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GOOD THINGS COME TO THOSE WHO WEIGHT!
IMPROVING GAUSSIAN MIXTURE WEIGHTS
FOR CISLUNAR DEBRIS TRACKING

Dalton Durant; Uwe D. Hanebeck] and Renato Zanetti*

Kessler syndrome is the process of orbital debris colliding and compounding
over time. Within several orbits, 100% of satellites are lost. It is then critical to
have accurate and efficient tracking methods. In this study, the Gaussian Mixture
Probability Hypothesis Density filter is used to track multiple targets generated
from a debris cloud clustered around a similar cislunar near rectilinear halo orbit.
Traditionally, updating the weights of individual Gaussian mixture components
involved linearizing the measurement model about the prior means. However,
recent advancements have shown that linearizing about the posteriors significantly
improves estimation performance without sacrificing efficiency. This work applies
the posterior linearization technique to multi-target filtering and further eliminates
the need for linearization altogether by employing techniques from importance
sampling. The study proves that each method has exact equivalence under linear
measurement models, and demonstrates empirically better performance for the
posterior methods under nonlinear measurement models.

INTRODUCTION

The Kessler syndrome, or Kessler effect, describes a catastrophic scenario where orbital debris
continuously collides, leading to an exponential increase in space debris.! In just a few orbits,
all satellites could be lost—a grim reality that poses a severe threat to future space missions and
exploration.

Orbital debris has been extensively studied,” but only recently has attention shifted toward
debris threats in cislunar space. Recent studies explore topics such as spacecraft explosions at La-
grange points,510 re-collision risks involving debris from NASA’s Lunar Gateway,''!* and track-
ing methods related to Space Situational Awareness (SSA)!42! to name a few. This growing body
of work highlights the increasing interest in studying cislunar debris.

It is the interest of this work to advance the area of cislunar debris tracking through accurate
and efficient multi-target filtering methods. Comprehensive reviews of multi-target filtering and
tracking methods can be found in References 22 and 23. One such method, the Gaussian Mixture
Probability Hypothesis Density (GM-PHD) filter,>* is a popular method for multi-target filtering,
with applications in radar tracking,?>%6 computer vision,?”-?® and autonomous navigation.?%-3° The
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GM-PHD filter estimates the states and cardinality of multiple targets from noisy measurements
without requiring explicit data association between measurements and targets. While it does not
label or catalog targets—necessary in some SSA applications—it is well suited for tracking multiple
debris fragments clustered around a cislunar near rectilinear halo orbit (NRHO), where labeling is
unnecessary, and the focus is on estimating the amount, location, and trajectories of the debris.

The GM-PHD filter is a specific implementation of the Probability Hypothesis Density (PHD)
filter,’! based on Random Finite Set (RFS) theory. Instead of propagating the full multi-target pos-
terior distribution, the PHD filter propagates the first-order moment of the RFS, also known as the
intensity function. A defining feature of the GM-PHD filter is its approximation of the intensity
function as a weighted sum of Gaussian components, which makes it analytically tractable. How-
ever, inaccuracies in computing these weights can lead to filter divergence, erroneous state estimates,
and misalignment with the true intensity distribution. The weights are updated by approximating the
marginal likelihood of each component, traditionally by linearizing the measurement model around
the prior means of the components. While this method is straightforward, it introduces limitations.
Recent advances indicate that linearizing around the posterior means of the components signifi-
cantly improves estimation accuracy without compromising computational efficiency,?’3? though
this approach has only been applied to single-target filters so far.

It is then the purpose of this work to extend the posterior linearization approach to multi-target
filters, specifically, the GM-PHD. Furthermore, this work also proposes eliminating the need for
linearization altogether by employing importance sampling techniques. This anti-linearization ap-
proach is generalized for all Gaussian mixture-type filters and is empirically shown to significantly
improve the GM-PHD filter’s accuracy, consistency, and computational efficiency.

This work begins by reviewing Gaussian mixture weights and introducing the anti-linearization
weighting method. Next, under linear measurement models, this work proves that the proposed
method is exactly equivalent to traditional and recent posterior linearization weighting methods.
This work then demonstrates improved performance under nonlinear models for general Gaussian
mixture-type filters. The proposed anti-linearization method and the recent posterior linearization
method are then applied to the GM-PHD filter, showing improved performance in a cislunar debris
tracking example compared to traditional methods. The work then concludes with a summary and
recommendations for future research.

GAUSSIAN MIXTURE WEIGHTS

This work models the state dynamics and measurements as
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where x € R" is the state with dynamics function f(-): R"* — R"* and noise v. Additionally,
y € R™ is the measurement with mapping function h(-): R™ — R™. The measurements are
modeled with additive, white, Gaussian measurement noise 7 ~ A(0, R) uncorrelated to all v.

In Bayesian inversion, the posterior is usually the function of interest and is represented by Bayes’
rule
p(y[x) p(x)
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where p(x) is the prior, p(y|x) is the likelihood, and p(y) is the marginal likelihood; also known
as the measurement probability density function (PDF) or the Bayesian evidence. In problems like
cislunar debris tracking, dynamics and measurements are highly nonlinear causing the prior and
the marginal likelihood to exhibit significant non-Gaussian uncertainties making them analytically
intractable and therefore, as a result, there are no analytical solutions to the posterior PDF.

Fortunately, any non-Gaussian prior can be approximated as a weighted sum of n Gaussians with
associated prior weights w;~ arbitrarily well:*3

n
p(x) ~ Y w; pi(x). 4)
i=1
Performing Bayesian inversion on the individual components, the posterior distribution is
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where p;(x) is the i-th component’s prior, p;(y) is its marginal likelihood, and p;(x|y) is its poste-
rior. Note that if the prior is exactly a Gaussian sum and the measurements are linear, then a closed
form solution exists where the posterior is also a Gaussian sum. In this case, it is optimal to update
each component with a Kalman filter.3*

However, for nonlinear measurements, it is generally not possible to compute p;(y) and p;(x|y)
exactly, and some approximations need to be made to perform Bayesian inversion on the compo-
nents (via EKF,3> UKF,3%37 CKF,?® ezc.). In recent work,?"32 it is argued that once the ¢-th com-
ponent’s posterior p;(x|y) is calculated, it is a more accurate representation of the unknown state
than the prior, and hence any approximation made to compute the marginal likelihood p;(y) should
rely on the posterior p;(x|y) rather than the prior p;(x). In-other-words, the updated weights should
rely on the posterior rather than the prior because the posterior typically contains more information
about the system.

Traditional Weights

There is a common assumption—albeit whose implications have not been explored in depth—in
which the updated weights in Equation (6) are typically computed by linearizing the measurement
model. This linearization is computed using a first-order Taylor series expansion centered around
the i-th component’s prior state estimate X(¥) as

h(x®) ~ h(x®) + HD(x —x0), (8)
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where H() — % is the Jacobian matrix, which captures the gradient of the measurement model

with respect to the state evaluated at the prior estimate. It then follows that the innovation covariance
is given by

PY) = E[(y — h(x®?)) (y — h(x®))]
- HOPYHO + R,
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where Py is the i-th component’s prior covariance estimate.

Using Equation (8) and its associated innovation covariance from Equation (9), the marginal
likelihood is approximated by

Q
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pily) = N(y; h(x®), P, (1)

resulting in the traditionally computed weights

wi o~ wh = 20 (12)

Although they are used traditionally, these weights can hinder the performance of Gaussian Sum
Filters (GSF),3°*! Ensemble Gaussian Mixture Filters (EnGMF),21-424° and other Gaussian Mix-
ture Model (GMM)—type filters.’%->2

Posterior Linearization Weights

Reference 32 found that better weights can be computed by linearizing the measurement model
about each component’s posterior estimate (%) rather than the prior x(*) as

h(x®) ~ h(xD) + HO(x — xD), (13)
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where H(®) = a}é(;((i) ) is the Jacobian matrix, which now captures the gradient of the measurement

model with respect to the state evaluated at the posterior estimate. It then follows that
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where 1555,{ is the i-th component’s posterior covariance estimate, I is the n, x n, identity, and
) — () — g = () —1
KO - POAODPY)
Using Equation (13) and its associated innovation covariance from Equation (14), the marginal
likelihood is approximated by

p(y) ~ ply) = Zn: w; pi(y), (15)

J
pily) = N(y; h(x®), P{)), (16)



resulting in the posterior linearization weights

wh ~ wf = L (17)

Reference 32 proved that, for linear measurement models, both approximations wj and ﬁ);r
yielded exactly equivalent results. This work empirically demonstrates, in nonlinear cases, im-
proved GM-PHD filter performance when linearizing the measurement model about the posterior
estimates.

Anti-Linearization Weights

A new weight update process is proposed utilizing importance sampling to bypass linearization
altogether. This means that this method is Jacobian-free and innovation matrix-free; two sometimes
costly computations.

Revisiting Equation (5), the unnormalized contribution of the ¢-th component is
w; pi(ylx) pi(x) = w; pi(y) pi(xly), (18)

and has the relationship:
w; pi(y) pilx[y) o wi” pi(x]y). (19)

Traditionally the weights are calculated from the above equation to obtain w;" oc w; p;(y), which

requires some approximation to calculate p;(y) (such as linearization). This work proposes to
instead start from w; p;(y|x) p(x) oc w;" pi(x|y) to obtain

+ o w; pilylx) pi(x)
T )

(20)

since p;(y|x) and p;(x) are known exactly.

If Bayesian inversion could be performed exactly on each component, evaluating Equation (20)
at any value of x would produce the same value for w;". However, when the component’s posterior
pi(x|y) is approximated, Equation (20) returns different values of w;" when different values of x
are used. In this work, the weights are calculated by evaluating Equation (20) at the posterior mean:
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The proposed weight update above in Equation (21) bypasses linearization, retaining the full non-
linear measurement model, and avoids computing Jacobians and innovation matrices.

PROOF OF EQUIVALENCE FOR LINEAR MEASUREMENT MODELS

This section proves, for linear measurement models, that the proposed anti-linearization weights
are equivalent to the posterior linearization weights and the traditional prior linearization weights.



Theorem 1. (Equivalent Weights Under Linear Measurement Models) Consider Gaussian measure-
ment probability distributions p(y) and p;(y). These distributions are computed from Equation (10)
and Equation (11), respectively, based on prior estimates. Similarly, consider p(y) and p;(y), cal-
culated from Equation (15) and Equation (16), respectively, utilizing posterior estimates. In light of
these considerations, and given the prior weights w; , the traditional weights take the form

—+ w; pi(y)
P = on = 22
i Zj:l w; p;(y) 22

the posterior linearization weights take the form

bf = B (23)
2;’:1 w; p;i(y)

and the anti-linearization weights take the form

w; pi(y|x=%x") p;(x=%x")
- pi(x=xDy)
Z n w; pi(ylx=%) p;(x=x0)) o
ZjZI pi (x=x0]y)

Then the linear case yieldsy = Hx® + n, and gives

o = w7 = W (25)

Proof. If the numerators of Equations (22), (23), and (24) V 7 = 1,...,n are equivalent, then
their denominators are also equivalent. Therefore, to prove equivalence, it suffices to prove only
equivalence in the numerators and then the denominators follow suite.

Starting from Equation (24), it is proportional to its numerator and the following
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The final two lines of Equation (26) express that the numerator of the posterior linearization weights
in Equation (23) are equal to the numerator of the traditional weights in Equation (22). There is no
need to prove this because it was already proven for linear measurement models in Reference 32.
Inherently, it also serves as a natural validation for the proof of Equation (25) in the contributions
presented in this work. O



A Linear Scalar Example

As a sanity check, this work ran a numerical test to confirm the presented proof. The truth x is
distributed by N (10, 9). Linear measurements are generated around the truth z:

y=x+n, (27)

where n ~ N (0, 1).

The prior is expressed as a Gaussian mixture of n = 100 components each having mean z(*)
and covariance ]53%5) = Bsog. The component means {f(i) 1-12% are each sampled from the Gaussian
distribution N (z,9) centered on the truth x. Kernel Density Estimation (KDE) is used to assign
the covariances, where o2 is the sample covariance of {i"(i) 1199 and Bg is the bandwidth parameter

determined using Silverman’s Rule of Thumb*? which reduces computational cost:

2
4 ng+4 2
— Tptd (28)
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This method of setting up a Gaussian mixture prior is common and frequently associated with
the Ensemble Gaussian Mixture Filter (EnGMF)*>4+49:33 (j ¢, a practical Gaussian mixture-type
filter). The filters then perform individual EKF updates for each component and assign weights
according to the three different presented methods.

All three methods use the same truth, prior, and measurements for direct comparison purposes.
Table 1 compares the three different weighting methods for the scalar linear measurement model
h(x) = z, averaging results over 10,000 Monte Carlo simulations.

Table 1: Comparing the different weighting methods for the scalar linear mea-
surement model example h(z) = x. Each component is individually updated
with an Extended Kalman Filter (EKF).

Error Cov. RMSE SNEES

Traditional 0.00088695 0.91273 0.73165 0.92123
Post. Lin. ~ 0.00088695 0.91273 0.73165 0.92123
Anti-Lin. 0.00088695 0.91273 0.73165 0.92123

Using 100 GMM components and averaged over 10,000 Monte Carlo simulations.

The first column in Table 1 is the average Monte Carlo error of the weighted sum of each com-
ponent’s posterior mean estimate & with respect to the truth . The second column is the average
weighted covariance estimate P,.. The third column represents the Monte Carlo averaged filter
accuracies. This done via the Root Mean Square Error (RMSE) where a lower RMSE indicates a
more accurate filter. It is computed by

RMSE — \/ L ay@—a), (29)

Ty

where n, = 1 is the size of the state-space for this example. The fourth column represents the
Monte Carlo averaged filter consistencies using the Scaled Normalized Estimation Error Squared



(SNEES) and is computed by

1 A
SNEES = —(z —2)P !z — ). (30)

Ty
A SNEES value of 1 means good filter consistency. Anything less than 1 indicates that the filter
is too conservative and anything greater than 1 indicates that the filter is too confident. Table 1
indicates that each method computes the exact same statistics, further supporting the justification,

numerically, that each method is exactly equivalent.

For linear measurement models, it is now sufficient to conclude that there are three exactly equiv-
alent methods to calculate the weights of the posterior distribution. All three methods are optimal
and produce exact Bayesian posteriors for linear, Gaussian mixture systems.

NONLINEAR MODELS

For the nonlinear case, things are not so clean-cut-and-dried. Instead, there is no analytical
general proof that can say one method is better than another. It is model specific. In this Sec-
tion, this work demonstrates empirically that, for certain measurement models, the presented anti-
linearization weights are superior.

Table 2 compares the three different weighting methods for the scalar nonlinear measurement
model h(x) = 23, averaging results over 10,000 Monte Carlo simulations. The results were gener-
ated using the same truth, prior, and measurement generation as the linear case.

Table 2: Comparing the different weighting methods for the scalar nonlinear
measurement model example h(x) = x3. Each component is individually up-
dated with an Extended Kalman Filter (EKF).

Error Cov. RMSE SNEES

Traditional 0.1342600 0.0535870 0.1366000 0.52332
Post. Lin.  0.0401440 0.0267740 0.0519450 1.56720
Anti-Lin.  0.0020463 0.0016690 0.0053505 1.04800

Using 100 GMM components and averaged over 10,000 Monte Carlo simulations.

These results now express that the anti-linearization weights have smaller error and uncertainty,
with better consistency than the prior and posterior linearization methods. However, this is only for
n = 100, which is a specific number of components. So, to further validate its superiority, Figure 1
and Figure 2 plot the Monte Carlo averaged RMSE and SNEES, respectively, as the number of
Gaussian mixture components n varies between simulations.

Figure 1 shows the RMSE results and indicates the anti-linearization and posterior linearization
weights demonstrate superior accuracy compared to traditional prior linearization weights as the
number of components n varies. Although the posterior linearization weights achieve slightly lower
RMSE as n increases, the anti-linearization weights outperform them when fewer components are
used. This suggests that the anti-linearization weights are more computationally efficient, offering
better accuracy with fewer components.

Figure 2 shows the SNEES results. Although both the anti-linearization and posterior lineariza-
tion weights demonstrate improved consistency over their traditional prior linearization counterpart,



0.15

—Traditional 001 i i
——Post. Lin. Zoom In
—— Anti-Lin.
0.10 t
e
n
E 0.005 —
0.05 t
0 b T 0 . . .
500 1000 1500 2000 50 1000 1500 2000

Number of Mixture Components

Figure 1: Comparing the different weighting methods for the scalar nonlinear measurement model
example h(x) = 3. This figure shows the root mean square error (RMSE) vs. the number of
mixture components of the compared methods: Traditional weights (red), Posterior Linearization
weights (blue), and Anti-Linearization weights (green). Averaged over 10,000 Monte Carlo simu-

lations.
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Figure 2: Comparing the different weighting methods for the scalar nonlinear measurement model

example h(x) = 22. This figure shows the scaled normalized estimation error squared (SNEES) vs.
the number of mixture components of the compared methods: Traditional weights (red), Posterior
Linearization weights (blue), and Anti-Linearization weights (green). The optimal SNEES of 1 is
also shown (black dashed). Averaged over 10,000 Monte Carlo simulations.

the anti-linearization approach has slightly better consistency than the posterior linearization. This
is likely due to its avoidance of linearizing the measurement model, thereby preserving more sys-
tem information. Furthermore, the anti-linearization weights achieve better consistency with fewer
components when compared to the other methods.

For nonlinear measurement models, the performance comparison between the different weight-



ing methods becomes more apparent. The anti-linearization weights show improved accuracy and
consistency, for certain models, over both the prior and posterior linearization methods. These em-
pirical results demonstrate that, for nonlinear measurement models, the anti-linearization weights
have superior accuracy, consistency, and computational efficiency because they achieve better per-
formance using fewer Gaussian mixture components.

IMPROVED WEIGHTS FOR THE GM-PHD FILTER

The PHD filter, introduced by Reference 31, is based on the Random Finite Set (RFS) theory. It
propagates the first factorial moment density (a.k.a. the first-order moment or a.k.a. the intensity
function) of the RFS, rather than the full multi-target posterior distribution. The intensity function
is the expected number of points found in a unit volume of the space and is based on Poisson point

];)I'OCGSSGS.26

A Poisson point process is a type of random process where points are scattered randomly in a
space, according to a Poisson distribution. In essence, the PHD provides a density function de-
scribing the distribution of multiple targets in a given space, embodying statistical properties akin
to those found in Poisson point processes. By doing so, the PHD filter is a computationally fea-
sible alternative to the more complex Multi-Target Bayesian filter, as it avoids the combinatorial
complexity of data association.

The intensity function v(x) is defined such that the integral over any region S in the state-space
gives the expected number of targets IV in that region:

A

N = J v(x) dx. (31
S

The value v(x) dx is the expected number of targets in an infinitesimally small region dx of x, i.e.
v(x) is the expected target density at x.

Gaussian Mixture Implementation

The Gaussian mixture (GM) implementation of the PHD filter** approximates the intensity func-
tion as a weighted sum of Gaussian components, allowing for an analytically tractable solution. The
GM-PHD filter represents the posterior intensity function at time k£ — 1 as

R (i) (i)
7 ~ (2 S (%
Uk—1jk-1(X) ~ Z wk71|k71N(X; kal\k717Pk71|kfl)’ (32)
i=1
(4) : : o (0) . : 5 (4) : :
where Wy 18 the weight, X 1|1 18 the estimated mean, and Pk:—1|k—1 is the estimated

covariance of the i-th Gaussian component at time k—1, and Jj,_1);_1 is the number of components.

Remark 1. The posterior intensity from Equation (32) is exactly a Gaussian mixture for linear
dynamics and measurements.>>** However, this work represents it as an approximation because of
nonlinear dynamics and measurements.

Prediction Step. The prediction step of the GM-PHD filter involves predicting the intensity func-
tion from time k£ — 1 to time k. This includes predicting the birth of new targets, the survival of
existing targets, and the motion model of targets *:

Vge—1(X) = vBR(X) + Vg pr—1(X), (33)

*This work does not touch on spawning. Please refer to References 24 and 23.
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where vp () is the birth intensity accounting for components that get created at k and vg ;1 (X)
is the survival intensity accounting for components surviving the propagation step from k — 1 to k.

For the nonlinear GM-PHD filter, the prediction step is expressed as:

Bk . ' Jh—1jb—1 ' .
Ukjp—1(X) ~ Z wg?kN(X?Xg?k’Pg),k) + DSk Z wliﬁacle(X;&g,)k\kfl’Pg,)k|k71)’
i=1 i=1
(4) _ 0
Wig—1 = We_1jk—1>

Ag)km 1 fk|k_1(§(l(§zzl|k_1)a

310) (4) FL
Pohk—1 = Frlp— P -1 Fep—1 + Qs
S G4
where Jp i, wg)k, xg)k, Pg)k, t = 1,---,Jpy are given model parameters that determine the
shape of the birth intensity; J; 151, wg‘i_l, fc(;)k'k_l, Pg)k:\k; 4= 1, Jy_q_ are the

survival intensity components from k& — 1 to k. Also, pg is the probability of survival, Fy,_ is
the state transition matrix, and Q is the process noise covariance.

Update Step. The update step incorporates the measurements at time k to update the intensity
function. The updated intensity function is given by:

vie(®) = (1= pp)ogn-1(x) + >, vprr(xly),
YEVk
Jrlk—1 o
i=1
(3) bpD kw](;ﬁC 15(1)
Wik = k|k 1
AckPCk + pDkZ k|k_1§k 35)
k|k k|k—1 y - k\k 1
5 (4) (4) (OO p @)
Pk|k = Pk:\k:  — K Hy Pk|k 1

e (HD TS,

Sl(cl) _ H() l(<:|)k 1( ()) + R,

&) = N (vinx{ ). 8)
where pp ;. is the probability of detection, H,(ci) is the state-measurement mapping matrix, R is the
measurement noise covariance, ), < R is the set of measurements at time k, Ac j, is the average

number of clutter measurements per time step, and pc x is the spatial distribution of clutter on the
surveillance area (clutter density).

Remark 2. In this work, the GM-PHD uses the EKF>*3° for prediction and updates, although it
can easily be extended to use other filters.

The combinatorial explosion of the algorithm is managed by 3 key processes: pruning, merging,
and capping. Pruning involves removing components that have low weights, thereby reducing the
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computational load. Merging, on the other hand, combines components that are in close proximity
to each other, simplifying the overall structure. Capping prevents the number of components from
exceeding a predefined set maximum. To estimate target states from the mixture (called state ex-
traction), the components with the highest weights are selected. To estimate the number of targets
N (cardinality), the posterior weights are summed. For an in-depth explanation of these procedures
and more, refer to the detailed discussion and pseudocode provided in.2>2*

Traditional GM-PHD Weights

The traditional weights of the GM-PHD are expressed in Equation (35) where & ,(:) represents the
marginal likelihood of the i-th Gaussian component:

&) = N (vih) ) 8) (36)
where fcl(j‘)k_l is the prior associated with this component and S,(f) is its innovation covariance ma-
trix:

(4) () p @) (T

S, = HP., ,(H")" +R, (37
@ R ) . . .
and H;’ = ——= is the Jacobian of the measurement model evaluated at the prior estimate.
Xelk—1

Posterior Linearization GM-PHD Weights

The posterior linearization weights have only been shown to be used with single-target tracking
filters.2!3? This work now proposes a way to incorporate them into the GM-PHD framework:

&) = N (v, 8. (38)
where fcl(;')k is the posterior associated with this component and S,(;) is its innovation covariance
matrix according to Equation (14):

s¢ = @ - )P ) - HYY

NP N (39)
+ 1-HK)sPa-HKY,

or(%{))
NO)
axk‘k

and ﬂ,gi) = is the Jacobian of the measurement model evaluated at the posterior estimate.

Also, 15;1'),C is the posterior covariance of the i-th component, I is the n, x n, identity, and K](f) =
O (1)
Pk|k71

Anti-Linearization GM-PHD Weights

H/I(;‘),S/,(;)i1 is the Kalman gain.

This work also proposes incorporating the anti-linearization weights into the GM-PHD:

g(i) pi(y[x) pi(x)

= (40)
g pi(x[y)
and evaluating x = fcg)k gives
V= Ny bR RN &1 P ), (1)

where the posterior denominator in Equation (40) cancels out when evaluating at the posterior esti-
mate in Equation (41).
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CISLUNAR MULTI-TARGET FILTERING EXAMPLE

Cislunar NRHOs are a class of trajectories that exist in the vicinity of the Moon and are typically
positioned close to Lagrange points associated with the Earth-Moon system. NRHOs offer a degree
of long-term stability such that, on average, the orbit remains relatively stable over extended periods.
This stability is valuable for missions requiring long-duration observations or operations.

Problem Setup

This work focuses on a scenario where 10 targets are generated from a debris cloud clustered
around a 9:2 synodic resonant NRHO. (See Fig. 3 for an illustration.) This specific type of NRHO
has a 6.5-day period, a perilune radius of about 3,250 km, and an apolune radius of approximately
71,000 km. It is the lowest-altitude NRHO with a useful resonance, and serves as the baseline orbit
for NASA’s Lunar Gateway mission.>*

G

Figure 3: An illustration of target trajectories clustered around apolune following a 9:2 synodic
resonant NRHO. Measurements are mapped to the Barycenter of the system making it irrelevant
whether the measurements come from Earth-based or space-based tracking systems.

Given the high demand for advanced tracking systems like the Deep Space Network (DSN)
and the Space Surveillance Network (SSN), the assumption of available range measurements is
no longer viable. Consequently, alternative tracking systems are employed and rely solely on angle
measurements. These measurements are mapped to the Barycenter of the system making it irrel-
evant whether the measurements come from Earth-based or space-based tracking systems. In this
simulation, targets are assumed trackable such that they have sufficient size and reflectivity. Track-
ing passes occur close to apolune every orbit for five orbits. During these tracking passes, angle
measurements are available every 10 minutes for eight hours.

Dynamics Model. This work models cislunar NRHO dynamics using the Circular Restricted
Three Body Problem (CR3BP) for the Earth-Moon system with a six dimensional state-space rep-
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"2 A
V(2) _ I‘(2) o 2V(1) o (1 _,:;)r(2) o /’L:§2)’ (42)
® «
v(3) = _a —Tl;)r(3) “;3(3),
& «

where r(1),r(2),r(3) and v(1),v(2), v(3) represent the scaled Cartesian positions and velocities
of the target with-respect-to the Barycenter origin, y is the scaled Moon geocentric gravitational
constant, and re and r¢ are the distances of the target with-respect-to the Earth and Moon in the
Barycenter reference frame:

Hq

p=—r< (43)
He + pug

re = /(r(1) + )2 + r(2)2 + r(3)2, (44)

r¢ = A (r(1)—1+p)?2 + r(2)2 + r(3)% (45)

In this work, ue = G - me and pg = G - mg . The gravitational constant is G = 6.6743 x
10~ m3/s2/kg, the mass of the Earth is mg = 5.972 x 10?* kg, and the mass of the Moon is
mq = 7.342 X 10?2 kg. The units for distance and time are non-dimensionalized by length units
LU = 384400 x 103 m and time units TU = \/ LU3/ (pe + trq ) - The non-dimensional (denoted

[-]) period of each target is roughly 1.3632096570 [-] from Reference 55. The system dynamic
equations are numerically integrated with an embedded Runge-Kutta 8(7) method.>®

Measurement Model. The measurement vector y = [«, ¢]" contains azimuth « and elevation &
of the observed target mapped to the Barycenter origin:

L (@) - u(2)>
a = tan! < , (46)
r(1) — rs(1)
e — sin~! <r(3)_r4*(3)> : 47)
[r =
where || - | is the Euclidean 2-norm, and r4 = [re(1),r4(2),r4(3)]’ is the position of the tracking

system, which in this work is at the Barycenter defined to be the origin: r, = 0. The measure-
ments are corrupted by additive zero-mean Gaussian white noise with 1o azimuth and elevation
uncertainties of 16.1 arc-seconds for both. Light travel time delay and measurement biases are not
considered.

Parameters. Each target’s truth and each multi-target filtering method are initialized by the same
distribution centered at the non-dimensional coordinates> and covariance

%o = [1.0110350588, 0, —0.1731500000, (48)
0, —0.0780141199, 0]T
Py = diag([1 x 1074, 1x107%, 1x 1074, (49)

1x1075 1x1075 1x1079]%).
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(ll) _
0

2.2204 x 10716, The GM-PHD uses the same pruning, merging, capping, and state extraction
techniques documented in References 24 and 23. For this scenario, the filter uses a pruning threshold
of 1 x 107, a merging threshold of 4, and a capping limit to the number of PHD components

Jmax = 100.

The GM-PHD filter is initialized with a single PHD component of extremely small weight w

Clutter exists and is modeled on a Poisson RFS: the average rate of uniform clutter is Ac
1.0, generated in the surveillance region {(r(1),r(2),r(3),v(1),v(2),v(3)) | 1.0082 < r(1)
1.0137, —0.0086 < r(2) < 0.0025, —0.1758 < r(3) < —0.1691, —0.0174 < v(1)
0.0098, —0.0878 < v(2) < —0.0672, —0.0098 < v(3) < 0.0510}. The uniform clutter den-
sity is then pc , = 2.4437 x 105. After being generated, clutter is mapped into measurements using
the measurement model from Equations (46) and (47).

NN

The probability of detection is pp; = 0.9 and the probability of survival is pg; = 0.99999.
This work does not perform measurement gating. The filter assumes some process noise (although
the modeled truths do not): Q = 1 x 1078[-] - I,,,. The birth model is a single Gaussian with 1o
position and velocity uncertainties of 1000 km (2.6 x 1073 [-]) and 0.01 km/s (9.8 x 1073 [-]),
respectively, centered at the initial mean in Equation (48):

XBk = }205 (50)
Ppi = diag([2.6 x 1073, 2.6 x 1073, 2.6 x 1073, D
9.8 x 1073, 9.8 x 1073, 9.8 x 107%]?),

where at every filter update step, after propagation, Jp ; = 10 components are sampled from this
birth model growing the PHD Gaussian mixture. The weight of each new birthed component is
wp, = 1/100.

Multi-Target Filter Accuracy Criterion. It is common practice to use Optimal Subpattern As-
signment (OSPA)°’ to evaluate multi-target filter performance. In this work, the OSPA computes
the filter error of the state estimates with-respect-to the truth. It is a combination of the localization

and cardinality error components of the finite subsets X = {5((1), e ,fc(m)} (the PHD extracted
target estimates) and X = {x(1) ...  x(™)} (the target truths):
1 u ?
ae - [ — = ' d©) (%@ @\ 4 Py — (52)
) (max(mm) (gﬁg ; ", x™) + P (n —m) ;
where II,, represents the set of permutations on {1,2,--- ,k}, where k € N = {1,2,--- } and the

notation d(®)(-,-) = min(e, d(-, -)). The metric d(-, -) can be any metric as defined by Reference 57.
This work chooses d(+, -) to be the Euclidean 2-norm of the error:

d(xD, x™D) = | — x™D| " with values in [0, c], (53)

In this work, the OSPA parameter p = 2 which is common practice and a cut-off value ¢ = 1 x 10%
km. A low OSPA value means good filter and tracking accuracy. Assignment of estimate X with
truth x is performed by the Hungarian (a.k.a. Munkres) algorithm>®>° to minimize the summation
in Equation (52). Similar procedures and more details for computing the OSPA can be found in
References 57, 24, and 23.
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Results

Figures 4 and 5 visualize the filter accuracy and cardinality accuracy, respectively. Figure 4 shows
the 3-dimensional extracted position state estimates and Figure 5 shows the extracted cardinality
estimates of the compared weighting methods. Both figures show the results of all 100 Monte Carlo
simulations as transparent data points with a single run without transparency for emphasis.

‘%

Traditional FAILS Posterior Linearization  Anti-Linearization

Figure 4: For the cislunar NRHO example, this figure shows the 3D true trajectories of the 10 targets
(black) and the extracted position state estimates of the compared methods: Traditional weights
(red), Posterior Linearization weights (blue), and Anti-Linearization weights (green). The clutter
is represented by the gray crosses which are Poisson distributed in the red rectangular surveillance

region. These are the results of 100 Monte Carlo simulations with a single run emphasized to
illustrate.
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Figure 5: For the cislunar NRHO example, this figure shows the true cardinality (black) and the
extracted cardinality estimates of the compared methods: Traditional weights (red), Posterior Lin-
earization weights (blue), and Anti-Linearization weights (green). These are the results of 100
Monte Carlo simulations with a single run emphasized to illustrate.

The GM-PHD filter using the traditional weights fails to estimate any targets in the cluttered
surveillance region. A visualization of this is in Figure 4 by no apparent estimates appearing at
all. This is additionally supported by Figure 5, which shows this method also failing to estimate
any targets resulting in an extracted cardinality estimate of zero. The GM-PHD filter using the
traditional weights fails because the weights crash below the state extraction threshold. There is not
enough information about the system to keep them afloat, thus the apparent missed detections.

Evidently, by simply switching the weight computation, the GM-PHD filters using the posterior
linearization and anti-linearization weights, save the GM-PHD filter from failing and in fact can

16



give rather good tracking performance. The weights no longer crash and do not get discarded by the
prune, merge, capping scheme. The weights essentially stay afloat.

Although better than the traditional prior linearization weights, the GM-PHD filter using the
posterior linearization approach does not perform as well as the proposed GM-PHD filter using the
anti-linearization weights, which has better state estimation and cardinality estimation. Figure 4,
shows visually that the proposed anti-linearization approach produces more precise state estimates
of the 10 targets inside the surveillance region. Additionally, it provides more precise cardinality
estimates, shown in Figure 5, often estimating correctly that 10 targets actually exist.

To further support the findings of Figures 4 and 5, OSPA is used as a metric to quantify the
effectiveness of both filter accuracy and cardinality accuracy. Figure 6 presents the OSPA accuracy
of the extracted state estimates in comparison to the truth.

’ e Traditional e Post. Lin. . Anti-Lin.‘
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g 2000 | T t\ 1
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’3 ol W“ —w—w
0 11.9 23.7

g 10000 ‘ ;
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< 5000 WMMJ‘\WMWV‘\W i
0

11.9 23.7
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Figure 6: For the cislunar NRHO example, this figure shows the Optimal Subpattern Assignment
(OSPA) between the extracted position estimates of the compared methods and the truths. It shows
the position errors of the cardinality OSPA component versus time (bottom), the localization OSPA
component versus time (middle), and the combined cardinality—localization OSPA distance versus
time (top). Breaks indicate different orbit passes. Averaged over 100 Monte Carlo simulations.

Because the GM-PHD filter using the traditional weights outright fails, its OSPA is maximized
to the cut-off value ¢ = 1 x 10* km. Again, by simply switching the weight computation, the GM-
PHD filter using the posterior linearization weights provides reasonable results. Despite having a
reasonable OSPA, it does show large spikes in the localization component at the beginning of each
orbit pass. This is likely due to the linearization about the posterior. Although the localization
component struggles early, the cardinality component does not, and shows stable performance over
each orbit pass.
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The GM-PHD filter using the anti-linearization weights shows the best OSPA performance. It
has sustained low localization and cardinality components, indicating stable estimation over sev-
eral orbit passes. This proposed method outperforms the prior and posterior linearization methods
resulting in the best overall OSPA, indicating the best multi-target filtering accuracy.

The last piece of evidence for this scenario is the computational speed of each weighting method
presented in Figure 7. This figure shows the average wall-clock times it took to run each Monte
Carlo simulation. The GM-PHD filter using the traditional weights takes the least time because it
carried the least number of PHD components, but this is because it fails to estimate any targets,
therefore its time is disregarded and grayed-out in the figure.

The GM-PHD filter using the anti-linearization weights is faster than the filter using the posterior
linearization weights. This is because it eliminates the need for linearization and does not compute
Jacobians and innovation matrices, which take up more computational resources. Additionally, the
anti-linearization approach has better cardinality estimates which means it carried less PHD com-
ponents to characterize all the hypotheses. It is then sufficient to say that the GM-PHD filter using
the proposed anti-linearization weights provides the most accurate state and cardinality estimates
while also being the fastest of the compared methods.

300 1
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Wall-Clock Time / s
2

50 - 35.5269 -
7.2674
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Figure 7: For the cislunar NRHO example, these are the wall-clock times of the compared methods.
Averaged over 100 Monte Carlo simulations. Since the Traditional weights method fails, its time is
disregarded. Using an AMD Ryzen 5 5500U CPU and 8 GB of RAM.

CONCLUSION

The Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter is used to accurately
estimate the amount, location, and trajectory of simulated space debris. The key driving factor of
the GM-PHD is that it approximates the intensity function as a weighted sum of Gaussian mixture
components to provide an analytically tractable solution. However, issues arise when the weights
are computed inaccurately. This then causes filter divergence, degeneracy, and ultimately, erroneous
state estimates.
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Traditionally, weights were updated by linearizing the measurement model around prior means.
However, recent advancements have improved this by linearizing around posteriors, enhancing es-
timation performance without sacrificing efficiency——though only for single-target tracking. This
work extends the posterior linearization technique to multi-target filtering within the GM-PHD filter.

This work also proposes weights that eliminate the need for linearization entirely. The findings
demonstrate their exact equivalence to traditional and recent methods under linear measurement
models and superior performance under nonlinear models. The proposed weights, applicable to
all Gaussian mixture-type filters, are also integrated into the GM-PHD filter. Empirical results
show that they significantly improve the GM-PHD filter’s accuracy, consistency, and computational
efficiency.

Future work could explore using different samples from the posterior rather than just the mean
for the proposed weights. Different sampling methods could be explored such as random sampling
or deterministic sampling like quasi-Monte Carlo methods or Fibonacci grids. By continuing the
research of Gaussian mixture weight updates it ensures the long-term sustainability of space explo-
ration and satellite operations amid the growing threat of space debris.
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