic approximation by minimization of distance measure

= Challenge:

e Standard distance measures typically not suitable for comparing
continuous / discrete densities

e Wasserstein distance suitable, but very complex
(distance requires optimization itself)
= Here:
e Employ novel distance measure

e Use optimization method to minimize distance between given
Gaussian and desired Dirac mixture

- Yields sample positions

Reference: [6], [7]
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New Sampling Method: Results

Reference: [6], [7]

A\‘(IT Uwe D. Hanebeck @ Sensors 2015 14 P



¢ Fusion of

pire Est\mates

TWO Empince
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Application: Crane Monitoring
&

Terex AC 1000 (1200 t)
< TEREX.

Local Fusion

Processor
\f?\
Local Fusion

Local Fusion —>
—_—
Processor Processor \ﬁ

Tr /I Global Fusion
i Processor
Lg(;g!:g;?n D S Local Fusion | __—>

Processor
Local Fusion /

Processor
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Direct Fusion: Problem Formulation (1)

First prior Gaussian density, L =20
04 F T ™ /_l:li.‘\ L "
A AN
0 / \ . -
502 / \\ Prior Density 1
/ N\
0 -/l il b i l\—L 1
-4 -3 -2 -1 0 1 2 3 P
Second prior Galj:sr;;n density. L =20 o\°° i
04 F .
e
1 o . .
% 02 2 ‘;\\* {  Prior Density 2
Q‘\‘\ \(@0
. e e 0
-4 -3 -2 1 2 3 4
Result. | posteatf‘io_; density, L =20
06 F T T ]
AT
/ \
+ 04 F / \ . ]
5 / \\ Posterior Density
=02 /
0 1 / L ]
-4 -3 -2 1 0 1 2 3 4

AT

Reference: [8]
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Direct Fusion: Problem Formulation (2)

= Goal: Direct Bayesian Fusion
= However, multiplication not well defined for Dirac mixtures

= For Dirac mixture: ,Density" coded in distances and weights
(when non-equally weighted)

= Both given densities are discrete
= In general: No joint support

= What we do not want:
e Reconstruct both continuous underlying densities

e Multiply the continuous densities
— Posterior continuous density

e Discretize posterior

Reference: [8]

A\‘(IT Uwe D. Hanebeck @ Sensors 2015 18 I



Direct Fusion: Problem Formulation (3)

= Pt Bayes’ =
fPL, fr — " —

I !

Reconstruction Sampling |——

| }

£, 72 gl DS gy (e

Continuous
densities

Discrete
densities

Reference: [8]
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Direct Fusion: Solution

p re
A A
- -
m W Multiply |
Nonequally weighted Equally weighted
= Dirac mixture e  Dirac mixture
fe f
Local density Re-
reconstruction Overlay approxi-
: mate
p fe
/2 13
- .

] Multiply | ‘ ‘

Reconstruct density values
at component locations
(use k-nearest neighbors)

v

Minimize distanf:e measure
between f¢and f°

Reference: [8]
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Direct Fusion: Results

First prior Gaussian mixture, L, =200

r —
Second prior Gaussian mixture, L, =200
T T T

Red: True densities
(unknown to the filter)

T

Tru(l' and aplproxim::t(' post(:rior d(‘1llsity . B I u e : H iStOg ram Of Sam p | eS

r —*
True and approximate posterior cumulative distribution
T T T

1-
T
2 05
&y
0 'l
-4 3 2 1 0 1 2 3 4

Reference: [8]
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Application: TrackSort (1)

= Sorting bulk material
= Belt sorter

= Use camera for tracking
objects on belt

= Challenge: Many objects
and high belt speed

Camera Q

|
Lighting ®1®\|

e ey (L
LA ) .‘”"q.

Belt e | ‘oo, .
*

Bl e
~ Fraunhofer *
10SB

Sorted material
‘ Reference: [9]
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Application: TrackSort (2)

&‘.

Reference: [9]
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Application: Beating Heart Surgery (1)

= Beating Heart Surgery
e coronary artery bypass

= Stopped heart

e use of heart lung
machine

e additional risks for
patient
= Beating heart

e more difficult for
surgeon

Goal: Robot automatically compensates for heart motion

Reference: [10]-[12]
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Application: Beating Heart Surgery (2)

beating heart

SENSOr

stopped
heart ©

haptic interface

surgeon

Reference: [10]-[12]
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stabilized original

Reference: [10]-[12]
[ ]

KIT



Association-free Data Fusion: Problem

= Given:
e Prior estimates of N objects A? = {z7,z5, ..., 2%}
e Set of measurements ) = {gl,gg, s ,QN}

e Association of measurements to objects is unknown:
Taken care by unknown permutation P

e Measurement equations
= hi(z;) + v

= ha(z,) + vy

Up)
Qp(z)

= Desired:
» Posterior estimates of objects X¢ = {z¢, x5, ... ,2?\;}

Reference: [13]
®
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Association-free Data Fusion: Challenge

= Number of permutations: N! e.g. 10! = 3,628, 800

= Standard approaches

e Hard assignment
- Local nearest neighbors (simple)
- Global nearest neighbors (complex)

e Soft assignment
- Probabilistic matching (exponential grow over time)

= Here: no assignment at all

Association-free data fusion

Based on permutation-invariant
distance measure

Reference: [13]
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Association-free Data Fusion: Solution

= Several fundamental approaches possible, e.q.,
integral design of filter

= Here: Transformation of measurement equation to get rid
of unknown permutation (literature: SME)

= [dea:
* Consider set of given measurements
V=148, Uy}
e (Calculate predicted measurements based on X?
W=l vy )
e Minimize distance measure (is permutation invariant)
D(Y,YP)
= Gradient vector gives new set of measurement equations
without unknown permutation

= Apply standard filter to estimate object states

Reference: [13]
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Association-free Data Fusion: Result

Three moving objects, high noise

Association fully known Association unknown

Reference: [13]
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AT

Conclusions
Three hot topics:

1. Nonlinear filter:
Sample-based nonlinear Kalman filter

2. Combination:
Direct fusion of empirical estimates

3. Association-free filter:
Symmetrization of measurement equation

All methods based on:

Novel distance measure for continuous / discrete densities
« permutation invariant
« continuously differentiable
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