
Stochastic Optimal Control using
Local Sample-based Value Function Approximation

Maxim Dolgov1, Gerhard Kurz2, Daniela Grimm2, Florian Rosenthal2, and Uwe D. Hanebeck2

Abstract— In stochastic optimal control and partially-
observable Markov decision processes, trajectory optimization
methods iteratively deform a reference trajectory in a space of
probability distributions such that the performance criterion
associated with the problem attains an optimum. Related state-
of-the-art trajectory optimization approaches are restricted to
the space of Gaussian probability distributions where during
optimization they perform second-order Taylor expansion of
the value function at the parameters of the Gaussian, i.e.
the mean and the covariance. In this paper, we propose a
novel approach where trajectory optimization is performed in
the space of Dirac distributions and the Taylor expansion of
the value function is done at the positions of its samples. By
doing so, we are able to deal with non-Gaussian distributions
because Dirac distributions are often used to approximate
arbitrary probability distributions. The proposed approach is
demonstrated in a simulation.

I. INTRODUCTION

Imagine a scenario where a robot has to navigate through
an environment using its own dynamical model, a map of
the environment, and sensor measurements as feedback. The
motion of the robot has to be designed such that a perfor-
mance criterion defined in terms of costs gets minimized.
Alternatively, the performance criterion can be defined in
terms of a value that has to be maximized. In the described
scenario, uncertainty can arise from multiple sources. First,
the parameters of the robot’s dynamic model may be im-
precise or the map of the environment may be incomplete.
Second, external forces may affect the robot’s movement.
And finally, the measurements may be disturbed by noise. If
these uncertainties are statistically quantified, the described
problem can be addressed within the framework of stochas-
tic optimal control or partially-observable Markov decision
processes (POMDPs), where we seek control policies that
map the information available to the controller to control
inputs [1].

The standard approach in stochastic optimal control con-
sists in (1) redefining the problem in terms of the state esti-
mate maintained as a probability distribution that condenses
the information available to the controller, and (2) computing
the policies using Dynamic Programming (DP). The main
notion of the DP algorithm is to start at the end of the
planning horizon and to iterate backwards while choosing the
control policy such that the cumulative costs from the current
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step of the planning horizon to its end, the so-called costs-to-
go, attain a minimum. By doing so, DP exploits Bellman’s
principle of optimality [2]. If the problem is well-posed, e.g.,
if the costs are discounted or the state distribution has a limit,
DP even works for infinite prediction horizons.

Unfortunately, DP is intractable unless the spaces of the
states, the measurements, and the control inputs are finite
and sufficiently small [3], or the system dynamics and
the measurement equation are linear and have deterministic
parameters, the noises that affect the system are indepen-
dent and identically distributed with Gaussian probability
distributions, and the cost function is quadratic and has
deterministic parameters. The latter class of problems is
referred to as Linear Quadratic Control (LQG) [4]. In other
scenarios, DP is intractable because the separation between
control and state estimation does not hold, i.e., the choice of
current control inputs influences the quality of future state
estimation and vice versa. This issue occurs because the
latter influences the future decision making and therefore,
the current costs-to-go [5]. Also, the optimal solution of DP
requires that the costs-to-go are maintained for all possible
state estimates, which is intractable because the space of
general state estimates is infinite-dimensional. Of course
there are other issues with DP, for example, the optimization
problem associated with the choice of optimal control inputs
is usually non-convex or the representation of state estimate
is not parameterizable. Therefore, approximate approaches
to DP are of interest.

The approximate DP approaches available in literature
can be distinguished into global and local methods. Global
approaches use function approximation methods in order to
interpolate the costs-to-go using the values of the costs-to-go
that are available for a set of state estimates. Methods that
belong to this class of DP approaches are usually referred
to as the Point-based Value Iteration methods [6], where the
’points’ are probability distributions that represent the state
estimates. A prominent global DP approach was presented by
Thrun in [7], where the state estimates are represented using
Dirac distributions, i.e., discrete probability distributions over
a continuous domain. In order to interpolate the costs-to-go,
Thrun uses a nearest-neighbor approach that relies on the
Kullback-Leibler (KL) divergence [8] to determine the close-
ness of state estimates1. An important theoretical contribution
to global DP approaches was presented by Porta et al. in [6],

1Please note that the KL is not a distance measure because it does
not satisfy the necessary axioms. Furthermore, it is not defined for Dirac
distributions. Therefore, Thrun uses a Parzen-window smoothing method [9]
to convert the Dirac distribution into a continuous distribution.



-5 0 5
-5

0

5

10

15

20

25

30

true

approximation

(a) Taylor approximation at the mean 2.
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(b) Sample-based Taylor approximation at three locations.

Fig. 1: Approximation error of the second-order Taylor and sample-based second-order Taylor expansions of the function
a(x) = x2 + sin(x) for the Gaussian distribution N (2, 1).

where the authors generalize the results from [10] and [11]
for problems with finite spaces of states, measurements,
and control inputs to problems with a continuous state
space. In this work, the authors show that the costs-to-go
are piece-wise linear continuous in the state estimates if
the spaces of measurements and control inputs, and also
the planning horizon are finite. Furthermore, they extend
the notion of α-vectors that encode the optimal policy in
stochastic optimal control problems with finite state spaces
to the notion of α-functions for problems with a continuous
state space. The results from [6] are combined with a state
aggregation heuristic in [12] and a policy representation
using a finite-state controller in [13]. A global DP approach
with Gaussian state estimates is presented in [14]. However,
the parametrized state estimate representation limits the class
of admissible problems.

In contrast to global DP approaches, local approaches per-
form DP along a reference trajectory of state estimates and
control inputs. By doing so, the trajectory is iteratively de-
formed until the control performance criterion attains a local
optimum. Therefore, local DP approaches are also referred to
as trajectory optimization methods. The main advantage of
local DP approaches is that it is not necessary to maintain the
costs-to-go for the entire space of possible state estimates.
However, it is not guaranteed that the global optimum will
be found when using the vanilla version o this approach. A
prominent branch of trajectory optimization methods relies
on the extension of linear quadratic approaches to nonlinear
control problems [15]. This methods are closely related to
Differential Dynamic Programming [16]. An extension of
the approach from [15] to the class of problems considered
in this paper is presented in [17], where the authors use an
Extended Kalman Filter (EKF) as the state estimator and
perform second-order Taylor expansion of the costs-to-go at
the mean of the Gaussian state estimate. We will refer to this
approximation method as EKF-based. The parameters of the
EKF and the control law that is affine in the mean of the state
estimate are computed iteratively. In [18], van den Berg et
al. also consider problems with Gaussian state estimates. In
contrast to [17], they propose a closed-loop formulation of

the control problem in terms of the Gaussian state estimate.
By doing so, the Taylor expansion can be performed at the
parameters of the Gaussians. Furthermore, van den Berg et al.
use rapidly-exploring random trees [19] in order to generate
a good initial reference trajectory, which increases the chance
of finding the global optimum of the control problem.

In this paper, we extend the results from [17], [18]
to sample-based representation of state estimates in terms
of Dirac distributions. By doing so, we are able to ad-
dress stochastic optimal control problems with non-Gaussian
states. This representation of state estimates allows us to
derive an approximation scheme for the costs-to-go that
performs a second-order Taylor expansion at the positions of
the samples of the Dirac distributions. We will refer to this
scheme as sample-based or statistical Taylor approximation.
In nonlinear filtering, sample-based approaches have shown
to be superior to approximations based on Taylor series in
terms of approximation quality and robustness [20], espe-
cially in problems with large noise covariances and strongly
nonlinear dynamics and measurement functions. An example
of this observation is depicted in Fig. 1, where the second-
order Taylor series and the sample-based second-order Taylor
approximations of a(x) = sin(x) + x2 for the Gaussian
N (2, 1) are compared.

II. PROBLEM FORMULATION
In this section, we formulate the considered problem and

introduce the basic concept of DP and some preliminaries.
We consider the stochastic system with time-variant dyna-
mics

xk+1 = ak(xk, uk,wk) ,

y
k

= hk(xk,vk) ,
(1)

where xk ∈ Rnx is the state of the system, uk ∈ Rnu the
control input that is generated by the controller at time step
k, wk ∈ Rnw the process noise with distribution pwk (wk),
y
k
∈ Rny the measurement that is fed back to the controller

at time step k, and vk ∈ Rnv the measurement noise with
distribution pvk(vk). For simplicity, we assume that the noises
are independent and identically distributed, and that they can
be sampled. The cost function associated with the considered
control problem is given by



J = E

{
CK(xK) +

∑K−1

k=0
Ck(xk, uk)

}
, (2)

where K ∈ N denotes the length of the planning horizon
and the functions CK(·) and Ck(·, ·) return the costs incurred
at time steps k = 0, 1, . . . ,K by the state estimates pxk(xk)
and the corresponding control inputs uk. In our approach,
we require that in the positive definite sense

∂2

∂x2k
Ck(xk, uk) ≥ 0 ,

∂2

∂u2k
Ck(xk, uk) > 0 ,[

∂2

∂x2
k
Ck(xk, uk) ∂2

∂xkuk
Ck(xk, uk)

∂2

∂ukxk
Ck(xk, uk) ∂2

∂u2
k
Ck(xk, uk)

]
≥ 0 .

(3)

The above assumption is necessary to produce well-defined
local optimization problems during the iterative control law
computation presented in this paper.

Instead of computing the individual control inputs, we
seek a policy πk(pxk(xk)) for k = 0, . . . ,K − 1 given an
initial state estimate px0(x0) that during runtime maps the
actual state estimates pxk(xk) to control inputs such that the
costs (2) attain a minimum. In this paper, we assume that
the state estimates pxk(xk) are maintained in form of Dirac
distributions, i.e.,

pxk(xk) =
∑Nx

i=1
αikδ(xk − xik) , (4)

where δ(·) is the Dirac delta, and xik are the positions of the
samples and αik ∈ (0, 1] their weights with

∑Nx

i=1 α
i
k = 1.

The estimate pxk(xk) is obtained from the information set
Ik = {px0(x0),y

1
, . . . ,y

k
, u0, . . . , uk−1} using an admissi-

ble filter such as the Unscented Kalman Filter (UKF) [21],
the randomized UKF [22], or the particle filter [23]. As we
will see later, the proposed statistical Taylor approximation
induces the affine policy πk(xk) = LkE{xk} + dk, whose
parameters Lk and dk can be computed using the presented
algorithm.

As outlined in the introduction, the general approach to
solve a stochastic optimal control problem is to apply DP.
The main idea of this approach is to define the Bellman
recursion
VK(pxK(xK)) = E{CK(xK)} , (5)

Vk(pxk(xk))=inf
uk

E
{
Ck(xk, uk)+Vk+1(ppk+1(xk+1|yk+1

))
}
,

where VK(·) and Vk(·) are referred to as value functions.
The probability distribution ppk+1(xk+1|yk+1

) for a particular
measurement y

k+1
can be computed using the Bayes’ law

according to

ppk+1(xk+1|yk+1
) =

p(y
k+1
|xk+1)pxk(xk+1)∫

p(y
k+1
|xk)pxk(xk) dxk

=
p(y

k+1
|xk+1)

∫
p(xk+1|xk, uk)pxk(xk) dxk∫

p(y
k+1
|xk)pxk(xk) dxk

,

where p(y
k+1
|xk) =

∫
p(y

k+1
|xk+1)p(xk+1|xk, uk) dxk+1.

Recursion (5) is also referred to as value iteration. For
continuous stochastic optimal control problems, this
recursion resolves to

VK(pxK(xK)) =

∫
CK(xK)pxK(xK) dxK ,

Vk(pxk(xk)) = inf
uk

∫
pxk(xk)

[
Ck(xk, uk)

+

∫
p(y

k+1
|xk)Vk+1(ppk+1(xk+1|yk+1

)) dy
k+1

]
dxk .

In the course of this paper, we will need to compute
the empirical covariance of a state estimate as given in the
following lemma.
Lemma 1 For the Dirac distribution pxk(xk) as in (4) and
the Dirac distributions pwk (wk) =

∑Nw

m=1 β
m
k δ(wk − wmk )

and pvk+1(vk+1) =
∑Nv

n=1 γ
n
k+1δ(vk+1−vnk+1) of the process

and the measurement noises, the empirical covariance Cp
k+1

of the probability distribution pxk+1(xk+1) is given by
Cp
k+1 = Cxx

k+1 −Cxy
k+1(Cyy

k+1)−1(Cxy
k+1)> ,

where

Cxx
k+1=

Nx∑
i=1

Nw∑
m=1

αikβ
m
k (x

[im]
k+1 − x̂k+1)(x

[im]
k+1 − x̂k+1)>,

Cxy
k+1=

Nx∑
i=1

Nw∑
m=1

Nv∑
n=1

αikβ
m
k γ

n
k+1(x

[im]
k+1−x̂k+1)(y[imn]

k+1
−ŷ

k+1
)>,

Cyy
k+1=

Nx∑
i=1

Nw∑
m=1

Nv∑
n=1

αikβ
m
k γ

n
k+1(y[imn]

k+1
−ŷ

k+1
)(y[imn]

k+1
−ŷ

k+1
)>,

with
x
[im]
k+1 = ak(xik, uk, w

m
k ) ,

x̂
[im]
k+1 =

∑Nx

i=1

∑Nw

m=1
αikβ

m
k x

[im]
k+1 ,

y[imn]
k+1

= hk+1(x
[im]
k+1, v

n
k+1) ,

ŷ
k+1

=
∑Nx

i=1

∑Nw

m=1

∑Nv

n=1
αikβ

m
k γ

n
k+1y

[imn]
k+1

.

Please observe that the covariance Cp
k+1 is independent of

the measurement y
k+1

.

III. PROPOSED APPROACH
As mentioned in the introduction, we propose to use a sta-

tistical Taylor expansion of the costs-to-go in the presented
local DP approach. To this end, we define this expansion as
follows.
Definition 1 Given a Dirac distribution p̄x(x) =∑Nx

i=1 ᾱ
iδ(x − x̄i) with Nx ∈ N, x̄i ∈ Rnx , ᾱi ∈ (0, 1]

for i = 1, . . . , Nx,
∑Nx

i=1 ᾱ
i = 1, the value of a function

a(px(x)) = E{g(x)} of a random variable x with
probability distribution px(x) can be approximated
according to

a(px(x)) ≈ E

{∑Nx

i=1
ᾱi
[
g(x̄i) +∇g(x̄i)>(x − x̄i)

+
1

2
(x − x̄i)>∇2g(x̄i)(x − x̄i)

]}
,

(6)

if the distributions px(x) and p̄x(x) are independent and
close2.

2To determine the closeness of the two probability distributions px(x)
and p̄x(x), we can either use a distance measure for probability distribu-
tions [24] or the absolute difference between a(p̄x(x)) and the approxima-
tion a(px(x)).



Equation (6) can be derived using an approach similar
to the approximate computation of the expected value of a
random variable. First, we use

a(px(x)) = E{g(x)} = E
{
g(y + x − y)

}
,

where y is an arbitrary random variable. Next, we expand the
expected value and perform a second-order Taylor expansion
of g(·) at y , which gives

a(px(x))

≈E

{
g(y)+∇g(y)>(x−y)+

1

2
(x−y)>∇2g(y)(x−y)

}
=

∫ ∫ [
g(y)+∇g(y)>(x−y)+

1

2
(x−y)>∇2g(y)(x−y)

]
× p(x, y) dx dy .

Here, p(x, y) is a joint distribution of x and y . Then,
assuming that x and y are independent and that p̄x(y) is
the probability distribution of y , we obtain (6).

Using Definition 1, we can perform statistical second-
order approximation of the costs-to-go along a reference
trajectory formed by the Dirac distributions p̄x0:K(x0:K) and
the control inputs ū0:K−1. To obtain a reference trajectory
given an initial policy π0:K−1(px0:K−1(x0:K−1)), we proceed
as follows. Of course, we can use the nominal trajectory as

Algorithm 1 Generation of a reference trajectory.
Step 1: Set k = 0 and initialize p̄x0(x0) = px0(x0).
Step 2: Compute ūk = πk(p̄xk(xk)).
Step 3: Use a sample from p̄xk(xk), ūk from Step 2, and
a process noise sample from pwk (wk) in order to obtain a
simulated system state xk+1.
Step 4: With xk+1 from Step 3 and a measurement noise
sample from pvk+1(vk+1), generate a simulated observa-
tion y

k+1
.

Step 5: With the measurement y
k+1

, compute the state
estimate p̄xk+1(xk+1).
Step 6: If k = K, stop the algorithm. Otherwise, set k =
k + 1 and return to Step 2.

the reference trajectory. To generate the nominal trajectory,
we use the means of pxk(xk), pwk (wk), and pvk+1(vk+1) in
the above algorithm.

Next, we address statistical Taylor expansion of the value
functions using the method from Definition 1. The approx-
imation of the costs-to-go at time step K can be obtained
according to the following theorem.

Theorem 1 Using the approximation method from Defi-
nition 1, a second-order approximation of the costs-to-
go VK(pxK(xK)) at the reference state estimate p̄xK(xK)
computes to

VK(pxK(xK))=E

{
sK+v>KxK+

1

2
x>KVKxK+

1

2
tr[SKCK ]

}
,

where

sK=

Nx∑
i=1

ᾱiK

[
CK(x̄iK)−∇CK(x̄iK)>x̄iK+

1

2
(x̄iK)>∇2CK(x̄iK)x̄iK

]
,

vK=

Nx∑
i=1

ᾱiK
[
∇CK(x̄iK)−∇2CK(x̄iK)x̄iK

]
, (7)

VK=

Nx∑
i=1

ᾱiK∇2CK(x̄iK) , SK = 0 .

Proof: We have VK(pxK(xK)) = E{CK(xK)} accord-
ing to (5) and apply the approximation from Definition 1
with g(xK) = CK(xK). By separating the constant, linear,
and quadratic terms, we can obtain the above result.

In the next theorem, we present an approximation of the
costs-to-go along a reference trajectory at time step k.

Theorem 2 Using the result from Theorem 1 and Defini-
tion 1, a second-order statistical approximation of the costs-
to-go Vk(pxk(xk)) at the reference state estimate p̄xk(xk) and
a reference control input ūk can be computed according to

Vk(pxk(xk))=E

{
sk+v>k xk+

1

2
x>kVkxk+

1

2
tr[SkCk]

}
,

with Ck being the empirical covariance of pxk(xk) (see
Lemma 1) and

sk =

(
ε2k
2
− εk

)
r>kR

−1
k rk −

1

2
p̃>
k
R−1k p̃

k
+ r>kR

−1
k p̃

k

+ ϕk(x̄1:Nx

k , ūk) +

Nx∑
i=1

[
1

2
(x̄ik)>q̃i

k
− (pi

k
)>x̄ik

]
,

vk = P̃>kR
−1
k p̃

k
− P̃>kR

−1
k rk +

Nx∑
i=1

[
pi
k
− q̃i

k

]
,

Vk = −P̃>kR−1k P̃k + Q̃k , Sk = P̃>kR
−1
k P̃k ,

(8)

where εk ∈ (0, 1] is a parameter and

ϕk(x̄1:Nx

k , ūk)=

Nx∑
i=1

Nw∑
m=1

ᾱikβ̄
m
k

[
Ck(x̄ik, ūk)+sk+1

+v>k+1ak(x̄ik, ūk, w̄
m
k )+

1

2
tr
[
Sk+1C

p
k+1

]
+

1

2
ak(x̄ik, ūk, w̄

m
k )>Vk+1ak(x̄ik, ūk, w̄

m
k )

]
,

pk =

 p
1
k
...

pNx

k

 , [pik
rk

]
= ∇ϕk(x̄1:Nx

k , ūk) ,


Q11
k . . . Q1Nx

k (P1
k)>

...
. . .

...
...

QNx1
k . . . QNxNx

k (PNx

k )>

P1
k . . . PNx

k Rk

 = ∇2ϕk(x̄1:Nx

k , ūk) ,

p̃
k

=
∑Nx

i=1
Pikx̄

i
k , P̃k =

∑Nx

i=1
Pik ,

q̃i
k

=
∑Nx

j=1
Qij
k x̄

j
k , Q̃k =

∑Nx

i=1

∑Nx

j=1
Qij
k , (9)

where we write Cp
k+1 to indicate that the covariance Ck+1

is computed using pxk(xk) and not pxk+1(xk+1).



Proof: We will prove Theorem 2 by induction. The
costs-to-go at time step k, when using the approximation
from Theorem 2 for the value function Vk+1(xk+1), are
given by
Vk(pxk(xk)) = inf

uk

E
{
Ck(xk, uk) + sk+1 + v>k+1xk+1

+
1

2
x>k+1Vk+1xk+1 +

1

2
tr[Sk+1Ck+1]

}
= inf

uk

E
{
Ck(xk, uk) + sk+1 + v>k+1ak(xk, uk,wk)

+
1

2
ak(xk, uk,wk)

>Vk+1ak(xk, uk,wk)+
1

2
tr
[
Sk+1C

p
k+1

]}
.

Next, applying the expansion from Definition 1 at p̄xk(xk)
yields

Vk(pxk(xk))≈inf
uk

E

ϕk(x̄1:Nx

k , ūk) +


p1
k
...

pNx

k
rk


>

xk − x̄1k
...

xk − x̄
Nx

k

uk − ūk



+
1

2


xk − x̄1k

...
xk − x̄

Nx

k

uk − ūk


> 

Q11
k . . . Q1Nx

k (P1
k)>

...
. . .

...
...

QNx1
k . . . QNxNx

k (PNx

k )>

P1
k . . . PNx

k Rk



×


xk − x̄1k

...
xk − x̄

Nx

k

uk − ūk


 . (10)

Please note that we needed to apply Definition 1 twice
because the covariance-related term contains inner integrals
due to evaluation of the inner expected values in Ck+1 =
E
{

(xk+1 − E
{
xk+1

}
)(xk+1 − E

{
xk+1

}
)>
}

.
Evaluation of the necessary optimality condition with

respect to uk for the above equation gives us
uk = −R−1k P̃kE{xk}+ R−1k p̃

k
−R−1k rk + ūk .

At this point, we introduce the parameter εk ∈ (0, 1], as
proposed in [18] and obtain
uk = −R−1k P̃kE{xk}+ R−1k p̃

k
− εkR−1k rk + ūk . (11)

We will use the parameter εk in order to ensure convergence
of the algorithm for the computation of the controller pa-
rameters Lk and dk that we present later. Now, using (11)
in (10) yields

Vk(pxk(xk)) ≈ E

{
ϕk(x̄1:Nx

k , ūk) +
∑Nx

i=1

[(
pi
k

)> (
xk − x̄ik

)
+
∑Nx

j=1

1

2
(xk − x̄ik)>Qij

k

(
xk − x̄

ij
k

)]
+ r>k (uk − ūk)

+
(
P̃kE{xk} − p̃k

)>
(uk − ūk)

+
1

2

(
−P̃kE{xk}+ p̃

k
− εkrk

)>
(uk − ūk)

}
.

After a manipulation, we obtain the result from Theorem 2.
To this end, we use that for a deterministic matrix A it
holds E{xAx} = tr

[
AE

{
(x − E{x})(x − E{x})>

}]
+

E
{
x>k
}
AE{x}, where E

{
(x − E{x})(x − E{x})>

}
can

be identified as the covariance of x. The approximation of
Vk(pxk(xk)) is independent of y

k+1
if computed according

to Lemma 1.
Please note that in Theorem 2, the matrix Rk is positive

definite and thus invertible due to the assumptions in (3).
With Theorems 1 and 2, we can now formulate the proce-

dure for the computation of the controller parameters L0:K−1
and d0:K−1 as given in Algorithm 2. The backtracking line

Algorithm 2 Computation of the controller parameters.

Step 1: Select an initial control law L
[0]
0:K−1, d[0]0:K−1 and

set η = 0.
Step 2: Use the current control law L

[η]
0:K−1, d[η]0:K−1 and

the initial state estimate px0(x) in Algorithm 1 in order
to generate a trajectory of closed-loop reference state
estimates p̄x0:K(x0:K) and reference control inputs ū0:K−1
by interleaved filtering and policy evaluation.
Step 3: Initialize sK ,vK , VK , and SK according to (7),
and set k = K.
Step 4: Set k = k − 1. Then:

1) Compute Rk, P̃k, rk, and p̃
k

using (9).
2) Determine εk using backtracking line search initial-

ized with εk = 1 such that the costs-to-go for uk
computed using (11) become smaller than the costs-
to-go for uk = L

[η]
k E{xk}+ d

[η]
k .

3) Set L[η+1]
k = −R−1k P̃k, d[η+1]

k = R−1k (p̃
k
−εkrk)+

ūk, and compute sk, vk, Vk, and Sk using (8).
4) If k = 0, proceed to Step 5 and return to Step 4

otherwise.
Step 5: If the costs converged, i.e., if |J [η+1]−J [η]| ≤ α,
where α is a small positive constant, stop the algorithm.
Otherwise, set η = η + 1 and return to Step 2.

search in Step 4 ensures the convergence of the costs [18].
The search is performed by setting εk = 1. If the costs-
to-go Vk(p̄xk(xk)) for uk computed according to (11) are
larger than the costs-to-go for uk = L

[η]
k E{xk}+d

[η]
k , we set

εk = εk/2 and repeat. If εk at a time step k becomes smaller
than a predefined positive threshold, the current control law
for this time step is locally optimal.

IV. NUMERICAL EXAMPLE
We demonstrate the proposed control approach in a numer-

ical toy example. In our scenario, a robot with simple linear
dynamics xk+1 = xk+uk+wk with wk ∼ N (0, 0.52I) has
to reach xT =

[
−16 16

]>
starting with the initial Gaussian

state estimate

px0(x0) = N
([
−4
4

]
,

[
3 −0.5
−0.5 3

])
.

The measurements fed back to the controller are obtained
according to

y
k
=

[
‖xk − z1‖2
‖xk − z2‖2

]
+

[
‖xk − z1‖2vk,1
‖xk − z2‖2vk,2

]
,[

vk,1
vk,2

]
∼N (0, 0.052I)
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Fig. 2: Planning result after 5 iterations.

i.e., the robot receives distance measurements to z1 and z2
that are subject to state-dependent measurement noise. In the
considered scenario, we set the landmarks z1 =

[
−10 16

]>
and z2 =

[
−14 20

]>
. The cost function is assumed to be

J = E

{
20 ‖xK − xT ‖2+

K−1∑
k=0

(
20 ‖xk − xT ‖2 + ‖uk‖2

)}
,

where K denotes the length of the planning horizon that is
set K = 10 in the simulation. As a state estimator, we use
the UKF and compute the gradient and the Hessian of ϕk
from (9) using adaptive numerical differentiation.

If we applied the LQG in the considered scenario, it
would plan a straight line from the mean x̂0 of px0(x0)
to xT , because it assumes separation between control and
estimation. In contrast, our control approach considers that
the state estimation quality near to one of the landmarks
gets better. Therefore, it balances the costs induced by poor
estimation quality and the costs induced by the control.
This expectation can be seen in Fig. 2 that depicts the
state trajectory planned by the proposed algorithm after 10
iterations. It can be seen that the controller deforms the path
from x̂0 to xT towards the landmarks in order to obtain a
more precise state estimate.

V. CONCLUSION
In this paper, we presented a trajectory optimization

algorithm for closed-loop control of stochastic nonlinear
systems. The proposed method relies on statistical second-
order approximation of the costs-to-go along a reference
trajectory of closed-loop state estimates that are maintained
in terms of Dirac distributions. In contrast to state-of-the-
art approaches that rely on EKF-based approximation of
the costs-to-go, we expect our method to be more robust.
Furthermore, by using a sample-based representation of the
state estimates, we are able to deal with non-Gaussian system
states.

Our future work consists in evaluation of the proposed
algorithm with more sophisticated filters such as the par-
ticle filter, and its comparison with related state-of-the-
art approaches from [17] and [18]. Furthermore, we plan
to drop the assumption of an affine controller by using
nonlinear policies and Q-learning. Finally, an extension of
the proposed approach to problems with chance constraints
is also planned.
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