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Abstract— Different objectives and paradigms exist for
tracking multiple targets when measurements do not contain
information about the target identities (IDs). The Symmetric
Measurement Equation (SME) filter can be used when one
is agnostic to the labels and does not attempt to assign
different IDs to the different targets. We present an extension
of the Kernel-SME filter that, unlike the original variant,
uses adaptive kernel widths that depend on the respective
uncertainty. In our evaluation, it outperformed existing SME-
based approaches, while it is only second to a more complex
global nearest neighbor tracker.

I. Introduction
Multi-target Tracking (MTT) [1] is a widespread

problem in a variety of application domains that is
nontrivial. One of the major challenges in MTT is the
unknown measurement-to-target associations, which is
also referred to as the data association problem. Several
of the existing MTT methods solve the data association
problem based on an explicit enumeration of association
hypotheses.

If multiple association hypotheses are considered, as
in Multi-Hypothesis Tracking (MHT) [2], the number
of possible combinations in explicit enumeration grows
exponentially with the horizon over which the elements
are maintained. Consequently, the computational com-
plexity increases for a larger number of targets, and hence,
the practical application of these methods requires fast
approximations.

In this paper, we consider association-free MTT
methods based on a permutation-invariant measurement
equation. The focus of this paper lies on methods
that are based on Symmetric Measurement Equations
(SME) [3], [4]. SME-based methods use symmetric trans-
formations to modify the measurement equation, leading
to permutation-invariant pseudo-measurements. Due to
the permutation invariance, no association hypothesis is
required.

One of the simplest approaches for the data association
problem is based on local nearest neighbor (LNN)
associations [5], which assign each target the closest
measurement with respect to a distance metric. The
global nearest neighbor (GNN) association [5] seeks
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to find the association hypothesis that minimizes the
sum of distances between measurements and targets,
which is equivalent to the maximum a posteriori (MAP)
hypothesis. The MHT [2] approaches the problem by
maintaining the track history in a tree-like structure,
which allows the correction of a wrong assignment at
a later time step. Hence, the MHT can be seen as
an extension of the GNN that estimates the MAP
association hypothesis over multiple time steps. However,
maintaining and managing the hypotheses over time is
highly computationally expensive, which is why state-of-
the-art methods commonly use techniques to reduce the
complexity. The algorithms mentioned so far are based on
hard association decisions, i.e., exactly one measurement
is allocated to each target (though the decision is delayed
in the MHT).

Contrary to these methods, the Joint Integrated Prob-
abilistic Data Association Filter (JPDA) [6], [7] considers
a probabilistic approach for the data association problem
where the target state estimate is based on multiple
measurements weighted by their marginal association
probabilities. The estimate provided by the JPDAF is the
minimum mean squared error (MMSE) estimate for the
respective time step (it is generally not optimal when used
consecutively over multiple time steps). Furthermore, as
the computational complexity to determine the marginal
association probabilities increases exponentially with the
number of targets, fast approximations are typically used
in practical applications [8].

Contrary to the previously mentioned methods, there
are association-free approaches that avoid the data associ-
ation problem and the involved combinatorial complexity.
The Probability Hypothesis Density (PHD) filter [9]
maintains the first-order moment of the random finite
set and thus avoids explicit enumeration. However, by
maintaining the first-order moment only, other important
information about the targets is lost. Another approach is
based on an SME [3], [4], which modifies the measurement
equation by applying a symmetric transformation. The
modified measurement equation is permutation-invariant
with respect to the order of the measurements, and thus
no association hypothesis is required for the measurement
update of the multi-target state estimate.

Association-free Direct Filtering (DF) [10], [11] repre-
sents the measurement as an unordered set without any
association. The measurement update is performed based
on the gradients of a point set distance measure.

The Kernel-SME [12], [13] filter generalizes the SME



approach by using kernel transformations to represent
the measurements as Gaussian mixtures. For the measure-
ment update, the Gaussian mixture has to be discretized
at specific locations. Furthermore, the Gaussian kernels
used in the kernel transformation depend on the kernel
width that needs to be selected appropriately and thus
impose a parameter selection problem.

In this paper, we focus on the comparison of different
SME-based MTT algorithms. Therefore, we introduce
a general methodology for association-free MTT. We
specifically consider simulations with difficult scenarios,
such as closely spaced and crossing target trajectories.
Furthermore, we introduce an adaptive parameter selec-
tion method for the Kernel-SME filter that integrates
the uncertainty of the target state estimate in each time
step. We provide a comprehensive comparison of the
considered association-free MTT algorithms with other
existing methods.

The remainder of this paper is structured as follows:
In the next section, we give a description of the MTT
problem and the underlying association uncertainty.
In Sec. III, we introduce the general methodology of
association-free direct filtering based on SMEs and
describe the algorithms based on this concept. Sec. IV
introduces a simulation that we use to compare the results
of the algorithms with other methods. Finally, we give a
conclusion about the considered methods in Sec. V.

II. Problem Formulation

We consider tracking N moving targets with locations
xi
k ∈ Rn according to some distribution (bold font letters

are used for random variables) with indices i = 1, . . . , N .
The multi-target state can be described as a random
vector xk :=

[
(x1

k)
>, . . . , (xN

k )>
]> or (if the targets are

not to be distinguished over time) an unordered set
X := {x1

k, . . . ,x
N
k }.

The evolution of each state is described by the linear
system model

xi
k+1 = Ai

kx
i
k +wi

k ,

where wi
k is zero-mean white noise with covariance Σw

k .
Each target has exactly one associated measurement
yi
k
∈ Rn such that in each time step k, there are N

measurements, which are described using an unordered
set Yk := {y1

k
, . . . ,yN

k
}. Each measurement has an

associated measurement equation

yπk(i)
k

= Hi
kx

i
k + vi

k ,

where vi
k describes a zero-mean additive noise with

covariance Σv
k and πk is the permutation that speci-

fies the measurement-to-track associations. Given the
permutation πk, the measurements can be represented
as a stacked multi-target measurement vector

Pπk
(y

k
) =

[(
yπk(1)
k

)>
, . . . ,

(
yπk(N)
k

)>]>
,

where y
k
=
[
(y1

k
)>, . . . , (yN

k
)>
]>

, such that the multi-
target measurement equation can be described by

Pπk
(y

k
) =

H
1
k

. . .
HN

k


x

1
k
...

xN
k

+

v
1
k
...

vN
k

 .

However, the representation of the measurements as a
stacked vector implies a specific order, which is described
by the permutation πk. To apply the measurement
update, most methods rely on solving the data association
problem to obtain the measurement-to-track associations.
Based on the association hypothesis, standard filtering
methods can be applied to determine the posterior state
estimate.

Solving the data association problem explicitly allows
generating entire trajectories for the individual targets.
However, in some applications one tracks objects without
consideration of their identity. In this case, avoiding data
association may lead to more robust or significantly faster
results. Such approaches are referred to as association-free
trackers. One such approach is the Kernel-SME filter [12],
which is the approach we improve in this paper.

III. Association-Free Multi-target Tracking

In the following, we will give a more detailed description
of Bayesian filtering using pseudo-measurements. We
begin with a general introduction to the underlying
concepts. Furthermore, we introduce three methods based
on the SME approach.

A. Association-Free Measurement Equation
The key idea of an association-free measurement

equation is to modify the original measurement equation
in such a way that it becomes invariant with respect to
the permutation πk. Therefore, we consider a function S
that can be applied to the measurement equation

s = S (Y ,x) ,

resulting in permutation-invariant pseudo-measurements
s. Based on these pseudo-measurements, consider a
Gaussian approximation of the posterior density, i.e.,

p(x | s) = N
(
x ; µx

k|k,Σ
x
k|k

)
,

where µx
k|k is the posterior state estimate and Σx

k|k is
the posterior covariance matrix. The target state can
be estimated using the Linear Minimum Mean Squared
Error estimator [5]

µx
k|k = µx

k|k−1
+Σxs

k (Σss
k )

−1
Σsx

k

(
sk − µs

k

)
,

Σx
k|k = Σx

k|k−1 +Σxs
k (Σss

k )
−1

Σsx
k ,

(1)

where µs
k

is the pseudo-measurement mean, Σss
k the

covariance matrix, and Σsx
k the cross-covariance matrix

of the pseudo-measurement and prior state estimate.



B. Symmetric Measurement Equation
SMEs were first introduced by Kamen [3], [4]. They are

based on the idea of modifying the measurement equation
by applying a symmetric transformation S : RN ·n → RNa .
This results in

sk := S(y
k
) = S(Pπk

(y
k
)) , ∀πk ∈ ΠN ,

with ΠN being the set of all possible permutations
from 1 to N . Hence, the data association problem
can be bypassed by replacing the original measurement
vector y

k
with the pseudo-measurement vector sk in the

measurement update.
To give some examples of symmetric transformations

used for the MTT, we consider the sum of power function
[14], [15]

spow
k = Spow([y1k, y

2
k]) =

[
y1k + y2k

(y1k)
2 + (y2k)

2

]
,

and the sum of products function

sprod
k = Sprod([y1k, y

2
k, y

3
k]) =

 y1k + y2k + y3k
y1k · y2k + y1k · y3k + y2k · y3k

y1k · y2k · y3k

 .

By just looking at both functions, it is evident that the
value of the pseudo-measurements is not affected by the
order of the measurements. However, the avoidance of the
data association problem comes with other difficulties.
First, selecting a transformation S such that the infor-
mation contained in the measurements is encapsulated in
the pseudo-measurements can be challenging. Second, the
transformed symmetric measurement equation is highly
nonlinear, and thus requires nonlinear filtering techniques,
such as the extended Kalman filter [16] or unscented
Kalman filter (UKF) [17], for the measurement update.

C. Association-Free Direct Filtering
The key idea of association-free direct filtering [10],

[11] is to employ a point set distance measure D(·, ·)
that quantifies the distance between two sets of particles.
Considering two sets Y and X , the distance between
both sets can be determined by

d = D(Y ,X ) = D
(
{y1, . . . ,yNy}, {x1, . . . ,xNx}

)
.

We now demonstrate how to derive pseudo-measurements
using a point set distance measure D. Therefore, we
assume D to be differentiable with respect to xi

k. Under
this assumption, pseudo-measurements can be obtained
by considering the gradients

sk =
∂D(Y ,X )

∂xk

= G(Y ,xk) .

This method provides a flexible way to derive pseudo-
measurements, which only requires the point set distance
to be differentiable. In this paper, we consider the
Localized Cumulative Distribution [18], [19], which is
the basis for the generalized Cramér–von Mises distance.
For the measurement update, the random variable xp

k is

assumed to be Gaussian distributed with mean µx
k|k−1

and covariance Σx
k|k−1. Under this assumption, we can

generate P samples (xp
k)

(i) of xp
k and similarly P random

finite sets {Y(1), . . . ,Y(P )} for the measurement set
Y. Since the pseudo-measurements are permutation-
invariant, the P measurement sets can be represented
as stacked vectors y

(i)
k . Thus, we can define the stacked

random variable

zk =

[
xp
k

y
k

]
∈ R2·N ·n ,

which is Gaussian distributed with mean

ẑk :=

[
µx
k|k−1

ŷ
k

]
,

and covariance matrix

Σz
k :=

[
Σx

k|k−1 0

0 Σy
k

]
.

Considering P standard Gaussian distributed samples
g(i) ∈ R2·N ·n, we define

G :=
[
g(1), . . . , g(P )

]
∈ R(2·N ·n)×P .

To obtain samples that represent a standard Gaussian
distribution most effectively, we consider deterministic
samples based on the Smart Sampling Kalman Filter
[20], [21]. These samples are generated based on a low-
discrepancy Dirac Mixture approximation of the standard
Gaussian density with an arbitrarily-chosen number of
samples. To obtain samples with mean ẑk and covariance
Σz

k, we use the Cholesky decomposition for the covariance
Σz

k = Cz(Cz)> to transform the standard Gaussian
samples according to

Z = Cz ·G+ ẑk · (1p)>,

where 1p ∈ Rp is a vector containing all ones. The columns
of the matrix Z = [z

(1)
k , . . . , z

(P )
k ] represent the generated

samples of zk with mean ẑk and covariance Σz
k. Each

sample z
(i)
k is used to obtain the pseudo-measurements

s
(i)
k = G(Y(i), (xp

k)
(i)),

which can be stacked into a sample of the pseudo-
measurement

S =
[
s
(1)
k , . . . , s

(P )
k

]
.

We assume that each tuple of generated samples (xp
k)

(i)

and pseudo-measurements s
(i)
k is jointly Gaussian dis-

tributed, i.e.,[
(xp

k)
(i)

s
(i)
k

]
∼ N

([
x
s

]
;

[
µx
k|k−1

µs
k

]
,

[
Σx

k|k−1 Σxs
k

Σsx
k Σs

k

])
.

The required moments for the measurement update can
be obtained using the sample moments ŝk = Mean(S)
and

Σ̂k =

[
Σ̂x

k|k−1 Σ̂xs
k

Σ̂sx
k Σ̂s

k

]
= Cov

([
Xp

S

])
,



where Xp = [(xp
k)

(1), . . . , (xp
k)

(P )]. Given these moments,
the measurement update can be performed by

µx
k|k = µx

k|k−1
+ Σ̂xs

k

(
Σ̂s

k

)−1

(sk − ŝk) with sk = 0 ,

Σx
k|k = Σx

k|k−1 − Σ̂xs
k

(
Σ̂s

k

)−1

Σ̂sx
k .

The measurement update is similar to the one we
considered in (1), where the analytic moments are
replaced with the sample moments and the pseudo-
measurement is set to zero.

Furthermore, this approach can be extended by
augmenting the pseudo-measurements. We can include
symmetric transformations, such as the sum of powers
and the sum of products we introduced for the standard
SME approach. Similar to the gradients of the point
set distance, we can include the pseudo-measurements
(spow

k )(i) and (sprod
k )(i), which can be combined with s

(i)
k ,

resulting in

(scomb
k )(i) =

 (sk)
(i)

(spow
k )(i)

(sprod
k )(i)

 .

D. Kernel-SME Filter
The Kernel-SME filter [12], [13] extends the idea of

the SME approach by considering kernel transformations

SK(Yk, x) = Fy
k
(x) :=

∑
y∈Yk

K(x,y) ,

where K is a positive definite kernel. The kernel is
per definition symmetric and due to the summation,
the kernel transformation is permutation invariant. A
variety of kernel transformation functions can be selected.
However, one of the most commonly used kernel functions
is the Gaussian kernel

K(x,y) =
1√
2πΓ

exp

(
−1

2

‖x− y‖22
Γ2

)
,

with kernel width Γ ∈ R+. The Gaussian kernel has
the advantage of being injective [22], and thus, it is
ensured that all information of the measurements is
encapsulated in the Gaussian mixture. However, applying
the kernel transformation to the measurements results in
a Gaussian mixture Fy

k
, which cannot be used for the

measurement update directly and is instead represented
by using N(2n+ 1) discrete test points a1k, . . . , a

Na

k with

al+i−1
k := yl

k
+
(√

nΓ
)
, a

l+2(i−1)
k := yl

k
−
(√

nΓ
)

,

for l = 1, . . . , n and i = 1, . . . , N . The pseudo-
measurements sk = [s1k, . . . , s

Na

k ] are obtained by

sik =

N∑
l=1

K(aik,y
l
k
) .

For the measurement update, we require the moments
of the pseudo-measurements, which can be determined

analytically [23]. The mean of the pseudo-measurements
can be determined by

µs
k,i

=
N∑

n=1

PΓ
l (ank ) ,

where PΓ
l (ank ) = N

(
ank ; ŷ

l

k
,Hl

kΣ
p
k(H

l
k)

> +Σv
k + Γ

)
,

with Γ = Γ · I. The covariance is given by

Σ
sisj
k =

 N∑
l=1

N∑
m=1
m6=l

N
([

aik
ajk

]
;

[
ŷl
k

ŷm
k

]
,Σlm

k

)
+N

(
aik; a

j
k, 2Γ

)( N∑
l=1

P
1
2Γ

l

(
aik + ajk

2

))
−µs

k,i
·µs

k,j
,

and the cross-covariance

Σlm =

[
Hl

k 0
0 Hm

k

][
Σxl

k|k−1 Σxlm

k|k−1

Σxml

k|k−1 Σxm

k|k−1

] [
Hl

k 0
0 Hm

k

]>
+

[
Σvl

k 0
0 Σvm

k

]
+

[
Γ 0
0 Γ

]
.

Using the analytic moment calculation, the measurement
update can be performed using the Kalman filter equa-
tions, as stated in (1).

E. Kernel-SME Filter with Adaptive Kernel Width
In the Kernel-SME filter, the measurements are rep-

resented as a Gaussian mixture with kernel width Γ at
specific locations aik, where an appropriate selection of the
kernel width is crucial for the accuracy of the Kernel-SME
filter.

Intuitively, the kernel width should be selected such
that the measurement predictions are covered by the
Gaussian kernels. Therefore, it has been proposed to
select the kernel width similar to the measurement noise,
i.e., Γ = σ2

v .
However, this policy does not consider all sources of

uncertainty. Since the actual measurement only depends
on the unknown true target state, deviations of the state
estimates are not taken into account. A larger kernel
width is desirable in situations with high uncertainty
since the deviation of the true state and its estimate
might be higher. On the contrary, an excessively large
kernel width can lead to poor tracking performance due
to oversmoothing [24]. Hence, a selection of a static kernel
width might be not appropriate for scenarios with varying
uncertainties.

For our approach, we consider a dynamic kernel width
that integrates the uncertainty of the prior state estimate
in each time step. In this paper, we consider the kernel
width

Γl
k =

√
ρ(Σxl

k|k−1) + σ2
v ,

where ρ(Σxl

k|k−1) is the spectral radius of the prior state
covariance of xl

k. By including the spectral radius, the
adaptive kernel width integrates the uncertainty that is



described by the covariance of the prior state estimate.
Consequently, the kernel width becomes larger in time
steps of higher uncertainty to ensure the measurement
predictions are covered by the Gaussian kernel.

IV. Application Example
We consider N = 3 moving targets traveling along

specific trajectories in the Euclidean plane. For this, we
predefined the motion of the targets in each time step.
The initial true location of the targets are

x̃1
k =

[
−2.0
0.3

]
, x̃2

k =

[
−2.0
0.0

]
, x̃3

k =

[
−2.0
−0.3

]
.

The multi-target state is represented as the stacked vector
x̃k = [(x̃1

k)
>, (x̃2

k)
>, (x̃3

k)
>]>.

The motion of the multi-target state vector is described
by the increments ∆xk which can be described by the
model

x̃k+1 = x̃k +∆xk .

The target motion increments ∆xk in this simulation
are predefined and do not include information about the
velocity. The multi-target probabilistic system model is
described by

xk+1 = xk +∆xk +wk ,

where wk is a zero-mean Gaussian noise with covariance
σ2
wI6 and σw = 0.03. For the measurement model, we

consider the identity model

yi
k
= x̃i

k + vi
k ,

where vi
k is a zero-mean Gaussian noise with covariance

σ2
vI2 for i = 1, 2, 3. The measurements yi

k
are permuted

in each time step such that their order does not reveal
any information about the measurement origin.

For the simulation, we focus on scenarios that are
difficult for the most commonly used algorithms. To do
this, we consider a scenario of closely spaced targets
with crossing trajectories. For our simulation, we set the
number of time steps T to 500. In each simulation run,
the targets are moving in parallel for some time, followed
by a phase in which the target trajectories cross. In our
scenario, the target trajectories are crossing five times
in total. Furthermore, we considered two scenarios with
low measurement noise σv = 0.02 and high measurement
noise σv = 0.08.

For comparison, we also assessed the tracking accuracy
of other multi-target trackers. First, we considered
assignment-based trackers in which one Kalman filter
is run for each target, and the measurement-to-track
associations are obtained by a GNN or LNN. For
the LNN, we used the variant that allows assigning
one measurement to multiple tracks. We included the
JPDAF, which updates the target estimates based on the
marginal association likelihoods. For the SME approach,
we considered the combination of sum of power and sum
products transformation where the measurement update
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Fig. 1: Considered methods in the low noise scenario
of crossing targets with five crossings. The plot at the
bottom shows the average OSPA for all locations over
all 100 simulation runs along the dimension x1.
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Fig. 2: Considered methods in the high noise scenario
of crossing targets with five crossings. The plot at the
bottom shows the average OSPA for all locations over
all 100 simulation runs along the dimension x1.
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(a) Evaluation results for the low noise scenario.
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(b) Evaluation results for the high noise scenario.

Fig. 3: Box plot showing the mean OSPAs (averaged over
all time steps) for all runs.

is performed by using the UKF. The augmented directed
filtering method based on P = 37 deterministic samples
is also included. Furthermore, we considered the classical
version and our adaptive version of the Kernel-SME filter.

An example of the simulation runs with low measure-
ment noise is shown in Fig. 1 and with high noise in Fig. 2.
An evaluation of the algorithms based on 100 simulation
runs with the OSPA metric [25] is presented in the box
plots in Fig. 3a and Fig. 3b for the two scenarios. While
the latter plots allow for a more qualitative evaluation,
the former allows for insights concerning the reasons
for the quality and the weaknesses the filters showed in
this evaluation. In Fig. 3, one can see that the adaptive
Kernel-SME filter produces more accurate results than the
regular Kernel-SME filter, the direct filtering approach,
and the classical SME-based approach. Particularly in
Fig. 1, one can see that the JPDAF suffers from its well-
known track coalescence problem [26]. Similar effects are
observed for the LNN since trackers for different targets
start following the same targets and thus use the same
measurements, leaving the measurement of one target
unconsidered.

Compared with our proposed adaptive Kernel-SME
filter, the direct filtering approach provides similar
accuracy for the low-noise scenario but fares worse for the
high-noise scenario. The only filter that achieves similar
(and even slightly superior) accuracy is the GNN. Since



no clutter was considered, the scenario was well-suited to
the application of the GNN, and we expect it to perform
significantly worse in presence of clutter. Furthermore,
with (for similar numbers of targets and measurements)
cubic complexity in the number of targets, the GNN
results in high run times for high numbers of targets.

V. Conclusion and Outlook
This paper revisited SME-based filter methods for

association-free multi-target tracking and provided an
extension to this promising paradigm. Due to their low
computational complexity, these methods provide a good
alternative to the existing association-based algorithms.
Our novel adaptive Kernel-SME filter provides a solution
for a parameter selection problem of the Kernel-SME filter.
The proposed adaptive kernel width takes the uncertainty
of the state estimates into account and thus constitutes
a sophisticated extension of the Kernel-SME filter. Our
extension increases the performance of the original Kernel-
SME filter significantly and showed less susceptibility to
undesired effects such as track coalescence. Furthermore,
the adaptive Kernel-SME filter demonstrates superior
performance in comparison with most state-of-the-art
filters. One advantage from the practitioner’s perspective
is that the proposed adaptive kernel width avoids the
need for extensive parameter tuning.

Future research will focus on the investigation of the
SME-based approaches in scenarios including clutter
and missed detection. Moreover, further evaluations
in more complex scenarios will be considered. Finally,
another extension of the proposed method is to consider
anisotropic Gaussian kernels.
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