
Optimal Filtering for Polynomial Measurement

Nonlinearities with Additive Non–Gaussian Noise

Uwe D. Hanebeck
Institute of Automatic Control Engineering

Technische Universität München
80290 München, Germany
Uwe.Hanebeck@ieee.org

Abstract

In this paper, we consider the problem of estimating
the N–dimensional state of a dynamic system based
on M–dimensional discrete–time measurements. Mea-
surements depend nonlinearly on the state and are cor-
rupted by white non–Gaussian noise. The problem is
solved by recursively calculating the complete posterior
density of the state given the measurements. For that
purpose, a new exponential type density is introduced,
the so called pseudo Gaussian density, which is used
to represent the complicated non–Gaussian posterior
densities resulting from the recursion. For polynomial
measurement nonlinearities and for pseudo Gaussian
noise densities, it is shown that the result of the optimal
Bayesian measurement update is exactly obtained by a
Kalman Filter operating in a higher dimensional space.
The resulting filtering algorithms are easy to implement
and always guarantee valid posterior densities.

1 Introduction

Filtering consists of estimating parameters of one pro-
cess, the system state sequence, given uncertain infor-
mation from another related process, the measurement
sequence. When the measurements are related nonlin-
early to the system state, this estimation problem is in
general difficult to solve. Usually, a linearization is per-
formed to permit application of filtering methods de-
rived for linear systems [2]. Of course, this only works
for certain type of nonlinearities. In addition, the pres-
ence of non–Gaussian measurement noise further limits
the applicability of linear methods.

More advanced methods for providing state estimates
in the nonlinear case have been developed by keeping
nonlinear terms in a Taylor series expansion of the non-
linearity, see [4] for an elegant derivation. However,
here the focus is on calculating the complete poste-
rior density of the unknown system state given all the

measurements. A parametric closed–form density de-
scription is desired, which is defined by a finite number
of parameters. In addition, the density representation
should allow for recursive application and should not
suffer from a permanently growing number of descrip-
tion parameters with an increasing number of available
measurements.

A grid representation of densities for numerical nonlin-
ear filtering based on quantization of the state space
has been introduced in [5], but has proven to be useful
only for a limited state vector dimension [3]. Monte
Carlo techniques [7, 13] use stochastic samples to rep-
resent density functions in order to numerically solve
the filtering problem.

Closed–form representations of densities include the
Edgeworth expansion, i.e., a Gaussian density times a
sum of Hermite polynomials, which has been proposed
in [16]. A method for updating this type of density
numerically is described in [6]. The approach has the
disadvantage that truncated Edgeworth expansions are
not themselves valid density functions and may give
negative values [10]. A Gaussian mixture representa-
tion has been proposed in [1], which always provides
valid density functions. However, each term is individ-
ually updated based on linearization, which results in
a bank of parallel extended Kalman filters.

The most simple form of the measurement update
seems to be obtained when using exponential type den-
sities [12]. In addition, these densities are always pos-
itive. However, depending on the exponent function,
e.g. polynomials, numerical inaccuracies during the
update recursion may lead to densities that are not
integrable, i.e., the integral over the density does not
give a finite value.

In this paper, a new type of exponential density, the
so called pseudo Gaussian density, is proposed. It is
defined by a standard Gaussian function in a hyper-
space S∗ related to the original state space S via a



nonlinear transformation. Because of its special struc-
ture, pseudo Gaussians are always valid density func-
tions even in the presence of numerical inaccuracies. In
addition, it will be shown that under certain assump-
tions, this type of density can be exactly updated by
means of a Kalman filter operating in the hyperspace
S∗.

Section 2 formulates the nonlinear filtering problem. In
Section 3 the concept of pseudo Gaussian densities is
explained in detail. The new nonlinear filtering algo-
rithm is then derived in Section 4 and illustrated in
Section 5 by means of a simple simulation example.

2 Problem Formulation

Estimating the state of a nonlinear dynamic system
is considered, which may either evolve in continuous
time or in discrete time steps. The system state is not
directly observable, but will instead be deduced from
measurements of the system output. Measurements are
assumed to be taken sequentially at discrete time steps
k = 1, 2, . . . and are corrupted by white non–Gaussian
noise.

An M–dimensional measurement ŷ
k

at time step k is
related to the N–dimensional system state xk via the
nonlinear time–variant measurement equation

ŷ
k

= hk(xk) + vk

and is corrupted by additive white noise vk from a pos-
sibly non–Gaussian noise density pv(vk). In this paper,
the focus is on polynomial nonlinearities hk(xk).

Instead of providing point estimates of the unknown
state xk, an estimator should construct the complete
conditional density of the state

pe(xk) = p(xk|ŷk
, ŷ

k−1
, . . . , ŷ

1
)

given all observations up to time step k. A recursive
estimation procedure is preferred, which calculates a
state estimate based on the estimate at the previous
time step and hence, does not require to store all mea-
surements. A suitable time update procedure is as-
sumed for that purpose, which produces a predicted
density

pp(xk) = p(xk|ŷk−1
, . . . , ŷ

1
)

by propagating the previous estimate pe(xk−1) through
the system model.

This paper is concerned with the filtering step (mea-
surement update) only, i.e., how to recursively incor-
porate the information provided by a measurement ŷ

k

into the prior density pp(xk) to construct the poste-
rior density pe(xk). Observability is assumed, but not
discussed here. The prediction step (time update) is
outside the scope of this paper.

Although not strictly required, an initial density pe(x0)
is assumed to be given.

3 Pseudo Gaussians

The key idea is to represent complicated probability
density functions in the N–dimensional original state
space Sx by simpler densities in a higher dimensional
space S∗

x. Points xk in Sx are related to points x∗
k in

S∗
x via a nonlinear transformation T x(.) according to

x∗
k = T x(xk) = [T1(xk), . . . , TLx(xk)]T ,

where Lx denotes the dimension of space S∗
x. Hence,

the original space Sx is transformed by T x(.) to an N–
dimensional manifold U∗

x in the Lx–dimensional space
S∗

x.

In S∗
x, Lx–dimensional Gaussian probability density

functions are defined according to

p(x∗
k) = cx

k exp
{
−1

2
(x∗

k − x̂∗
k)T (C∗

x)−1(x∗
k − x̂∗

k)
}

with mean x̂∗
k, symmetric positive definite covariance

matrix Cx,∗
k , and normalizing constant cx

k. Densities of
this type will be called pseudo Gaussian in the follow-
ing, because the elements of x∗

k are not independent.

The intersection of a pseudo Gaussian p(x∗
k) with the

manifold U∗
x defines a non–Gaussian, e.g. multimodal,

probability density function in the original space Sx.

Remark 3.1 A non–Gaussian density in the original
space Sx is defined by both the transformation T x(.)
and the mean x̂∗

k and covariance matrix Cx,∗
k of the

pseudo Gaussian p(x∗
k).

Example 3.1 A scalar state xk is considered, which is
related to a two–dimensional state x∗

k via

x∗
k = T x(xk) = [xk, x2

k]T .

An example of a pseudo Gaussian density defined in
the space S∗

x with mean

x̂∗
k =

[
0 2

]T

and covariance matrix

Cx,∗
k =

[
1 0
0 1

]



Figure 1: Example for demonstrating the concept of pseudo Gaussians with scalar state xk and twodimensional hyperspace

S∗
x. a) Pseudo Gaussian in hyperspace S∗ with mean and covariance matrix according to example 3.1. b) Parts

of the pseudo Gaussian density lying on the manifold U∗
x . c) Corresponding density in the original space Sx.

is shown in Fig. 1 a) together with the manifold U∗
x .

Fig. 1 b) then shows that part of the pseudo Gaussian
density lying on the manifold U∗

x , which defines the
density in the original space shown in Fig. 1 c).

The selection of the functions Ti(xk), i = 1, . . . , Lx de-
pends on the type of nonlinearity considered. However,
multidimensional Bernstein–polynomials appear to be
a good choice in many cases, e.g. polynomial nonlinear-
ities. They are defined on the basis of one–dimensional
Bernstein–polynomials, which on the interval [l, r] are
given by

Hn
i (x) =

(
n

i

) (
l − x

l − r

)i (
r − x

r − l

)n−i

for i = 0, . . . , n. With

xk =
[
x1

k x2
k . . . xN

k

]T
,

the above transformation is defined by

Ti(xk) =
N∏

j=1

H
Lj−1
ij

(xj
k) ,

for ij = 0, . . . , Lj − 1, j = 1, . . . , N , Lx =
∏N

j=1 Lj,
and i =

∑N
j=1 ij . For example, in two dimensions this

gives

Ti(xk) = HL1−1
i1

(x1
k)HL2−1

i2
(x2

k) ,

for i1 = 0, . . . , L1 − 1, i2 = 0, . . . , L2 − 1, Lx = L1L2,
and i = i1 + i2.

4 Filtering

In the additive noise case, the posterior conditional
density pe(xk) of the state given measurements up to

time k is recursively calculated according to Bayes’ law
as

pe(xk) = ce
k pp(xk) pv

(
ŷ

k
− hk(xk)

)
,

where ce
k is a normalizing constant.

Now the surprising result will be derived, that the
Bayes measurement update is obtained exactly by a
standard Kalman filter operating in a higher dimen-
sional space S∗

x with state dimension Lx, provided the
noise density pv(vk) is given as a pseudo Gaussian

p(v∗
k) = cv

k exp
{
−1

2
(v∗

k − v̂∗k)T (Cv,∗
k )−1(v∗

k − v̂∗k)
}

in a space S∗
v with dimension Lv. For that purpose,

the nonlinear measurement equation is transformed
according to

T v(ŷk
− vk) = T v(hk(x)) . (1)

The left hand side is then converted into an affine
function of v∗k

T v(ŷk
− vk) = −G∗

kv∗k + ŷ∗
k

,

with v∗k = T v(vk), where the term ŷ∗
k

does not depend
on elements of v∗k. Of course, G∗

k and ŷ∗
k

are polynomial
functions of the measurements ŷ

k
. The right hand side

of (1) is expanded into a linear function of x∗
k

T v(hk(x)) = H∗
kx∗

k

with

x∗
k = T x(xk)

and Lx ≥ max(N, Lv). This expansion is exact for a
polynomial measurement nonlinearity hk(.). Finally,
we obtain a linear measurement equation

ŷ∗
k

= H∗
kx∗

k + G∗
kv∗k
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Figure 2: Pseudo Gaussian noise density pv(vk).

in S∗
x with ŷ∗

k
∈ IRLv , x∗

k ∈ IRLx , v∗
k ∈ IRLv . Given a

pseudo Gaussian prior pp(xk) defined by x̂p,∗
k and Cp,∗

k ,
a Kalman filter according to

x̂e,∗
k = x̂p,∗

k + Cp,∗
k (H∗

k)T
{
G∗

kC
v,∗
k (G∗

k)T

+H∗
kC

p,∗
k (H∗

k)T
}−1

(ŷ∗
k
− G∗

kv̂∗k − H∗
kx̂p,∗

k )

Ce,∗
k = Cp,∗

k − Cp,∗
k (H∗

k)T
{
G∗

kC
v,∗
k (G∗

k)T

+H∗
kC

p,∗
k (H∗

k)T
}−1

H∗
kC

p,∗
k

can now be applied to perform the measurement up-
date with the resulting posterior pe(xk) defined by x̂e,∗

k

and Ce,∗
k . However, to ensure symmetry and positive

definiteness of the covariance matrix Ce,∗
k , square–root

forms of the Kalman filter [14, 15] are a better choice.

5 Simulation Example

To illustrate the proposed filtering algorithm, the fol-
lowing dynamic system with scalar state xk is consid-
ered, which evolves in discrete time steps according to
the noise–free linear system equation

xk+1 = a xk + uk

with a = 0.9, uk = −0.25, and initial state x0 = 1.5.
The evolution of the true state xk for 15 time steps
is displayed in Fig. 3 c). Measurements ŷk of the sys-
tem output are related to the system state xk via the
nonlinear measurement equation

ŷk = x3
k + vk .

The noise distribution pv(vk) is given by a three–
dimensional pseudo Gaussian pv(v∗k), i.e., Lv = 3, with
mean and covariance matrix

v̂∗
k =

⎡
⎣1
0
1

⎤
⎦ , Cv,∗

k =

⎡
⎣0.5 0 0

0 1 0
0 0 0.5

⎤
⎦ .
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Figure 3: a) Noise sequence vk. b) Measurement sequence

ŷk. c) Evolution of the true state (marked by

triangles) and the estimated state (marked by

boxes).

pv(vk) is visualized in Fig. 2. The sample path of
vk used in the simulation, which is not available to
the estimator, is shown in Fig. 3 a). The resulting
measurement sequence is given in Fig. 3 b).

The densities of the unknown state resulting from ap-
plication of the new filter are shown in Fig. 4 for
k = 1, . . . , 9, where the density for k = 0 represents the
a priori knowledge about the state x0. Point estimates
are produced at every time step by calculating the ex-
pected values of the posterior densities. The resulting
estimates are depicted in Fig. 3 c) for k = 0, . . . , 15.



6 Conclusions

By introducing pseudo Gaussians, a specific type of ex-
ponential probability density functions, the Bayesian
measurement update step for a polynomial measure-
ment equation and non-Gaussian measurement noise
can be reformulated as a standard Kalman filter recur-
sion in a higher dimensional space.

This is similar to the concept of support vector ma-
chines [17], which perform nonlinear classification by
means of linear hyperplane classifiers in a higher dimen-
sional space nonlinearly related to the input or problem
space.

Complicated non–Gaussian posterior densities result-
ing from the update step can be conveniently handled
in the higher dimensional hyperspace. In the hyper-
space they are simply described by pseudo Gaussians
parametrized by mean vectors and covariance matri-
ces. Furthermore, the measurement nonlinearity is ex-
panded into a linear relation in the hyperspace, which is
exact for polynomial nonlinearities. Hence, a standard
Kalman filter recursion can be used in the hyperspace
to perform the desired Bayesian measurement update.

Besides being convenient, the proposed approach al-
ways guarantees valid probability densities to result
from the update step even in the presence of numerical
inaccuracies.

7 Extensions

So far, an exact expansion of the measurement non-
linearity was assumed to exist. In that case a suffi-
cient statistic is provided by the mean vectors and the
covariance matrices of the pseudo Gaussians used to
represent the posterior densities. However, in many
practical applications it is not possible to use an ex-
act expansion of the nonlinearity. In addition, an ap-
proximation may be desirable to keep the dimensions
of the hyperspace low even when an exact expansion
is known. The resulting pseudo Gaussian densities are
then approximations of the true posterior densities and
are described by a nonsufficient or reduced statistic.
However, an approximate expansion can be selected in
such a way that a certain distance, e.g. the Kullback–
Leibler distance, between the approximate and the ex-
act posterior is minimized. This will be shown in a
forthcoming paper.

The proposed technique can also be applied to more
complex additive noise descriptions, for example col-
ored noise or noise with partially known statistics.

These problems can be solved analogously by applying
the appropriate linear filter in the higher dimensional
space, e.g. [8, 9, 11].

For the more difficult case of nonadditive noise prob-
lems, more advanced techniques are currently under
development.
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