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Abstract— In this paper, we are concerned with sequence-
based receding horizon control over networks. We address the
most general case where acknowledgments are provided but
are also subject to delays and losses. This is in contrast to
the majority of the related work in literature, where they are
either delivered instantaneously and without losses or not issued
at all. As in the case where acknowledgments are not issued,
the separation principle does not hold in the considered setup,
rendering the optimal control law generally nonlinear. Based
on previous results, we present an iterative algorithm for the
computation of the parameters of a linear receding horizon
controller that does not assume separation a priori, taking the
dual effect into account. The resulting controller is optimal in
the sense that it minimizes an upper bound of the underlying
quadratic cost function with respect to the control sequences.
Its performance is demonstrated in a numerical example.

I. INTRODUCTION

Employing general-purpose networks in control loops does
not only simplify installation and maintenance but also
provides enhanced flexibility in comparison to dedicated point-
to-point connections [1], [2]. Consequently, such Networked
Control Systems (NCS) have become increasingly important
in a variety of fields and applications [3]. However, using
IP-based networks, such as WiFi or Ethernet, introduces
additional factors that are known to impact the achievable
control performance [4], [5].

In particular, packet delays and losses are critical since
these can lead to delayed or missing control inputs at the ac-
tuator side. One popular approach to tackle this issue, known
as sequence-based control in literature [6]–[8], is to transmit
a sequence Uk of control inputs which also consists of inputs
for the next, say N , time steps in addition to the current
one uk. Such controllers are typically based on receding
horizon principles [7], [9], build upon nominal controllers
that disregard the network [10], or directly minimize a cost
function with respect to control sequences [11], [12].

It is a well-known insight that the transmission of ac-
knowledgment packets by the actuator upon reception of
control inputs is essential for the existence of tractable control
policies and to avoid a dual effect [13] even when only losses
are considered [4]. However, this property does no longer
hold when the acknowledgments can get lost as well [12],
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Fig. 1: Schematical overview of the considered setup.

[14]. As a consequence, in such situations one must rely on
suitable approximations to obtain tractable control laws. For
instance, optimal linear controllers for scenarios where no
acknowledgments are provided1 have been derived in [11],
[15], and more recently in [16]. The work [11] also considered
packet delays.

Yet, to the best of our knowledge, the most general case,
namely the case where acknowledgments are provided but
also subject to delays and losses, has not gained much
attention in literature. Previously, in [17], we considered
state estimation in such setups and introduced an estimator
based on results for the UDP-like case. Similarly, in this
paper, we will use ideas for sequence-based UDP-like control
presented in [11] in order to introduce a receding horizon
control approach for NCS similar to the one sketched in Fig. 1,
where acknowledgments sent out by the actuator can also be
delayed or lost.

More precisely, the contribution of this work is as follows.
First, we present a novel holistic model that expresses
both the control loop and the network in the described
setup, thereby extending results from [12] for TCP-like
and from [11] for UDP-like networks. Second, based on
this model and assuming a linear controller, we present
an iterative algorithm for the computation of the controller
parameters. The resulting controller, in a receding horizon
manner, minimizes a quadratic cost function at every time
step and does not assume separation a priori, thus taking the
dual effect into account.

Notation: Throughout this paper, vectors will be in-
dicated by underlined letters (x), random vectors will be
underlined and in bold (x), and we will employ boldface
capital letters to indicate matrices, e.g., A. We use In to
denote the n-dimensional identity matrix, 0 to denote zero
matrices of arbitrary dimension, and a subscript k, e.g., xk,
to indicate the time step. Transposition of a vector or matrix

1In NCS literature, such networks are called UDP-like, while networks
that provide instantaneous acknowledgments that do not get lost, are referred
to as TCP-like.



is indicated by xT and AT, and A ≥ 0 (A > 0) means
that the matrix A is positive semidefinite (positive definite).
The Kronecker product of two matrices A and B is denoted
by A ⊗ B, and eD denotes the unit vector (of arbitrary
dimension) with one at position D and zero elsewhere. Finally,
1i=j is the indicator function, i.e., 1i=j = 1 if i = j and 0
otherwise, and the shortcut a0:n is used to indicate a sequence
a0, a1, . . . , an.

II. PROBLEM FORMULATION

Consider the NCS illustrated in Fig. 1, where all compo-
nents are synchronized and time stamps are attached to data
packets upon transmission. The linear, discrete-time dynamics
of the plant is described by

xk+1 = Akxk + Bkuk +wk , (1)
y
k

= Ckxk + vk , (2)

with xk ∈ Rd the plant state, uk ∈ Rl the control input, and
y
k
∈ Rm the measurement. The Gaussian noise processes

wk and vk are white and zero mean with covariance matrices
Wk and Vk, respectively, and mutually independent for any
two time steps k, k′. The initial plant state x0 is Gaussian
with given mean x̂0 and covariance X0, and independent of
wi and vj .

The sensor is collocated with the plant and sends the
measurement to the remote controller. In the communication
channel between the sensor and the controller, the measure-
ments can be delayed or even get lost. As a consequence, none,
one, or multiple measurements can arrive at the controller
at a given time step. We will denote the set of received
measurements at every time step by Yk. In order to treat
delays and losses in a coherent manner throughout this paper,
we interpret losses as infinite delays. This allows us to model
the delay of a data packet sent from the sensor to the controller
at time k by the random variable τSCk ∈ N0. Additionally,
we assume that the τSCk are independent and identically
distributed (i.i.d.) and that the corresponding probability mass
function (PMF) fSC is known.

The control inputs transmitted from the remote controller
to the actuator, which is attached to the plant, are also subject
to delays and losses due to the network. Again, we assume
that both can be modeled by i.i.d. random variables τCAk
with PMF fCA. In order to compensate for these effects, the
controller transmits predicted control inputs for the next N
time steps together with the current one. That is, at each time
step the data packet that is sent to the actuator contains a
sequence of N + 1 control inputs

Uk =
[
uTk|k u

T
k+1|k . . . uTk+N |k

]T
∈ R(N+1)l .

Here the notation uk+i|k is employed to indicate that the
control input is computed at time step k for application
at time k + i. At the plant side, the actuator performs an
active packet dropout strategy [2]: From the set of received
control sequences, only the most recent one, i.e., the sequence
with the largest time stamp, is kept. The control inputs from
this sequence are then fed into the plant one after another

until a newer sequence arrives at the actuator. Each time the
buffered control sequence is replaced, an acknowledgment
(ACK) is issued and sent back to the controller. It is
important to emphasize that not every received data packet
is acknowledged, but only that one corresponding to the
new control sequence in use, so that these ACKs can be
regarded as application layer acknowledgments2. Hence, from
the network’s perspective, they are regular data packets that
can also be delayed or get lost. As above, we use i.i.d
random variables τACk with PMF fAC to describe both effects.
Consequently, the controller can receive multiple ACKs at
every time step. It will be shown in Section III-A that the set
of received ACKs, denoted by Ak in the remainder of this
paper, enables the controller to infer control inputs that where
applied in the past. Clearly, it may happen, due to consecutive
packet losses or large delays, that the buffered sequence is
not replaced early enough, so that no more control inputs are
available. In such cases, the default input udfk = 0 is used.

In this setup, which is visualized in Fig. 1, consider the
usual quadratic cost function

JKk = E
{
xT
k+KQKxk+K

+
∑K−1
n=0 x

T
k+nQnxk+n + uTk+nRnuk+n

∣∣ Ik} , (3)

where K ∈ N is the horizon length, and Qi ≥ 0 and Ri > 0
are the state and input weightings. The information set Ik
available to the controller is given by

Ik =
{
x̂0,X0, U0:k−1,Y0:k,A0:k

}
.

Our goal is, at every time step, to minimize the
cost function (3) with respect to the control sequences
Uk, Uk+1, . . . , Uk+K−1. In a receding horizon manner, the
first element U∗k of the minimizer is then transmitted to the
plant before the optimization is carried out again at the next
time step. Similar to [11], the key to finding a solution to this
problem is to perform an appropriate state augmentation.

III. DERIVATION OF THE CONTROL LAW

In this section, we will first perform a state augmentation
that allows us to derive a stochastic model to jointly
express the original system, given by (1) and (2), and the
underlying network by means of a single Markov jump linear
system (MJLS) [19] with two jumping parameters.3 Based
on this model and a control law assumption, we will then
formulate the cost function (3) in terms of the resulting
closed-loop dynamics. Finally, we conclude this section by
presenting an iterative algorithm for the computation of the
controller parameters, which adapts ideas from [20].

2These ACKs are not to be confused with the dedicated acknowledgment
packets that are issued upon successful transmissions by certain transport
layer protocols in real networks. A common example is TCP, which
retransmits data if such acknowledgments are delayed or missing, thus
enhancing the reliability of the communication. However, since this trades
losses for large delays, TCP is usually not desired in control applications [18].

3The jumping parameter is usually called mode of the system.
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A. Augmented System Dynamics

In the given setup, the controller does not exactly know
which control input is actually applied due to the packet
delays and losses introduced by the network. The resulting
uncertainty must be considered in the computation of future
control sequences. This can be achieved by i) defining a
vector η

k
encompassing all control inputs from past control

sequences that are still applicable at time k or later, and by
ii) introducing a discrete, scalar random variable θk, which
allows for expressing the actual input in terms of this vector.
In the following, we briefly summarize this approach, for
more detailed derivations, refer to [17], [21].

Formally, we define η
k

as

η
k

=



[
uTk|k−1 u

T
k+1|k−1 . . . uTk+N−1|k−1

]T[
uTk|k−2 u

T
k+1|k−2 . . . uTk+N−2|k−2

]T
...[

uTk|k−N+1 u
T
k+1|k−N+1

]T
uk|k−N


∈ R

lN(N+1)
2 ,

with dynamics according to

η
k+1

= Fη
k

+ GUk , (4)

where

F =


0 0 0 0 · · · 0 0
0 I(N−1)l 0 0 · · · 0 0
0 0 0 I(N−2)l · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Il 0

 ,

G =

[
0 INl
0 0

]
.

As illustrated in Fig. 2 for N = 2, F is used in (4) to discard
obsolete entries from η

k
, while G adds the relevant entries

from Uk.
Based on the observation that the control input actually ap-

plied at time k is either the default input (udfk = 0) or must be
part of one of the control sequences Uk−N , Uk−N+1, . . . , Uk,
namely the one currently buffered by the actuator, we
introduce

θk =

{
k − k̃ if U k̃ is currently buffered
N + 1 else

, (5)

with k − N ≤ k̃ ≤ k. Then we can express the actually
applied control input by virtue of

uk = H(θk)η
k

+ J(θk)Uk , (6)

with

H(θk) =
[
1θk=1Il 0 1θk=2Il 0 . . . 1θk=NIl

]
,

J(θk) =
[
1θk=0Il 0

]
.

(7)

Note that it follows from (5) that θk ∈ {0, . . . , N + 1}, and
from (6) and (7) we can conclude that θk = N + 1 means
that the default input udfk = 0 is applied. For all other cases,
the value of θk denotes the age of the currently buffered
control sequence. Regarding θk, we also have the following
result, which has been proved in [21].

Theorem 1 (from [21]) The process {θk} is a Markov
chain with lower Hessenberg transition matrix

T =



p0 q0 0 · · · · · · · · · 0

p0 p1 q1
. . .

...

p0 p1 p2 q2
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

p0 p1
. . .

. . . pN−1 qN−1 0

p0 p1 p2
. . . pN−1 pN qN

p0 p1 p2 · · · pN−1 pN qN


, (8)

where pl = fCA(l), ql = 1 −
∑l
m=0 pm, and the entries

tij = P[θk+1 = j
∣∣ θk = i] are the transition probabilities.

Equipped with η
k

and θk, we are able to formulate the
cost function (3) in terms of Uk. However, the computation
of the sequences requires that the controller maintains a
state estimate because only the noisy measurements Y0:k are
available. Since in the considered setup measurements can
reach the controller with arbitrarily large delays, the following
assumption is necessary to implement a feasible controller
with finite (and fixed-size) memory.

Assumption 1 Measurements with a delay larger than M
time steps are discarded.

Discarding measurements is clearly always suboptimal. How-
ever, remaining optimal would require infinite memory when
unbounded delays are possible [22]. Due to this assumption,
it is clear that, at every time step, it suffices to consider the
measurements y

k−M :k
. If any of these measurements arrives

at the current time step, it is part of Yk and, hence, available
for state estimation. On the other hand, we can identify two
cases where a measurement is not part of Yk. In the first
case, the measurement has arrived at an earlier time step, i.e.,
it was part of Yk̃ for some k̃ < k, and has thus already been
processed. In the second case, the measurement has not yet
arrived.

When we define the random variable γk|k−i ∈ {0, 1, 2} to
encode whether the measurement y

k−i i) has not yet arrived



(γk|k−i = 0), ii) arrives at the controller at the current time k
(γk|k−i = 1), or iii) has already been processed in a previous
time step (γk|k−i = 2), the following lemma holds.

Lemma 1 For every i ∈ {0, . . . ,M}, {γk|k−i} is a Markov
chain with transition matrix

Z(i) =

1− ai ai 0
0 0 1
0 0 1

 ,
with

ai =
fSC(i+ 1)

1−
∑i
j=0f

SC(j)
.

Proof: Since measurements must not be accumulated
over time, we get that z(i)12 = P[γk+1|k−i = 2

∣∣ γk|k−i =

1] = 1, from which the second row of Z(i) follows. Likewise,
it is obvious that z(i)22 = P[γk+1|k−i = 2

∣∣ γk|k−i = 2] = 1
must hold, which yields the last row. For the first row of
Z(i) we have z

(i)
02 = P[γk+1|k−i = 2

∣∣ γk|k−i = 0] = 0,
because a measurement that has not arrived at time k cannot
be processed prior to its arrival, which is at k + 1 at the
earliest. To conclude the proof, it thus remains to compute

ai = z
(i)
01 = P[γk+1|k−i = 1

∣∣ γk|k−i = 0]

=
P[γk+1|k−i = 1,γk|k−i = 0]

P[γk|k−i = 0]

=
P[τSCk−i = i+ 1, τSCk−i > i]

P[τSCk−1 > i]

=
P[τSCk−i = i+ 1]

P[τSCk−i > i]
=

fSC(i+ 1)

1−
∑i
j=0f

SC(j)
.

Note that the structure of Z(i) implies that {γk|k−i} is an
absorbing Markov chain4 with absorbing state γk|k−i = 2.

In the same manner, we can introduce a vector-valued
random variable according to

γ
k

=
[
γk|k γk|k−1 . . . γk|k−M

]T ∈ {0, 1, 2}M+1 ,

to encode the availability of all measurements of interest,
expressed in terms of the stacked vector

ỹ
k

=
[
yT
k
yT
k−1 y

T
k−2 . . . yT

k−M

]T
∈ R(M+1)m .

Following ideas from [23], [24] we interpret γ
k

as a ternary
number with M + 1 digits. In combination with Lemma 1,
the following result is then readily obtained.

Theorem 2 The process {γ
k
} forms a Markov chain with

3M+1 states and transition matrix Z determined by the
transition matrices Z(i) from Lemma 1 and fSC(0).

Proof: Consider the mapping

φ(γ
k
) = 30γk|k + 31γk|k−1 + · · ·+ 3Mγk|k−M . (9)

4To be precise, this requires that ai > 0 and hence fSC(i + 1) > 0,
which we tacitly assume in the remainder, since we consider arbitrarily large
delays.

It translates the ternary number given by γ
k

into a nonnegative
integer and is thus a bijection on the set {0, . . . , 3M+1 − 1}.
This proves first part of the theorem.

For the second part, consider γ
k+1

=
[
j0 j1 . . . jM

]T
and γ

k
=
[
i0 i1 . . . iM

]T
with corresponding integers

φ(γ
k+1

) = j and φ(γ
k
) = i. For the entries of the transition

matrix we then have

zij = P[φ(γ
k+1

) = j
∣∣ φ(γ

k
) = i]

= P
[
γk+1|k+1 = j0,γk+1|k = j1, . . . ,γk+1|k−M+1 = jM∣∣ γk|k = i0,γk|k−1 = i1, . . . ,γk|k−M = iM

]
= P[γk+1|k+1 = j0]

∏M−1
a=0 P[γk+1|k−a = ja+1

∣∣ γk|k−a = ia]

= P[γk+1|k+1 = j0]
∏M−1
a=0 z

(a)
iaja+1

, (10)

because γk+1|k−M is not part of γ
k+1

and the measurement
delays are independent. The proof is concluded by noticing
that

P[γk+1|k+1 = j0] =


1− fSC(0) j0 = 0

fSC(0) j0 = 1

0 j0 = 2

.

From (10) we can conclude that Z contains only relatively
few nonzero elements and, moreover, exhibits a repetitive
block structure. This observation is important, as this enables
a storage-saving processing.

Now we introduce the augmented state ξ
k

ξ
k

=
[
xT
k x

T
k−1 x

T
k−2 . . . xT

k−M
]T ∈ R(M+1)d ,

which brackets the current plant state and all past states that
are affected by ỹ

k
together. Combining (1) and (6) yields

the corresponding dynamics

ξ
k+1

= Ākξk + B̄
(θk)
k η

k
+ B̂

(θk)
k Uk + w̄k , (11)

where

Āk =


Ak 0 · · · 0

Id 0
. . .

...
...

. . . . . .
...

0 · · · Id 0

 , B̄
(θk)
k =


BkH

(θk)

0
...
0

 ,

B̂
(θk)
k =

[(
BkJ

(θk)
)T

0 . . . 0
]T

, w̄k =
[
wT
k 0 . . . 0

]T
.

Then, by means of another state augmentation according to

ψ
k

=
[
ξT
k
ηT
k

]T
and by combining (2), (4), and (11) we

finally arrive at

ψ
k+1

= Ã
(θk)
k ψ

k
+ B̃

(θk)
k Uk + w̃k ,

ỹ
k

= S(γ
k
)C̃kψk + S(γ

k
)ṽk ,

(12)

with

Ã
(θk)
k =

[
Āk B̄

(θk)
k

0 F

]
, B̃

(θk)
k =

[
B̂

(θk)
k

G

]
, w̃k =

[
w̄k

0

]
,



and

S(γ
k
) =


1γk|k=1 0 · · · 0

0 1γk|k−1=1
. . .

...
...

. . . . . . 0
0 · · · 0 1γk|k−M=1

⊗ Im ,

C̃k =


Ck 0 · · · · · · 0

0 Ck−1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 Ck−M 0

 , ṽk =


vk
vk−1

...
vk−M

 .
The covariance matrices of the augmented noise terms w̃k

and ṽk are given by

W̃k =

[
Wk 0
0 0

]
, Ṽk =


Vk 0 · · · 0

0 Vk−1
. . .

...
...

. . . . . . 0
0 · · · 0 Vk−M

 .
The initial state ψ

0
is Gaussian with mean and covariance

ψ̂
0

=
[
x̂T0 . . . x̂T0 0T

]T
, Σ0 =

[
1M+1 ⊗X0 0

0 0

]
,

where 1M+1 denotes the (M + 1)-dimensional matrix of
ones.

Eq. (12) provides the desired holistic model that describes
both the original dynamical system and the underlying
network. Since the two parameters θk and γ

k
form in-

dependent Markov chains, (12) constitutes an MJLS with
two independent modes. The mode γ

k
affects only the

measurement equation and can be computed from the received
measurements Yk. Hence, the true value of this mode is
available to the controller at every time step.

In contrast, θk only impacts the system dynamics and is
not completely known to the controller. Instead, only a subset
of the mode history is available. Recall from Section II that an
ACK is sent back by the actuator once the buffered sequence
is replaced by a newer one. Thus, at every time step, the
controller can infer mode realizations only from Ak, which,
however, generally, will contain only ACKs from previous
time steps due to the communication delays.

To illustrate this, suppose that Ak contains an ACK that
was issued by the actuator at time k − 2 to acknowledge the
sequence Uk−4, that is, the sequence that was sent by the
controller at time step k − 4. Then, from (5) it follows that
θk−2 = 2. Hence, the mode distribution at time k can be
computed by means of

µ
k

=
(
T2
)T
e3 , (13)

with T given by (8). Further, note that the mode realization
θk = N + 1 will never be available to the controller since in
such a case no applicable sequence would have been received
by the actuator at time k, and thus no ACK would have been
issued.

Hence, the considered problem boils down to finding a
control law for an MJLS with one observed mode and one
mode that is only partially and belatedly available. To the best
of our knowledge, this particular problem has not yet been
considered in literature, although there exist plenty of results
concerning the control of MJLS where the mode is completely
observed, e.g., [25], [26], is completely unobserved, e.g., [20],
[27]–[29], or where the mode is available only in parts [30],
[31] or with a constant delay [12], [23], [24].

B. Controller Design

For simplicity, in order to obtain a tractable solution, and
in line with previous works on receding horizon control of
MJLS [28], [30], we seek to find a linear control law

ψ̂
k+1

= Mkψ̂k + Kkỹk , (14)

Uk = Lkψ̂k , (15)

for system (12), where the mode-independent gains Mk, Kk,
and Lk are to be determined such that (3) is minimized, and
ψ̂
k

is the controller’s state estimate with initial condition ψ̂
0
.

Then, combining (12), (14), and (15) yields the closed-loop
dynamics

x̃k+1 = Γ
(θk)
k x̃k + Ωkνk , (16)

with

x̃k =
[
ψT

k
ψ̂

T

k

]T
, νk =

[
w̃T
k ṽ

T
k

]T
,

Γ
(θk)
k =

[
Ã

(θk)
k B̃

(θk)
k Lk

KkS̃kC̃k Mk

]
, Ωk =

[
I 0

0 KkS̃k

]
,

and where S̃k = E
{

S(γ
k
)
}

. Using the expectation S̃k in (16)
eliminates the dependency of the closed-loop dynamics on
the observed mode γ

k
. This ensures that the optimization

problem remains tractable. Considering all possible paths of
the evolution of γ

k
is impractical because its state space

grows exponentially with M . Given γ
k

with φ(γ
k
) = j

according to (9), S̃k+t can easily be computed for the whole
optimization horizon by means of

S̃k+t =
∑3M+1−1
i=0 λ

(i)
k+tS

(φ−1(i)) , (17)

where the mode probabilities can be predicted according to

λk+t =
(
Zk+t

)T
ej+1 , t = 0, 1, . . . ,K − 1 , (18)

and where φ−1 is the inverse of (9).
As in [20], we construct the second moment of x̃k,

conditioned on a particular mode θk = i,

X̃
(i)
k = E

{
x̃kx̃

T
k 1θk=i

}
,

with dynamics given by

X̃
(j)
k+1 =

∑N+1
i=0 tij

[
Γ
(i)
k X̃

(i)
k

(
Γ
(i)
k

)T
+ µ

(i)
k ΩkNkΩ

T
k

]
,

where Nk = Cov{νk} and µ
(i)
k = P[θk = i] the mode

probability. By introducing the cost-to-go Vtk for t =
K, . . . , 1, 0, for which JKk = V0

k holds, we reformulate the



cost function (3) in terms of the second moment according
to

Vtk =
∑K
n=t

∑N+1
i=0 tr

[
Q̃

(i)
k+nX̃

(i)
k+n

]
, (19)

with

Q̃
(i)
k+K =

[
Q̄

(i)
K 0
0 0

]
, Q̄

(i)
K =

QK 0 0
0 0 0
0 0 0

 ,
Q̃

(i)
k+n =

[
Q̄

(i)
n 0

0 J̄
(i)
k+n

]
, Q̄(i)

n =

Qn 0 0
0 0 0

0 0 H̄
(i)
n

 ,
and

J̄
(i)
k+n =

(
J(i)Lk+n

)T
RnJ(i)Lk+n ,

H̄(i)
n =

(
H(i)

)T
RnH(i) .

However, finding the optimal controller gains using the cost-
to-go is not straightforward, since minimizing (19) subject to
the second moment dynamics directly does not necessarily
converge to a solution. This was also pointed out in [20],
where the authors obtained a similar expression for the cost-
to-go in a finite-horizon control problem.

In [20], this issue was circumvented by introducing a
convex upper bound V̄tk for the cost-to-go. Based on a
variational approach, this upper bound was then minimized
with respect to the controller gains by an iterative algorithm.
The algorithm is straightforward to implement since neither
descent directions nor step sizes must be determined during
the iterations. Hence, adapting the algorithm from [20] to
our considered scenario is very appealing.

To that end, first introduce X
(i)

0 = X
(i)
0 =

0 for i = 0, . . . , N , and also X
(N+1)

0 = Σ0 and
X

(N+1)
0 = Σ0 + ψ̂

0
ψ̂
T

0
. Then, we can combine Lemma 1 and

Lemma 2 from [20] in order to obtain the following upper
bound for (19).

Theorem 3 For t = K, . . . , 1, 0, an upper bound V̄tk ≥ Vtk
for the cost-to-go is given by

V̄tk =
∑N+1
i=0 tr

[
P

(i)

k+t

(
X

(i)

k+t + X
(i)
k+t

)
+ P

(i)
k+tX

(i)

k+t

]
+ µ

(i)
k+tω

(i)
k+t ,

(20)
with X

(i)

k+t and X
(i)
k+t given by the recursions

X
(j)

k+t+1 =
∑N+1
i=0 tij

[
µ
(i)
k+t

(
Ẽk+t + W̃k+t

)
+
(
Ã

(i)
k+t −Kk+tS̃k+tC̃k+t

)
X

(i)

k+t

·
(
Ã

(i)
k+t −Kk+tS̃k+tC̃k+t

)T
+ D̃

(i)
k+tX

(i)
k+t

(
D̃

(i)
k+t

)T]
,

(21)

X
(j)
k+t+1 =

∑N+1
i=0 tij

[
µ
(i)
k+tẼk+t

+
(
Kk+tS̃k+tC̃k+t

)
X

(i)

k+t

(
Kk+tS̃k+tC̃k+t

)T
+
(
Mk+t + Kk+tS̃k+tC̃k+t

)
X

(i)
k+t

·
(
Mk+t + Kk+tS̃k+tC̃k+t

)T]
,

(22)

where

Ẽk+t = Kk+tS̃k+tṼk+t

(
Kk+tS̃k+t

)T
,

D̃
(i)
k+t = Ã

(i)
k+t −Kk+tS̃k+tC̃k+t −Mk+t + B̃

(i)
k+tLk+t ,

and P
(i)

k+t, P
(i)
k+t, and ω(i)

k+t given by the backward recursions

P
(i)

k+t = Q̄
(i)
t + J̄

(i)
k+t +

(
D̃

(i)
k+t

)T
E(i)(Pk+t+1)D̃

(i)
k+t

+
(
Ũ

(i)
k+t

)T
E(i)(Pk+t+1)Ũ

(i)
k+t ,

(23)

P
(i)
k+t = J̄

(i)
k+t +

(
B̃

(i)
k+tLk+t

)T
E(i)(Pk+t+1)B̃

(i)
k+tLk+t

+
(
Õ

(i)
k+t

)T
E(i)(Pk+t+1)Õ

(i)
k+t ,

(24)

ω
(i)
k+t = tr

[
E(i)(Pk+t+1 + Pk+t+1)W̃k+t

]
+ tr

[
E(i)(Pk+t+1)Ẽk+t

]
+ E(i)(ωk+t+1) ,

(25)

that are initialized with P
(i)

k+K = Q̄
(i)
K , P

(i)
k+K = 0, and

ω
(i)
k+K = 0, and where

Ũ
(i)
k+t = Ã

(i)
k+t + B̃

(i)
k+tLk+t ,

Õ
(i)
k+t = Mk+t − B̃

(i)
k+tLk+t ,

E(i)(Λ) =
∑N+1
j=0 tijΛ

(j) .

The resulting iterative algorithm for the computation of the
control sequence Uk is summarized in Algorithm 1. A method
to evaluate the necessary condition corresponding to (20) to
obtain the controller gains in Step 6, based on vectorization
and minimum norm, is detailed in [20]. There it is also
shown that the cost sequence created by the algorithm is
monotonically decreasing, i.e., V̄0,[c+1]

k ≤ V̄0,[c]
k , and indeed

converges to min V̄0
k , the minimum of the bound.

An implementation of the algorithm is available on github
as part of CoCPN-Sim [32].

IV. NUMERICAL EXAMPLE

In this section, we provide a numerical example to
demonstrate the proposed algorithm. To that end, consider a
double integrator plant given by (1) and (2) with parameters

Ak =

[
1 1
0 1

]
, Bk =

[
0
1

]
, Wk =

[
0.42 0

0 0.42

]
,

Ck =
[
1 0
]
, Vk = 0.82 ,

and initial state

x̂0 =
[
10 0

]T
, X0 = 0.52I2 ,

that is to be controlled by the proposed controller using the
cost function (3) with cost matrices Qk = I2 and Rk =



Algorithm 1 One Cycle of the Proposed Control Algorithm

Input: Received measurements Yk, received ACKs Ak
Output: Control Sequence Uk
• Step 1: Construct ỹ

k
from Yk, determine the correspond-

ing mode γ
k
, and compute S̃k, . . . , S̃k+K−1 using (17)

and (18).
• Step 2: Get the most recent mode observation θk̃ = L from
Ak and predict the mode distributions µ

k
, . . . , µ

k+K−1
using eL+1 in (13).

• Step 3: Initialize the iteration counter c = 0, set V̄0,[c]
k =

∞ and choose initial controller gains M
[c]
k+t,K

[c]
k+t,L

[c]
k+t

for t = 0, . . . ,K − 1.
• Step 4: Set X

(i,[c])

k = X
(i)

k , X
(i,[c])
k = X

(i)
k . Then compute

X
(i,[c])

k+t and X
(i,[c])
k+t for t = 1, . . . ,K using M

[c]
k+t, K

[c]
k+t,

and L
[c]
k+t in (21) and (22).

• Step 5: Initialize P
(i,[c+1])

k+K = Q̄K , P
(i,[c+1])
k+K = 0, and

ω
(i,[c+1])
k+K = 0, and set t = K − 1.

• Step 6: Evaluate the necessary optimality condition of (20)
to obtain the minimizing gains M

[c+1]
k+t ,K

[c+1]
k+t ,L

[c+1]
k+t .

• Step 7: Compute P
(i,[c+1])

k+t , P
(i,[c+1])
k+t , and ω(i,[c+1])

k+t using
the gains from Step 6 in (23), (24), and (25).

• Step 8: If t = 0, go to Step 9. Otherwise, set t = t − 1
and go back to Step 6.

• Step 9: Compute V̄0,[c+1]
k using (20). If V̄0,[c]

k − V̄0,[c+1]
k

is small enough, compute Uk by using L
[c+1]
k in (15) and

update the state estimate using M
[c+1]
k , K

[c+1]
k , and ỹ

k

in (14). Also, calculate X
(i)

k+1 and X
(i)
k+1 using M

[c+1]
k ,

K
[c+1]
k , and L

[c+1]
k in (21) and (22). Then terminate the

algorithm. Otherwise set c = c+ 1 and return to Step 4.

1 in three different scenarios. In all scenarios, the delay
distributions fCA and fSC are equal and given by the PMF
depicted in Fig. 3. It is chosen such that the vast majority of
packets is delayed at most two time steps and delays of zero
time steps are also extremely unlikely. In the first scenario
(referred to as Setup I in the following), we assume a TCP-
like setup, that is, the ACKs from the actuator are received
instantaneously and without losses. In the second scenario
(Setup II), we consider the opposite extreme case, namely a
UDP-like setup, where ACKs are not provided at all. Finally,
in the third scenario (Setup III) the setup considered in this
paper is employed, with delay distribution fAC equal to fCA

and fSC .

To evaluate the performance of the proposed algorithm, we
compare it with the sequence-based, finite-horizon controller
from [12] that was derived for the TCP-like setting. For
the computation of the required state estimate, we use the
(suboptimal) estimator from [17].

Every scenario is investigated in a Monte Carlo simulation
with 500 runs, each of which comprising 200 time steps, and
the optimization horizon used by the proposed controller is
K = 10. Additionally, both controllers use M = 2 and the
control sequence length is set to N + 1 = 3. To compare the

0 1 2 3 4 5 ≥ 6

0.05
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Fig. 3: PMF of the packet delays utilized in the example. The shortcut ≥ 6
is used to denote the probability that a packet is delayed more than 5 time
steps or gets lost (infinite delay).

TABLE I: Median of the average costs Javg .

Setup I Setup II Setup III

Controller from [12] 107.148 68.362 66.800
Proposed controller 94.921 95.998 95.938

performance of the controllers, we compute the average true
costs Javg in every run according to

Javg =
1

200

[∑199
k=0x

T
kQkxk + uTkRkuk + xT200Q200x200

]
.

The resulting medians of Javg for each controller and scenario
are given in Table I.

The numbers indicate that the quality of control of
the proposed controller is not influenced by the absence
or availability of ACKs, as it performs similarly in all
scenarios. An interesting result is that the proposed approach
outperforms the controller from [12] in the TCP-like setting
(Setup I) although the latter was developed for such setups.
One reason for this might be the relatively large simulation
time (200 time steps). While the proposed approach operates
in a receding horizon fashion where the gains are recomputed
every time step, the controller from [12] computes the gains
in a finite-horizon fashion, i.e., only once and for the whole
simulation time. Additionally, the used estimator may not be
optimal in this setup.

However, it might be due to this estimator that the controller
from [12] performs better than the proposed one in the
scenarios without immediate ACKs (Setup II and Setup
III) because it has been tailored to such setups [17]. This
somewhat unexpected result could also be caused by the
conservatism of the proposed controller resulting from upper-
bounding the cost function.

V. CONCLUSIONS

In this paper, we addressed sequence-based receding hori-
zon control over networks where acknowledgments, issued
by the actuator upon reception of viable controller packets,
may also be delayed or get lost. In this setting, which covers
the ones usually considered in literature as special cases,
namely TCP-like and UDP-like networks, we developed a
novel holistic model to express both control loop and network
at the same time. Based on this model, and by restricting
ourselves to linear control laws to obtain a tractable solution,
we then presented an iterative algorithm for the computation
of the controller gains. The numerical example indicated
that the proposed approach can also be used in TCP-like



or UDP-like setups without loss of performance, which,
however, has to be investigated more thoroughly in future
work. Likewise, future work should assess the benefit of taking
delayed acknowledgments into account in greater detail.

The proposed approach by itself also admits some room
for improvement. First, the size of the augmented state ψ

k
is determined by the chosen sequence length N + 1 and the
maximum measurement delay M , and, for instance, grows
quadratically with N . The controller parameters scale up
accordingly, which could make their computation by means
of the proposed algorithm too computationally demanding.
Consequently, this issue should be addressed in prospective
research, for example by deriving a reduced-order, linear
controller for system (12). Second, future work should be
concerned with alternative ways for processing delayed and
missing measurements because the Markov chain approach
presented in this paper does not scale well. In this regard, it
is worthwhile to investigate whether the “natural connection”
between interacting multiple model (IMM) state estimation
and control of MJLS, which has already been highlighted
in [33], can be exploited in the given setup using the IMM-
based estimator we presented in [17].
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