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Abstract— In this paper, we present a new extension to the
Progressive Gaussian Filter (PGF) to improve its performance
in certain situations. The PGF is a nonlinear Gaussian-assumed
filter. Its basic idea is to gradually take the likelihood of the
measurement into account when performing the measurement
update step. Because the filter does not assume the prior
and the measurement to be jointly Gaussian distributed, it
outperforms commonly used LRKFs in strongly nonlinear
scenarios. However, it suffers from suboptimality in cases where
the model is close to linear, as the PGF does not contain the
Kalman filter as a special case. To remedy this issue, we propose
an extension where the PGF is combined with an LRKF.

I. INTRODUCTION

The problem of nonlinear filtering consists in estimation
of the state of a system whose internal dynamics or whose
measure model is nonlinear. This issue has been considered
by many authors over the past decades. So-called linear
regression Kalman filters (LRKFs) [1] have emerged as a
popular class of filters, for example the unscented Kalman
filter (UKF) [2], the Gaussian Hermite Kalman filter [3], [4],
the cubature Kalman filter (CKF) [5], [6], the smart sampling
Kalman filter (S2KF) [7] and the hyperspherical Kalman
filter (HSKF) [8]. They rely on statistical linearization of the
nonlinear system and/or measurement model using a set of
samples. These approaches typically work well for scenarios
that are at least locally (in relation to the current uncertainty)
close to linear. For exactly linear systems, they reduce to the
Kalman filter [9] and thus, are optimal with respect to the
mean squared error (MSE). However, they suffer from low
accuracy and even possible divergence in the presence of
strong nonlinearities.

The more general class of Gaussian-assumed filters con-
sists of approaches that merely assume the state after each
prediction step and each measurement update step to be
Gaussian distributed. In contrast to LRKFs, some of these ap-
proaches avoid linearization of the system and measurement
function, for example the Gaussian Particle filter (GPF) [10].
This typically leads to better results in the presence of strong
nonlinearities provided the Gaussian assumption is at least
approximately fulfilled, especially during the measurement
update step. Other examples are the progressive filters such
as the Progressive Gaussian Filter (PGF) [11], [12], which
only consider the difficult update step and rely on an LRKF
for the prediction step. The downside is that these approaches
are suboptimal on (almost) linear systems because they do
not include the Kalman filter as a special case.
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Fig. 1: Example for the measurement equation zk = x3k+vk.
Observe that the joint density of state and measurement is
highly non-Gaussian.

As a result, we seek to combine LRKFs, which perform
better for no or little nonlinearity, with general Gaussian-
assumed filters, which perform better for strong nonlinearity.
Note that the same system can exhibit varying degrees of
nonlinearity depending on the current state and the current
uncertainty, i.e., it is not sufficient to determine its nonline-
arity once and choose the superior filter. Rather, we would
like to combine the results from both approaches at runtime.

Example 1 (Limitations of LRKFs) To illustrate the limi-
tations of LRKFs, we consider the cubic measurement model
zk = x3k + vk. The prior density of the state xk is given by a
normal distribution with mean µ = 2 and variance σ2 = 2.
The additive measurement noise vk is distributed according
to vk ∼ N (0, 30). Assume we obtain a measurement of
zk = 100.

This scenario is depicted in Fig. 1. As can be seen, the true
joint density f(xk, zk) is highly non-Gaussian even though
the prior density and the noise are Gaussian. However, all
LRKFs approximate the joint density with a Gaussian, no
matter how many samples are used. As a result, even LRKFs
with many samples (such as the S2KF) or LRKFs that match



higher moments (such as the higher order CKF) will not
obtain a good result.

Despite the highly non-Gaussian joint density, the true
posterior is approximately Gaussian in the considered exam-
ple. As a result, Gaussian-assumed filters such as the GPF
and the PGF can still obtain a very good approximation of
the posterior density.

II. THE PROGRESSIVE GAUSSIAN FILTER (PGF)

The PGF was originally proposed in [11], [12]. Further
development can be found in [13], [14], [15]. A similar
approach has also been applied in the context of directional
estimation [16], [17]. The concept of progressive filtering
dates back to the work by Oudjane and Musso [18], who
applied similar concepts to regularized particle filters.

The basic approach of the PGF is similar to the GPF [10].
Both filters draw samples from the prior density and re-
weigh them with the likelihood function according to Bayes’
theorem. The GPF, however, has two problems. First, it
draws the samples at random, and hence, is nondeterministic.
Thus, the results are not reproducible and many samples
are required just to properly capture the prior distribution.
Second, it suffers from particle degeneration, in particular
if the likelihood is very narrow or the state space is high-
dimensional, i.e., a lot of particles get assigned a weight that
is close or identical to zero. To address these two issues,
the PGF relies on deterministic sampling and a progressive
measurement update.

The idea of deterministic sampling is to approximate the
prior density using a set of samples s1, . . . , sL that are
obtained in a deterministic way rather than drawing samples
at random. This can be done by moment matching (as in
the UKF [2]), quadrature rules (as in the Gaussian Hermite
KF [3]), or by approximating the shape of the continuous
distribution using a suitable distance measure, usually with
an additional constraint that mean and covariance are ma-
tched exactly. The PGF makes use of the approximation
presented in [7], the same method as used by the S2KF.
Compared with random samples, a much smaller number
of deterministic samples is typically sufficient to provide a
good approximation of the true continuous density. Just as
for the S2KF, the samples can be precomputed for a standard
Gaussian and transformed to a Gaussian with different mean
and covariance using the Mahalanobis transformation [19,
Sec. 3].

However, the problem of particle degeneration remains.
The idea to solve this problem is to use a progressive
measurement update, where the information contained in the
measurement is fused gradually with the prior f(xk). To
achieve this, the PGF carries out the measurement update in
several steps by applying Bayes’ theorem and factoring the
likelihood f(zk|xk) according to

f(xk|zk) =
f(zk|xk)f(xk)

f(zk)

=
f(zk|xk)λ1 · . . . · f(zk|xk)λN · f(xk)

f(zk)
,

with step sizes and λ1, . . . , λN > 0, where∑N

i=1
λi = 1 .

Each step reweighs the samples according to the correspon-
ding factor f(zk|xk)λi of the likelihood, reapproximates the
reweighted samples using a Gaussian density, and use deter-
ministic sampling to obtain new equally weighted samples
for this Gaussian. As the new samples are equally weighted,
particle degeneration is avoided.

This poses the question of how to choose the step sizes
λ1, . . . , λN . For this purpose, we introduce a predefined
lower bound R ∈ (0, 1) for the ratio between the smallest
and the largest sample weight after reweighting

minj f(zk|sj)λi

maxj f(zk|sj)λi
≥ R ,

where the sample positions are s1, . . . , sL. For

min
j
f(zk|sj) 6= max

j
f(zk|sj) ,

this yields an upper bound for the step size

λi ≤
log(R)

log(minj f(zk|sj))− log(maxj f(zk|sj))
.

Otherwise, any step size will fulfill the condition. Note that
this result is only valid if the prior density has uniform
weights. The case of a prior density with weighted samples
is considered in [16, Sec. VI-B].

Based on the upper bound for the step size, we always
choose the largest admissible step size that also guarantees
that

∑N
i=1 λi ≤ 1. As soon as

∑N
i=1 λi = 1, the algorithm

terminates. Pseudo code for the entire procedure can be
found in [11, Algorithm 1].

III. EXTENSION OF THE PGF USING LRKF PRIORS

The PGF performs quite well in strongly nonlinear situati-
ons and often outperforms commonly used LRKFs. However,
it is suboptimal for linear systems, and thus, is inferior to
the LRKFs for problems that are close to linear. In order to
improve the performance of the PGF in such scenarios, we
seek to combine an LRKF and the PGF.

The basic idea of the proposed approach is to obtain the
LRKF result fLRKF(xk|zk) first and to use it as a prior in
the PGF. The standard PGF performs a progression from the
prior f(xk) to the (unnormalized) posterior f(zk|xk)·f(xk).
Instead of f(xk) we want to use fLRKF(xk|zk) as a starting
point for the progression, as it tends to be closer to the
true posterior than f(xk). In the linear case, fLRKF(xk|zk)
actually exactly matches the true posterior. The proposed
approach is similar to the Unscented Particle Filter (UPF)
[20], [21], where a UKF is used to generate a better prior
for a particle filter.

To achieve this, we rewrite the filtering step as follows

f(xk|zk) ∝f(zk|xk) · f(xk)

= f(zk|xk) · f(xk) ·

1︷ ︸︸ ︷
fLRKF(xk|zk)
fLRKF(xk|zk)



=

(
f(zk|xk) · f(xk)
fLRKF(xk|zk)

)
︸ ︷︷ ︸

:=g(xk)

·fLRKF(xk|zk) .

By doing so, we can use the LRKF result as a prior, which
is multiplied by a function g(xk) to obtain the true posterior.
Similar to the PGF, we can perform this multiplication gra-
dually by factoring the modified likelihood g(xk) according
to

g(xk) = g(xk)
λ1 · . . . · g(xk)λN .

To compute the step size λi, we use the same approach
as in Sec. II by considering g(xk) instead of f(zk|xk). For

min
j
g(sj) 6= max

j
g(sj) ,

this results in the condition

λi ≤
log(R)

log(minj g(sj))− log(maxj g(sj))
,

where s1, . . . , sL are the samples of the current progres-
sion step. Pseudo code of the novel method is given in
Algorithm 1.

Algorithm 1: Proposed Measurement Update
Input: prediction µp

k
,Cp

k, measurement zk, threshold
R

Output: estimate µe
k
,Ce

k

1 µLRKF,CLRKF ←S2KFMeasUpdate(µp
k
,Ce

k, zk) ;
2 µ← µLRKF,C← CLRKF;
3 N ← 0;
/* Define function g(x) */

4 g ←
(
x 7→ f(zk|x)·N (x;xp

k,C
e
k)

N (x;µLRKF,CLRKF)

)
;

5 do
6 N ← N + 1;

/* Compute samples */
7 s1, . . . , sL ←sampleDeterministic(µ,C);

/* Compute step size */
8 if minj g(sj) 6= maxj g(sj) then
9 λN ← log(R)

log(minj g(sj))−log(maxj g(sj))
;

10 else
11 λN ← 1;
12 end
13 if

∑N
i=1 λi > 1 then

14 λN ← 1−
∑N−1
i=1 λi;

15 end
/* Reweigh samples */

16 (w1, . . . , wL)← (g(s1)
λN , . . . , g(sL)

λN ) ;
17 W ←

∑L
j=1 wj ;

/* Compute mean and covariance */

18 µ = 1
W

∑L
j=1 wjsj ;

19 C← 1
W

∑L
j=1 wj(sj − µ)(sj − µ)T ;

20 while
∑N
i=1 λi < 1;

21 µe
k
= µ, Ce

k = C;

Theorem 1 (Linear Case) For a linear measurement equa-
tion with additive Gaussian noise, the result of the proposed
filter is equal to that of the Kalman filter.

Proof: In the case of a linear measurement equation, the
S2KF reduces to the Kalman filter. Hence, N (µLRKF,CLRKF)
is identical to the Kalman filter result and to the exact
Bayesian estimator. It follows that g(xk) = c for all xk
and some constant c > 0. Thus, the step size is λ1 = 1 and
the weights are w1 = · · · = wL = c. As a result, µe

k
and

Ce
k from Algorithm 1 correspond to the sample mean and

sample covariance of s1, . . . , sL, which in turn correspond
to µLRKF and CLRKF, because the deterministic sampling
scheme maintains mean and covariance.

Remark 1 (Implementation Details) There are some furt-
her details that should be considered when implementing
the proposed algorithm. First of all, the following errors can
occur and need to be handled.

1) Due to numerical inaccuracy or a pathological likeli-
hood function, it can happen that W ≤ 0 in line 17.
In this case, we propose to abort the progression and
to return the S2KF estimate instead, which should
usually perform better than the PGF’s strategy of
simply ignoring the measurement.

2) As a result of numerical issues, C may not be positive
definite in line 19. In this case, we also propose to fall
back to the S2KF’s estimate.

To increase numerical stability, it is advisable to consider
log(g(·)) instead of g(·) whenever possible. However, for
the computation of the weights in line 16, we need the non-
logarithmic version of the weights. At this point, we can
compute the weights as

wi = exp
(
λN ·

(
log(g(si))−max

j
log(g(sj))

))
,

which differs up to a constant factor from the true weight.
This constant factor does not change the results because of
the normalization using 1/W .

Remark 2 (Runtime) The runtime of the proposed appro-
ach is essentially the sum of the runtime of the LRKF and the
PGF. However, the number of progression steps necessary in
the progressive part is typically lower than in the PGF.

In the case of additive Gaussian noise, a d-dimensional
state vector and L samples, the runtime of the S2KF is
O(Ld2) plus O(L) evaluations of the measurement function.
In the same setting, the PGF has a runtime O(NLd2) plus
O(NL) evaluations of the likelihood, where N is the number
of progression steps. As a result, the runtime fo the proposed
method is dominated by the cost of the PGF part.

IV. EVALUATION

In this section, we evaluate the novel approach in several
scenarios and compare it with multiple state-of-the-art met-
hods. All evaluations were based on the implementations
available in the nonlinear estimation toolbox [22]. We plan
to include the novel filter in the toolbox as well.
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Fig. 2: Estimate with polynomial measurement function.

A. Polynomial Measurement Example

In the following, we consider a single measurement update
step of a scalar system to illustrate the behavior of the
proposed filter. The measurement models are given by

zk = hα(xk) + vk ,

where hα(xk) = xαk for a constant α ∈ {1, 2, 3} and
measurement noise vk ∼ N (µ = 0, σ2

v). The prior distri-
bution fp(xk) is given by xk ∼ N (µ = 2, σ2 = 2). As
an illustrative example, we perform a single measurement
update with the measurement zk = 20α. Note that this
measurement is quite unlikely considering the prior density,
which makes it difficult to process for the PGF. We compare
the true posterior density to the estimate of the PGF, the
proposed filter, and an LRKF, the S2KF. The results are
depicted in Fig. 1. All methods use the default of L = 11
samples and the progressive methods use the threshold R =
1/L ≈ 0.0909 as suggested in [11, Sec. IV-C].

It can be seen that for α = 1, i.e., the linear case, the
LRKF is optimal and matches the true posterior exactly. As
the proposed method is initialized with the LRKF’s estimate,
it also obtains the optimal result. The PGF is clearly inferior
in this case, as it is generally not optimal for linear systems.
For the quadratic measurement model (α = 2), it can be
seen that the PGF outperforms the LRKF significantly, but
is inferior to the proposed filter. A similar result can be seen
in the cubic case (α = 3), but the advantage of the proposed
approach is even more pronounced. The reason why the
proposed approach outperforms the PGF in this case is that
the proposed approach starts out with the LRKF’s estimate,
which is closer to the true posterior than the PGF’s initial
density, i.e., the prior density.

B. Extended Object Tracking Scenario

In the following, we consider a simple extended object
tracking application. The exact same scenario was considered
in [11, Sec. V], where the PGF, PGF42, GPF and a particle
filter were compared. The PGF was shown to be superior to
the other considered approaches. In this paper, we compare

the novel PGF with LRKF priors, the S2KF, and the classical
PGF from [11].

The scenario considers a stick whose length lk and one-
dimensional position pk are to be estimated. Thus, the
state xk = [lk, pk]

T is two-dimensional. Measurements can
be obtained from any point of a stick and are subject to
additive noise. The extent of the stick can be modeled using
multiplicative noise [23], which leads to the measurement
model

zk = lk · vk + pk + rk ,

where rk ∼ N (0, 0.152) is additive Gaussian noise and
vk ∼ U(−1, 1) is uniform noise. In [23], it has been shown
that LRKFs are unable to estimate the length of the stick in
this scenario. Intuitively, this problem arises because both
very large and very small measurements indicate a long
stick, whereas measurements in the middle indicate a short
stick, which causes the measurements and the length entry
of the state vector to be uncorrelated (but obviously not
independent).

The likelihood function is given by

f(zk|xk) =
∫ 1

−1
frk (zk − (lk · vk + pk)) · fvk (vk) dvk ,

where fvk (·) and frk (·) refer to the densities of vk and rk,
respectively. Numerical methods have to be used to evaluate
the integral with respect to vk. The system model used by
the filters is given by a random walk model

xk+1 = xk + wk ,

where the system noise is distributed according to

wk ∼ N
(
0,

[
0.5 0
0 0.1

])
.

The initial estimate is given by

xe0 ∼ N
([

1
1

]
,

[
1 0
0 1

])
.

We assume that we obtain 50 measurements per time step.
The PGF and the proposed approach use L = 10 samples,
and the S2KF uses its default number of 521 samples because

(dimxk + 50 · dim vk) · 10 + 1 = 521
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Fig. 3: Evaluation results from the extended object tracking scenario.

Fig. 4: Number of progression steps required in the extended
object tracking scenario.

where 50 is the number of measurements and 10 is the
number of samples per dimension. The progression threshold
is chosen as R = 1

L = 0.1 for both progressive methods as
suggested in [11, Sec. IV-C].

The true target extent is defined as

ltrue
k =



4, k ≤ 10

8, 10 < k ≤ 20

5, 20 < k ≤ 30

1, 30 < k ≤ 40

1 + (k − 40)/2, 40 < k

and the true position is given by

ptrue
k = −2 sin(2πk · 0.15) .

We performed 100 Monte Carlo runs, each of which lasts
50 time steps. The resulting estimates and the errors in the
estimates are shown in Fig. 3. It can be seen that the proposed
filter and the PGF both perform very well, with a very slight
advantage for the proposed approach. As expected, the S2KF
is unable to estimate the length. Its estimated position is
also significantly less accurate than that of the PGF and the
proposed method.

In Fig. 4, we show the number of progression steps
required for the PGF (average over all Monte Carlo runs
10.57) and the proposed approach (average 7.78). It can
be seen that the proposed method typically needs fewer
progression steps, but one additional S2KF step.

Filter proposed PGF SIRPF GPF UKF S2KF

RMSE 0.630 0.642 0.680 0.751 1.306 1.453

TABLE I: Results of the vehicle tracking scenario over all
time steps.

C. Vehicle Tracking Scenario

In the following, we consider the scenario of tracking a
moving vehicle based on distance-only measurements. The
state xk ∈ R2 corresponds to the 2D position the vehicle.
The system model is given by a planar rotation around the
origin

xk+1 =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
xk + wk ,

where φ = 0.05 rad, i.e., the vehicle is slowly driving around
the origin on a circular trajectory. The system noise wk is
distributed according to N (0, 10−2 · I).

The measurements consist in the Euclidean distance to the
point p = [2, 5]T , i.e., the measurement equation is

zk = ‖p− xk‖2 + vk ,

where vk ∼ N (µ = 0, σ2
v = 0.1) is the measurement noise.

The initial estimate is given by N ([5, 2], 10 · I) and the true
initial state is [5, 2]T .

We compare the proposed approach, the PGF, the UKF,
the S2KF, the GPF, and the SIR particle filter. For every
method, we performed 1000 Monte Carlo runs with 50 time
steps each. The UKF uses L = 5 samples, the S2KF, the PGF,
and the proposed filter use L = 21 samples, and the GPF as
well as the SIRPF use L = 1000 samples. The progression
threshold is chosen as R = 1/L.

The results are shown in Fig. 5. The root mean square error
(RMSE) over all time steps and all runs is given in Table I.
It can be seen that the LRKFs (UKF and S2KF) have a
lot of difficulties with this scenario. The other approaches
work much better and it can be seen that the proposed
filter and the PGF exhibit faster convergence. We also show
the computation time on an Intel Core i7-4770 with 16GB
RAM and MATLAB 2016a. It can be seen that the proposed
approach is somewhat slower than the classical methods, but
much faster than the PGF. This is due to the fact that the
PGF has a worse estimate and, as a result, requires more
progression steps.
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Fig. 5: Evaluation results of the vehicle tracking scenario.

V. CONCLUSION

In this paper, we have presented a novel extension to
the PGF in order to improve its performance in situations
that are nearly (or exactly) linear. The extension is based on
computing a prior for the PGF using an LRKF. This way,
the prior is already close to optimal in a nearly linear setting
and the progression is only used to slightly refine the result.

We have performed multiple evaluations in different sce-
narios. The proposed filter generally performs as good as or
better than both the PGF and the S2KF.

As future work, it might be possible to implement the
proposed approach on the GPU similar to the GPU imple-
mentation of the PGF [14], as the evaluation of the likelihood
can be efficiently parallelized. It may also be possible to
combine the new algorithm with the particle flow approach
from [15]. Furthermore, we are interested in a more general
investigation of the combination of multiple filters in order
to combine their strengths and alleviate their weaknesses.
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