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Abstract— For Gaussian Assumed Density Filtering based on
moment matching, a framework for the efficient calculation of
posterior moments is proposed that exploits the structure of the
given nonlinear system. The key idea is a careful discretization
of some dimensions of the state space only in order to
decompose the system into a set of nonlinear subsystems that
are conditionally integrable in closed form. This approach is
more efficient than full discretization approaches. In addition,
the new decomposition is far more general than known Rao-
Blackwellization approaches relying on conditionally linear
subsystems. As a result, the new framework is applicable to
a much larger class of nonlinear systems.

I. INTRODUCTION

In Bayesian estimation, the hidden internal state of ar-
bitrary systems has to be estimated based on measured
input and output sequences that are typically corrupted by
noise. For linear systems affected with Gaussian noise, the
Kalman Filter [1] is the best estimator and allows a closed-
form calculation. In case of nonlinearities in the system
and measurement equation, however, estimation cannot be
performed analytically in general. Instead, approximate state
estimators have to be employed. Popular estimators for
nonlinear systems make use of the Gaussian assumption
for representing the posterior density of the state. Examples
are sample-based “black box” approaches utilizing random
sampling such as the Gaussian Particle Filter [2], determin-
istic sampling [3], or statistical linear regression [4], [5],
[6], [7]. Alternatively to sampling, analytic approaches may
be applicable, where analytic moment calculation [8] leads
to closed form formulas of the required first two moments.
However, this requires carefully performed derivations and
thus, is impractical for high-dimensional systems. If the first
two moments cannot be calculated in closed form, an nth-
order Taylor series expansion can be used to approximate the
underlying system and measurement equation for calculating
the moments, which is used in the Extended Kalman Filter
[9] or the Gaussian second-order filter [10]. On the other
hand, if the system exhibits conditionally linear substruc-
tures, sample-based approaches can exploit this fact by using
Rao-Blackwellization [11] in order to calculate the required
moments more efficiently [12], [13].

In this paper, a combination of sample-based estimation
and analytic moment calculation for Gaussian Assumed
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Density Filters is proposed by using a very general form
of Rao-Blackwellization. Instead of merely exploiting linear
substructures, the new approach relies on an intelligent
decomposition of the system and measurement equation
into nonlinear subsystems that are conditionally integrable
in closed form by means of discretizing some dimensions
of the state space. Thus, given a discretization of some
dimensions, moment calculation of the remaining dimensions
of the state space can be performed analytically and exactly,
which improves the overall estimation accuracy and reduces
the computational burden.

The structure of the paper is as follows. In Sec. II, a
problem formulation is given, providing a brief introduction
into Bayesian estimation and Gaussian Assumed Density
Filtering. If the moments can be calculated in closed form,
we come up with the Analytic Gaussian Assumed Density
Filter (AGF) as described in Sec. III. The class of Sample-
Based Gaussian Assumed Density Filters (SGFs) is explained
in Sec. IV. The proposed combination of analytic moment
calculation and the sample-based approach, named Semi-
Analytic Gaussian Assumed Density Filter (SAGF), is part of
Sec. V. The performance of the SAGF is shown in simulation
examples in Sec. VI. A final discussion and an outlook to
future research work are part of Sec. VII.

II. PROBLEM FORMULATION

A nonlinear discrete-time dynamic system is given by

xk+1 = ak (xk, uk,wk) , (1)
y
k

= hk (xk,vk) , (2)

where the functions ak (·, ·, ·) and hk (·, ·) are known. The
vector xk is the state of the system, y

k
is the measurement

vector, and uk is a known system input at the discrete
time step k. The terms vk and wk represent zero-mean
measurement and process noise, respectively. Measurement
values ŷ

k
are realizations of the measurement process (2).

A. Bayesian Estimation

In Bayesian estimation, two alternating steps, i.e., pre-
diction and filtering, are performed for estimating the sys-
tem state xk. In the prediction step, the result fe(xk) :=
f(xk|ŷ1:k) of the previous filter step is propagated from time
step k to k + 1 by means of

fp(xk+1) := f(xk+1|ŷ1:k) =

∫
f(xk+1|xk) · fe(xk) dxk ,

(3)
where f(xk+1|xk) is the transition density defined by (1).
ŷ
1:k

= (ŷ
1
, . . . , ŷ

k
) summarizes all measurement values up

to and including time step k. In the filter step, the current



measurement value ŷ
k

is used for updating the result of the
prediction step fp(xk) according to Bayes’ rule

fe(xk) := f(xk|ŷ1:k) = 1
ck
· f(ŷ

k
|xk) · fp(xk) , (4)

where ck =
∫
f(ŷ

k
|xk) · fp(xk) dxk is a normalization

constant and f(ŷ
k
|xk) is the likelihood defined by (2).

For both prediction and filtering, closed-form solutions
of the occurring integrals are not available in general and
thus, appropriate approximations have to be applied. In this
paper, we restrict attention to Gaussian Assumed Density
Filters [14], i.e., the densities in (3) and (4) are assumed to
be Gaussian. Furthermore, the parameters of these Gaussian
densities are calculated by moment matching. In doing so,
filtering and prediction boils down to the efficient calculation
of the mean vector and the covariance matrix.

B. Gaussian Assumed Density Filter

For deriving a Gaussian Assumed Density Filter, it is
sufficient to concentrate on the nonlinear transformation

y = g(x) (5)

of the Gaussian random vector x with density function
f(x) = N (x;µx,Cx) to the random vector y with den-
sity f(y).

1) Forward Inference: In the forward inference, the ran-
dom vector x is propagated through the nonlinear transfor-
mation (5) in order to calculate the first two moments of
y, i.e., mean µy and covariance Cy . This type of inference
occurs in the prediction step, where the nonlinear transfor-
mation (5) corresponds to the system function (1) and the
density of x is given by fe(x) with mean µe

k
and covariance

Ce
k. Furthermore, µy and Cy correspond to the predicted

mean µp
k+1

and predicted covariance Cp
k+1, respectively.

Analogously, forward inference is employed for calculating
the predicted measurement, which is required for backward
inference as described next.

2) Backward Inference: The goal of the backward infer-
ence is to determine the conditional density f(x|y), i.e., the
conditional mean µx|y and covariance Cx|y . For this purpose,
the joint density f(x, y) is determined first. By additionally
assuming that this joint density is Gaussian1, we need to
compute the cross-covariance Cx,y of the joint covariance
block matrix

C =

[
Cx Cx,y

(Cx,y)T Cy

]
.

Given the cross-covariance, the desired mean and covariance
are then given by

µx|y = µx + Cx,y · (Cy)
-1 ·
(
ŷ − µy

)
,

Cx|y = Cx −Cx,y · (Cy)
-1 · (Cx,y)

T
,

(6)

where µy and Cy result from a forward inference step and
ŷ is a realization of y.

1This assumption is common in Gaussian Assumed Density Filtering (as
in the EKF or the UKF) and is only true for linear systems affected with
Gaussian noise. Otherwise it is an approximation.

III. ANALYTIC GAUSSIAN ASSUMED
DENSITY FILTER (AGF)

At first, we demonstrate that the mean µy and covariance
Cy for forward inference as well as the cross-covariance
Cx,y for backward inference can be determined analytically
and exactly in special cases. Thus, the prediction step (3)
and filter step (4) can be calculated in closed form. In order
to calculate the mean µy , it can be utilized that

µy = E{y} =

∫
y · f(y) dy =

∫ ∫
y · f(x, y) dx dy (7)

holds. With (5) and Bayes’ rule, the joint density function
f(x, y) of x and y can be written according to

f(x, y) = f(y|x) · f(x) = δ(y − g(x)) · f(x) , (8)

where δ(x−µ) is the Dirac Delta distribution at position µ.
Plugging (8) into (7) and utilizing the sifting property of the
Dirac Delta distribution results in

µy =

∫
g(x) · f(x) dx . (9)

Hence, the mean of y can be calculated directly based on the
nonlinear function g(·) and the density of x. With (8), the
covariance of y can be derived in a similar manner, which
leads to

Cy =

∫ ∫
(y − µy) · (y − µy)T · f(x, y) dx dy

=

∫
g(x) · g(x)T · f(x) dx− µy · (µy)T . (10)

For the filter step, the cross-covariance Cx,y is required.
Similar to the covariance Cy , the cross-covariance Cx,y is
calculated by

Cx,y =

∫ ∫
(x− µx) · (y − µy)T · f(x, y) dx dy

=

∫
x · g(x)T · f(x) dx− µx · (µy)T . (11)

Again, merely g(·) and f(x) are necessary for calculating the
covariance. Unfortunately, analytically solving the integrals
in (9), (10), and (11) is not possible in general. For special
function types such as polynomials or trigonometric func-
tions and their combination, however, a closed-form solution
is available. If the moments can be calculated in closed form,
the resulting estimator is called Analytic Gaussian Assumed
Density Filter (AGF).

Example 1 (Quadratic Transformation) In this example, the
nonlinear transformation

y = x2 (12)

is considered. For this simple polynomial transformation, equa-
tions (9)–(11) can be solved analytically exactly. The mean µy,
the variance Cy and the cross-variance Cx,y are given by

µy = (µx)2 + Cx , (13)

Cy = 2 · Cx · (Cx + 2 · (µx)2) , and Cx,y = 2 · Cx · µx ,

respectively.
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(a) Analytic stochastic linearization (AGF).
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(b) Sample-Based stochastic linearization (SGF).
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(c) Taylor-series based linearization (EKF).

Fig. 1. Illustration of the different linearization approaches: the nonlinear function (black) and its linearized version (red dashed). (a) AGF propagates the
entire density f(x) for linearization. (b) The linearization of an SGF is based on an approximate sample representation of f(x). (c) The EKF linearizes
the nonlinear function around a single point.

It is worth mentioning that for linear transformations
y = A · x, forward and backward inference correspond
to the prediction and filter step of the well-known Kalman
filter. That is, the Kalman filter is a special case of an AGF.

IV. SAMPLE-BASED GAUSSIAN ASSUMED
DENSITY FILTER (SGF)

For nonlinear functions g(·) that prevent a closed-form
solution, the so-called Linear Regression Kalman Filters
(LRKFs) or Sample-Based Gaussian Assumed Density Fil-
ters (SGFs) allow approximately calculating the first two
moments of y. Examples for LRKFs/SGFs are the well-
known Unscented Kalman Filter (UKF) [4], the Divided
Difference Filter [6], or the Gaussian Filter [7]. These filters
utilize a sample representation of x given by the Dirac
mixture

f(x) ≈
L∑
i=1

wi · δ(x− µi) , (14)

where L is the number of samples, wi are non-negative
weighting factors, and µ

i
are the sample positions. The Dirac

mixture (14) exactly captures the mean µx and the covariance
Cx of x. Propagating the samples through (5) corresponds
to approximating (9) and (10) by a weighted sample mean
and sample covariance, respectively. In case of the mean µy ,
replacing the density f(x) in (9) by the Dirac mixture (14)
leads to

µy ≈
∫
g(x)·

(∑
i

wi·δ(x−µi)
)

dx =
∑
i

wi·g(µ
i
) . (15)

The quality of this mean approximation (and similarly of
the covariance approximation) depends on both the function
g(x) and the quality of the sample representation of f(x)
in (14). Especially in cases of strong nonlinearities and a
small number L of sample points, (15) provides a poor
approximation of the true mean µy .

Example 2 (Quadratic Transformation (cont’d)) We again
consider the quadratic transform (12) of Example 1. The
density f(x) is approximately represented by the samples

µ1 = µx +
√
Cx , µ2 = µx −

√
Cx , w1 = w2 = 0.5 ,

which exactly capture the mean µx and variance Cx. Propa-
gating the samples through the quadratic transformation and
calculating the weighted mean and variance yields

µy = (µx)2 + Cx ,

Cy = 0.5

2∑
i=1

((µi)
2 − µy)2 = 4 · Cx · (µx)2 ,

Cx,y = 2 · Cx · µx .

Comparison with (13) shows that the sample-based variance
Cy is not exact.

Calculating the mean and covariance of y corresponds
to a linearization of the nonlinear transformation g(·) as
the density functions f(x) and f(y) are both assumed to
be Gaussian (Fig. 1). In case of the AGF, linearization
is performed implicitly under consideration of the entire
Gaussian density f(x). In contrast to this, SGFs merely
propagate a sample-based approximation of f(x). Even if
the mean and covariance of x are captured exactly by the
samples, the same is not true for (all) higher-order moments
due to the finite number of samples. But again, linearization
is performed implicitly due to the calculation of the sample
mean and sample covariance (see for example equation (15)).
The Extended Kalman Filter (EKF, [9]) is an example of
a Gaussian filter, where linearization is done explicitly by
first-order Taylor-series expansion of g(·) around the mean
µx. Here, linearization is only performed at a single point
(the mean of x) and no uncertainty information about x is
considered. This typically leads to an inferior performance
in comparison with SGFs or the AGF. Merely in case of a
linear transformation, AGF, SGF, and EKF provide identical
results. The same is true in case of AGF and SGF, if an
infinite number of samples is used.

V. SEMI-ANALYTIC GAUSSIAN ASSUMED
DENSITY FILTER (SAGF)

To attenuate the drawbacks of a purely sample-based
approximation of the mean and covariance, the key idea
of the proposed Semi-Analytic Gaussian Assumed Density
Filter (SAGF) is to combine the Sample-Based Gaussian
Assumed Density Filter (SGF) and the Analytic Gaussian
Assumed Density Filter (AGF) such that only some dimen-
sions of the random vector x are discretized by means of a



sample representation. Thus, only some parts of the nonlinear
transformation (5) have to be evaluated approximately. For
this purpose, we rearrange the nonlinear equation (5) to

y = g(xa,xb) , (16)

where the Gaussian random vector x = [(xa)T, (xb)T]T

consists of the substates xa and xb with mean and covariance

µx =

[
µa

µb

]
, Cx =

[
Ca Ca,b

Cb,a Cb

]
.

Generally, there exists no closed-form expression for the
desired moments. However, the decomposition into xa and
xb is chosen in such a way that the integrals in (9)–(11)
can be calculated in closed form for any given fixed value
of xb. Hence, we say that g(·, ·) is conditionally integrable.
For determining a sample-based representation of xb, the
sampling techniques of the SGFs are applied.

Example 3 In the following, two example transformations are
discussed. At first, a nonlinear transformation with condition-
ally linear function g(·, ·) is given by

y = e−xb
1 · (xb2)2 · xa .

To see this, we replace the substate xb = [xb1,x
b
2]

T with a sin-
gle sample point µ = [µ1, µ2]

T, which leads to y = c·xa, where
c := e−µ1 ·(µ2)

2. Hence, given the sample point µ, the first two
moments of y can be calculated via the Kalman predictor. The
scope of this paper is even more general. Also decompositions
into conditionally integrable nonlinear transformations g(·, ·)
are covered. For the example equation

y = e−xb

· (xa1)2 · xa2 ,

the function g(xa, µ) = c · (xa1)2 · xa2 with c := e−µ is now
nonlinear when replacing xb by a sample point µ. However,
g(·, µ) is polynomial and thus, the moments can be calculated
analytically since xa is Gaussian distributed.

The AGF (Section III) and SGF (Section IV) are extreme
cases of the SAGF: if xb is an empty vector, SAGF becomes
an AGF and if xa is an empty vector, SAGF degenerates to
an SGF.

A. General Solution

For the general transformation given by (16), the desired
moments of y can be calculated as follows. At first, the joint
density f(x, y) is separated by employing Bayes’ rule

f(x, y) = δ
(
y − g

(
xa, xb

))
︸ ︷︷ ︸

= f(y|x)

· f(xa|xb) · f(xb)︸ ︷︷ ︸
= f(x)

,

where the density f(x) is replaced by f(xa|xb) · f(xb) and
the conditional density f(xa|xb) = N

(
xa;µa|b,Ca|b

)
is

(conditionally) Gaussian with mean and covariance

µa|b = µa + Ca,b ·
(
Cb
)−1 · (xb − µb) ,

Ca|b = Ca − Ca,b ·
(
Cb
)−1 ·Cb,a .

(17)

For determining the mean µy in (9), the density f(xb) of the
substate xb is represented by means of a Dirac mixture as

in (14) in order to allow applying an SGF. To integrate over
xb, the sifting property of the Dirac Delta distribution is
exploited. Hence, the mean of y is given by

µy ≈
∑
i

wi · µyi with (18)

µy
i

=

∫
g(xa, µ

i
) · f(xa|µ

i
) dxa . (19)

Analogously, the covariance of y results in

Cy ≈
∑
i

wi ·
(
Cy
i − µ

y
i
(µy)T − µy(µy

i
)T + µy(µy)T) ,

Cy
i =

∫
g
(
xa, µ

i

)
· g
(
xa, µ

i

)T · f
(
xa|µ

i

)
dxa .

(20)

It is important to note that the integrals in (19) and (20) can
be evaluated analytically as the function g(·, ·) is chosen to be
conditionally integrable. Furthermore, solving these integrals
is an off-line task and the solution is characterized by a
parametric representation for efficient on-line evaluation.

B. Estimation
With the results of the previous section, a complete SAGF

consisting of a prediction and a filter step is now derived.
1) Prediction Step: In the prediction step, the predicted

mean µp
k+1

and covariance Cp
k+1 of fp(xk+1) for time

step k + 1 have to be calculated. For this purpose, the
system function (1) can be directly mapped to the nonlinear
transformation (16) according to

xk+1 = ak (xk, uk,wk) = g
(
xak,x

b
k

)
.

Here, the (deterministic) system input uk becomes a part
of the function g(·, ·) and the substates xak,x

b
k are aug-

mented with the noise variables wa
k,w

b
k, where wk =

[(wa
k)T, (wb

k)T]T, in order to consider additive and/or multi-
plicative noise.

The sample points of substate xb are calculated based on
the sampling scheme of the used SGF. For the mean µp

k+1
and covariance Cp

k+1 of xk+1, (18) and (20) are employed.
2) Filter Step: The measurement equation (2) is mapped

to the nonlinear transformation (16) according to

y
k

= hk(xk,vk) = g
(
xak,x

b
k

)
,

where the measurement noise vk is part of the substates
xak,x

b
k. It is worth mentioning that the decomposition of xk

into the substates for the filter step is independent of the
decomposition of the prediction step.

The goal of the filter step is to determine the mean
µe
k

and covariance Ce
k of the estimated density fe(xk) =

N (xk;µe
k
,Ce

k) by using (6), where µy
k

and Cy
k of y

k
cor-

respond to (18) and (20), respectively. The cross-covariance
Cx,y = [Ca,y,Cb,y]T in (6) consists of

Ca,y =
∑
i

wi ·
(
Ca,y
i − µ

a|b
i

(
µy
)T

+ µa
(
µy − µy

i

)T
)
,

Cb,y =
∑
i

wi ·
(
µ
i
− µb

)
·
(
µy
i
− µy

)T
,



with

Ca,y
i =

∫
xa ·

(
g
(
xa, µ

i

))T
· f
(
xa|µ

i

)
dxa .

Here, µy
i

results from (19) and µa|b
i

is calculated according
to (17) by replacing xb with µ

i
.

VI. SIMULATION EXAMPLES
The proposed approach is now compared with two sample-

based estimators, i.e., the Unscented Kalman Filter (UKF,
[4]) and the Gaussian Particle Filter (GPF, [2]). The UKF
makes use of a deterministic sampling method and assumes
that state and measurement are jointly Gaussian. The GPF
is a special sequential importance sampling Particle Fil-
ter. Here, after each prediction and filtering, the randomly
drawn samples are used for determining the mean and the
covariance of the state. Thus, a Gaussian representation is
provided after each step and no resampling is necessary. As
any Particle Filter, the GPF does not require the assumption
of a jointly Gaussian state and measurement.

A. System Equation
In the simulations, the estimation of the altitude αk,

velocity βk, and constant ballistic coefficient γk of a falling
body is considered [9], [15]. The system equation is given by

xk+1 =

αkβk
γk

+ ∆t

 −βk
−e−ρ·αk · (βk)2 · γk

0

+

wα
k

wβ
k

wγ
k

 ,

where xk = [αk,βk,γk]T is the state vector, ∆t the
discretization constant, ρ a constant factor, and wα

k , wβ
k ,

wγ
k are process noise. The discretization constant ∆t is set

to 1 and the constant factor ρ is 5 · 10−5. The noises wα
k ,

wβ
k ,wγ

k are zero-mean Gaussian with joint covariance matrix
Q = 0.1·I3, where In is the n×n identity matrix. The initial
state of the falling body is x0 = [3 · 105, 2 · 104, 10−3]T.
The initial mean and covariance of the estimators for all
simulation runs is set to

µx =

3 · 105

2 · 104

10−5

 , Cx =

106 0 0
0 4 · 106 0
0 0 20

 .

System Decomposition for the SAGF: The state vari-
ables can be decomposed into xak = [βk,γk]T and xbk = αk.
If the density of the variable xbk is represented by a Dirac
mixture, the remaining moment integrals in (19) and (20) can
be calculated in closed form due to the remaining polynomial
system function (see Example 3).

B. Case I: Linear Measurement Equation
In the first case, a linear measurement equation is consid-

ered, where the altitude is measured directly according to

rk = αk + vk ,

where vk is zero-mean Gaussian measurement noise with
variance R = 103. Due to the linearity of the measurement
equation, all three estimators (SAGF, UKF, and GPF) are
solving the filter step via the Kalman corrector equations.

TABLE I
AVERAGE RMSE AND ITS STANDARD DEVIATION OVER ALL TEST RUNS

FOR CASE I.

Alt. Vel. Coef.
SAGF 12.6± 8.3 59.3± 143.7 0.016± 0.063
UKF 14.2± 7.9 100.1± 212.4 0.016± 0.058

GPF 100 p. 13.0± 8.0 60.2± 134.9 0.029± 0.098
GPF 1000 p. 12.7± 8.2 59.3± 142.1 0.019± 0.066

TABLE II
AVERAGE RMSE AND ITS STANDARD DEVIATION OVER ALL TEST RUNS

FOR CASE II.

Alt. Vel. Coef.
SAGF 0.7± 2.2 36.5± 128.5 0.0126± 0.052
UKF 11.7± 47.7 102.5± 258.9 0.0127± 0.051

C. Case II: Nonlinear Measurement Equation

In the second case, a radar measures the altitude, where
the measurement equation is given by

rk =
√
M2 + (αk −H)2 + (vk)2 . (21)

M = 104 is the horizontal range and H = 104 is the
altitude of the radar. The measurement noise vk is Gaussian
distributed with the variance R = 103.

Modified Measurement Equation for SAGF: In order
to allow a closed-form solution of the filter step in case
of the SAGF, squared ranges are considered. Thus, the
measurement equation becomes polynomial according to

r2k = M2 + (αk −H)2 + (vk)2 , (22)

and can now be used in the AGF formalism. In doing so, the
measurement ŷ in equation (5) is given by ŷ = r̂2k, where r̂k
is the measured altitude value.

D. Simulation Results

For each case, 1000 simulation runs are performed. In the
first case (linear measurement equation), the SAGF is com-
pared with the UKF as well as with the GPF with 100 and
1000 particles. In the second case (nonlinear measurement
equation), the SAGF is compared with the UKF. The GPF is
omitted, as it provides no reliable estimates in this scenario
due to the non-additive noise term in (21).

1) Case I: In Fig. 2, the root mean square error (RMSE)
over the 1000 simulation runs is shown. It is obvious that the
proposed SAGF converges faster than the UKF. Compared to
the GPF with 100 particles, the SAGF has a smaller error in
the altitude. Furthermore, the average RMSEs of the SAGF
and GPF are smaller than the error of the UKF (see Tab. I).
In terms of run time, the SAGF is two times faster than the
PF with 100 particles and four times faster than the UKF.

2) Case II: The differences between the two estimators,
SAGF and UKF, significantly increase if the altitude is
measured according to the nonlinear measurement equation
(21). In Fig. 3 the RMSEs are shown. At 10 seconds, the
error for the altitude and the velocity is increasing due to
the drag of the nonlinear motion [15]. This can be also
seen in the average RMSE in Tab. II. It is important to note
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Fig. 2. The RMSE over the 1000 test runs for case I. For the GPF 100 particles are used.
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Fig. 3. The RMSE over the 1000 test runs for case II.

that applying the UKF to measurement equation (21) or its
modified version (22) has no notable impact on the results.

VII. DISCUSSION AND FUTURE WORK

A new framework for the efficient calculation of posterior
moments in the context of Gaussian Assumed Density Fil-
tering based on moment matching has been proposed, which
exploits the structure of the given nonlinear system. For this
purpose, the system is decomposed into a set of nonlinear
subsystems that are conditionally integrable in closed form
by means of discretizing some dimensions of the state space.

For systems of moderate complexity, a suitable decom-
position can typically be found by inspection. For large
systems, however, automatic methods for the optimal de-
composition according to some predefined quality measure
are required and will be pursued in future research. Quality
measures might include i) the minimum number of samples
or ii) the minimum total number of computations for a given
estimation accuracy.
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