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Abstract— Optical sorting is a key technology for the circular
economy and is widely applied in the food, mineral, and recycling
industries. Despite its widespread use, one typically resorts to
expensive means of adjusting the accuracy, e.g., by reducing the
mass flow or changing mechanical or software parameters, which
typically requires manual tuning in a lengthy, iterative process.
To circumvent these drawbacks, we propose a new layout for
optical sorters along with a controller that allows re-feeding of
controlled fractions of the sorted mass flows. To this end, we
build a dynamic model of the sorter, analyze its static behavior,
and show how material recirculation affects the sorting accuracy.
Furthermore, we build a model predictive controller (MPC)
employing the model and evaluate the closed-loop sorting system
using a coupled discrete element–computational fluid dynamics
(DEM–CFD) simulation, demonstrating improved accuracy.

I. INTRODUCTION

In optical sorting, we aim to separate particles of different
classes. For this purpose, a camera analyzes the particle
flow on a transport unit, such as a conveyor belt or chute.
Then, a separation unit, typically equipped with nozzles
for compressed air, removes particles of undesired classes.
Common applications of optical sorters are in the food [1], [2],
[3], mineral [4], [5], and recycling industries. Here, optical
sorting constitutes a key technology for waste processing [6].

Usually, particles are divided into two classes, resulting
in two mass flows after the separation, one for the accepted
(positive) particles and one for the rejected (negative) particles.
Both contain correctly sorted particles, i.e., true positives
(TPs) or true negatives (TNs), and incorrectly sorted particles,
i.e., false positives (FPs) or false negatives (FNs). Depending
on the application, the goal to achieve is a high true negative
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Fig. 1: DEM–CFD model of the sorting system with controlled material
recirculation. The mass flow to be sorted is fed onto the feeding chute (1) and
then transported by the lower of the two conveyor belts (2) to the nozzles (3)
while being analyzed by a camera (not displayed) mounted above the belt (2).
The nozzles eject particles of undesired classes into the reject hopper (4)
using bursts of compressed air, while accepted particles fly into the accept
hopper (5). Controlled fractions of the sorted particles are then immediately
repositioned from the hoppers (4), (5) onto the upper belt (6), which models
the material recirculation, and returned to the chute (1). We use particle
models of sandstone (a) as the accepted material and brick (r) as the rejected
material. The particles have diameters from 4 to 8mm.

rate TNR = TN/ (FP + TN) or a high true positive rate
TPR = TP/ (TP + FN) while maintaining an acceptable
TPR or TNR, respectively. The former is typically the case
when removing contaminants is crucial, such as in food
processing, whereas the latter is of importance when particles
to be accepted are of high value, e. g., in diamond sorting [5].
Besides the results of the image processing and the properties
of the separation unit, TNR and TPR are mainly affected
by the type of particles, the mass flow processed, and the
mixing ratio between the classes [7].

While optical sorting has been the subject of intensive
research mainly focusing on particle classification [8] and
ejection time and location prediction [9], [10], to the best
of our knowledge, no research has been conducted w.r.t. the
optimization of the TNR and TPR by directly manipulating
mass flow or mixing ratio. The trade-off between TNR
and TPR is usually accomplished by manually altering
system parameters, such as the deflection pattern [9] prior
to the actual sorting process. Besides being costly and not
guaranteeing the desired accuracy during deployment, the
impact of manual adjustments is limited as it is often not



possible to achieve the desired accuracy without reducing
mass flow. When high accuracy is required, cascades of
sorters can be employed to successively refine the purity of
the accepted or rejected mass flow [5]. However, this results
in large and expensive plants and still does not provide control
over TNR and TPR.

Contribution: To address the aforementioned problems,
we propose a novel setup for optical sorters that includes i) a
material recirculation added to the optical sorter and ii) a
closed-loop controller. In combination, this allows returning
a controlled fraction of both the accepted and rejected mass
flow to the inlet of the sorter (as illustrated in Fig. 1) and thus
direct controlling and optimizing of TNR and TPR. Second,
we analyze the system’s static behavior and identify scenarios
where material recirculation improves sorting accuracy. Third,
we evaluate our approach using a DEM–CFD simulation and
show improved accuracy of the sorting system as measured
by an application-dependent value function.1

Paper Overview: We recap the literature on optical
sorting and DEM–CFD in Sec. II. In Sec. III, we model
the system and identify its parameters based on a DEM–CFD
simulation. In Sec. IV, we analyze the system with a focus
on its static behavior and propose an MPC in Sec. V. Finally,
we present our results in Sec. VI and conclude in Sec. VII.

II. FUNDAMENTALS AND STATE OF THE ART

A. State of the Art in Optical Sorting

One of the most important current applications of optical
sorters is in recycling, for recovering light materials such
as polymers, rubber, or paper [6]. As data acquisition
and processing have vastly increased, recent developments
move toward data analysis and machine learning for system
improvement [8], [11]. A recently published work presents
the application of a mixture-of-experts approach for particle
tracking and prediction in optical sorting [10]. As far as the
analysis of the overall sorting system is concerned, only little
research was done on the experimental [4], [7] and numerical
sides [12], [13] using, e. g., DEM–CFD.

B. Coupled Discrete Element Method

The discrete element method is a simulation technique
in which particle–particle and particle–wall interactions
are resolved in detail. It is able to handle systems with
large particle amounts and is often coupled with other
simulation methods, such as computational fluid dynamics
(CFD), to model a fluid phase surrounding the particles. The
fundamental equations describing the particle motion are
given by Newton’s law of motion and Euler’s equation

miẍi = f c

j
+ fg

i
+ f f

i
, Iiẇi + wi × (Iiwi) = M j ,

with the contact forces f c

j
, the gravitational force fg

i
, and the

fluid forces f f

i
causing the acceleration ẍi on ith body with

mass mi. The angular velocity wi and angular acceleration
ẇi of particle i result from external moments M j . Here, Ii is

1Our source code is available at https://github.com/KIT-ISAS/
ControlledRecirculation

the inertia tensor given in the principal coordinate system. In
the CFD, the Navier–Stokes equations are solved. The relative
velocity between fluid and particles imposes forces on the
particles. DEM–CFD was recently used to model an optical
belt sorter [13]. The authors employ a one-way coupling
method, which means that the fluid field is not perturbed by
the particles.

III. MODELING AND IDENTIFICATION

In a first step, we model the system without recirculation
and identify its parameters by using data from a DEM–
CFD simulation. The second part of the chapter addresses
the modeling of the system with recirculation, as displayed
in Fig. 2. The recirculation comprises an additional device,
referred to as the recirculation unit, whose task is to return
partial mass flows of both the accepted and rejected particles.

The model is based on the law of mass conservation.
In order to develop an adequate model for the synthesis
of controllers, the particle-specific motion is neglected and
transport processes are simply described by time delays.

A. Model of the System without Recirculation

1) Modeling: The transport process on the transport unit
is described based on the estimated time a particle takes to
travel from the beginning of the transport unit to the center
of the camera field of view τRQ and the estimated travel time
from the center of the camera field of view to the separation
unit τQS (see Fig. 2). The mass flow q(t) =

[
qP(t) qN(t)

]⊤
,

as measured by the camera above the transport unit, depends
only on the input mass flow r(t) =

[
rP(t) rN(t)

]⊤
via

q(t) = r(t− τRQ). Here, q(t) and r(t) consist of the mass
flows of the accept and reject particles (indicated by the
indices P and N, respectively).

The separation unit can be understood as a static nonlinear-
ity f : R2

≥0 → R4
≥0 mapping q(t) to the mass flow at the out-

let of the sorter y =
[
yTP(t) yFP(t) yFN(t) yTN(t)

]⊤
,

in which the components of y represent the mass flows of
TPs, FPs, FNs, and TNs, respectively. Again, we model the
travel time from the separation unit to the sorter outlet by
a time delay τSY. With τQY = τQS + τSY and f being the
product of q(t) with a q(t)-dependent matrix Γ(q(t)), we
arrive at

y(t+ τQY) = Γ(q(t))q(t) , (1)

Γ(q(t)) =


ϵ(q(t)) 0

0 (1− ζ(q(t)))
(1− ϵ(q(t))) 0

0 ζ(q(t))

 ,

in which the potentially nonlinear functions ϵ : R2
+ → (0, 1)

and ζ : R2
+ → (0, 1) can be understood as the TPR and the

TNR of the separation unit, respectively.
2) Identification: For estimating ϵ(q(t)) and ζ(q(t)), we

assume that quadratic polynomials

ϵ(q)=o00+o10qP+o01qN+o20q
2
P+o11qPqN+o02q

2
N, (2a)

ζ(q)=z00+z10qP+z01qN+z20q
2
P+z11qPqN+z02q

2
N (2b)
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Fig. 2: General layout of a sorting system with recirculation. Time delays are
denoted by τa, a ∈ {RQ,QS,SY,YV,VR}. Time delays with the upper
index A or B are part of the cumulative delays τA or τB, respectively. The
nonlinear block RU describes the recirculation unit, as described by (4). TU
stands for transport unit. Measurement vectors are highlighted in blue, and
the time dependencies of all vectors are omitted for simplicity.

are sufficient as this facilitates generating quadratic objective
functions. To identify the parameters, we conducted several
DEM–CFD simulations using a sorter model based on the
work [13]. The simulated material was demolition waste
consisting of two fractions, as displayed in Fig. 1. We
used a prediction straight along the transparent direction
to calculate the nozzle activation times. The particle velocity
is assumed to be equal to the belt velocity. The activation
time is then calculated using a constant velocity model. In
extension to [13], the number of nozzles to activate was
determined according to the particle width, so that one to
three nozzles were activated per particle. The activation
duration was fixed at 10ms. The virtual observation line for
localization and classification of the particles was at the belt
edge. We considered static mass flows m(t) = qP(t) + qN(t)
between 10 g s−1 and 250 g s−1 and static accept particles
shares a(t) = qP(t)/m(t) between 50% and 97%. In order to
reduce the number of numerical experiments required, we
assume that for a < 0.5, TPR(m, a) = TNR(m, 1− a) and
TNR(m, a) = TPR(m, 1 − a) since one can switch from
ejecting reject to ejecting accept particles for a < 0.5.

As shown in Fig. 3, the quadratic polynomials fit the
measured data well. However, due to the unbounded nature
of quadratic polynomials, there are regions in which ϵ(q)
and ζ(q) are larger than one or less than zero, which is not
admissible and must be considered in the further course. The
parameters of (2) are given in Tab. I.

B. Adding the Material Recirculation

The recirculation unit returns a partial mass flow v =[
vTP(t) vFP(t) vFN(t) vTN(t)

]⊤
to the sorter inlet (see

Fig. 2). Hence, the new output mass flow of the system
s(t) =

[
sTP(t) sFP(t) sFN(t) sTN(t)

]⊤
is given by

s(t) = y(t− τYV)− v(t) , (3)

in which the indices of v(t) and s(t) again denote TPs,
FPs, FNs, and TNs and τYV is the estimated time it takes
for a particle to move from the outlet of the sorter to the
recirculation unit. By denoting the fractions of the mass flows

TABLE I: Identified parameters of the functions ϵ and ζ multiplied by 104

Parameter 00 10 01 20 11 02

ϵ(q) 9995 -5.625 -0.669 0.0288 -0.0468 0.0577
ζ(q) 9950 -2.466 -2.33 0.0158 -0.0487 0.0116

of accept and reject particles to be returned by uP, uN ∈ [0, 1]
and under the assumption that yTP(t) and yFP(t) are equally
affected by uP, and analogously that uN affects yFN(t) and
yTN(t) equally, v(t) is given by

v(t) = U(u(t))y(t− τYV) , (4)

U(u(t)) = Diag
{
M⊤u(t)

}
, M =

[
1 1 0 0
0 0 1 1

]
,

with u(t) =
[
uP(t) uN(t)

]⊤
being the vector of control

signals. Consequently, the new mass flow on the belt is

q(t+ τA) = Nv(t) + r(t+ τVR) , (5)

N =

[
1 0 1 0
0 1 0 1

]
,

with τA = τVR + τRQ and τVR being the travel time from
the recirculation unit to the mixing point with r(t).

Thus, the system with recirculation is characterized com-
pletely by (1), (3), (4), and (5). From now on, we further
assume that we can measure y(t), as depicted in Fig. 2.

IV. SYSTEM ANALYSIS

The system without recirculation can be understood as
a subclass of a Wiener-type nonlinear system, i.e., a block-
oriented model that consists of a time-delayed linear dynamic
part followed by a nonlinear memoryless function [14]. In our
case, the linear part is given by the pure time delays τRQ, τQY

and the nonlinear function corresponds to the separation unit.
However, the system with recirculation is not Wiener-type
due to its nonlinear dynamics. In addition, the systems with
and without recirculation are solely time-delayed systems
without any integrating or differentiating parts. Thus, no
continuous-time state-space representation can be obtained.

In general, the recirculation affects the accuracy of the
sorting process via two effects:
E1: by adding particles to the transport unit,
E2: by removing particles after the separation unit.
E1 can be understood as a change of the operation point of the
separation unit towards higher mass flows, which, depending
on the current operation point and the form of ϵ(q) and ϵ(q),
may lead to improved accuracy. E2 directly alters the output
equation (3) and thus has a direct influence on the system’s
TNR and TPR. We will examine E2 and the combination of E1
and E2 more closely in the next paragraphs, where we study
the steady-state behavior of the system with recirculation.

A. Steady-State Analysis Ignoring E1

We will now study the steady-state behavior of the system,
i.e., q(t) = q, u(t) = u, r(t) = r, s(t) = s, with constant
but unknown q, u, r, s (all time delays can be omitted). In a
first step, we ignore E1 and solely study the impact of E2.



(a) TPR (b) TNR

Fig. 3: Fitted curves for the TPR and TNR of the separation unit, i.e., the sorter without recirculation. The blue points are the TPR and TNR values obtained
from the DEM–CFD simulations. The sum of squares fitting error of the TPR is 0.0045 and for the TNR, it is 0.0151.

Assumption 1. The effect of q and hence of u on (2) can
be neglected so that ϵ(q) = ϵ and ζ(q) = ζ with arbitrary
constants ϵ, ζ ∈ (0, 1).

Proposition 1. Consider the system described by (1), (3),
(4), and (5) in steady state. Suppose that Assumption 1
holds. Then, with a fixed uN ∈ [0, 1), the TNR is a strictly
monotonically increasing function in uP and, with a fixed
uP ∈ [0, 1), the TNR is a strictly monotonically decreasing
function in uN. The converse applies to the TPR.

Proof. Due to Assumption 1, Γ(q) = Γ is now a constant
matrix. Hence, (1), (4), and (5) can be solved for q, which
results in q = (I−NU (u)Γ)−1 r. Using (3), we arrive at
the steady-state TPR and TNR

TPR(u) :=
sTP

sTP + sFN
=

ϵ(1− uP)

1− uN(1− ϵ)− uPϵ
,

TNR(u) :=
sTN

sTN + sFP
=

ζ(1− uN)

1− uP(1− ζ)− uNζ
.

∇TNR equals
ζ(1−ζ)

(1−uP(1−ζ)−uNζ)
2

[
1− uN uP − 1

]⊤
and

thus, the first component (for uP) is always positive and
the second component (for uN) is always negative since
uP, uN ∈ [0, 1), ϵ, ζ ∈ (0, 1) and because the denominator
is always greater than zero. The proof for the TPR follows
analogously. ■

Note that returning only one fraction, either of the mass
flow of accepted or rejected particles, increases the TNR or
TPR compared with the system without recirculation (u = 0),
respectively. However, increasing the TNR always causes
a decrease of the TPR and vice versa. For ϵ = 0.97 and
ζ = 0.98, TNR, TPR, and the objective function J(u) =
0.5TPR(u)+0.5TNR(u) are displayed in Fig. 4 as functions
of u. The dotted line in Fig. 4c represents the set of optimal
control variables u∗

P and u∗
N, obtained by maximizing J(u),

u∗
N = 1 + (u∗

P − 1)

√
ϵ(ζ−1)

ζ(ϵ−1)
, 1−

√
ζ−ϵζ

(1−ζ)ϵ
< u∗

P < 1 .

B. Steady-State Analysis Considering Both Effects

Since ϵ and ζ are in general functions of q and therefore
dependent on u, we now examine the combined influence
of both E1 and E2. In this case, it is not possible to solve
(1), (4), and (5) for q analytically. Thus, we use a numerical
approach to compute TPR and TNR consisting of the steps

1) span a grid with the control variables u on the axes,
2) solve (1), (4), and (5) for q at each point of the grid

(note that we therefore need to choose a specific r),
3) fit the two functions qN(u) and qP(u),
4) compute TPR(u), TNR(u), and J(u).

The results are given in Fig. 5. Comparison of Fig. 4 and
Fig. 5 shows that for the chosen ϵ and ζ, E2 also appears
dominant in the combined case since the basic shapes of the
curves are similar in both figures. However, E1 bends the
curves according to the nonlinearity.

As a result, when considering E1 and E2, the optimal
steady-state control variables depend on r. Furthermore, there
is no analytic solution for u∗. Hence, in the next section, we
present an MPC that can cope with both challenges.

V. MODEL PREDICTIVE CONTROLLER

An MPC uses a system model to predict the future system
dynamics and attempts to find a sequence of control variables
in each run that minimizes a finite-horizon objective function.
Thus, an MPC is able to control the steady-state behavior
as well as to cope with dynamic changes. Furthermore, an
MPC is particularly suitable for our case because the internal
formulation of the control problem as an optimization problem
naturally allows us to encode our desired goal of finding the
best operating point of the sorting system (note that, unlike
many other control problems, we are not interested in reaching
a particular set point or following a specific trajectory). Our
MPC computes the sequence of control variables starting
with uk+1 at each time step k and applies uk+1 at k + 1,
thus leaving enough time for measurement processing and
optimization.



(a) TPR(u)

(b) TNR(u)

(c) J(u)

Fig. 4: Objectives for the steady-state
behavior of the simplified sorting
system in the case of ϵ = 0.97 and
ζ = 0.98 depending on the steady-
state control variables u.

(a) TPR(u, q(u))

(b) TNR(u, q(u))

(c) J(u, q(u))

Fig. 5: Objectives for the steady-state
behavior depending on the steady-
state control variables u in the case of
rP = 90 g s−1 and rN = 10 g s−1.

A. Prediction

By discretizing the system model given by (1), (3), (4),
and (5), we obtain the state-space representation

q
k+kA

= NU(uk)Γ(qk−kB
)q

k−kB
+ rk+kVR

, (6a)

sk = (I−U(uk))Γ(qk−kB
)q

k−kB
, (6b)

where ki ≈ τi/T , i ∈ {A,B,VR} are approximate discrete-
time delays with τB = τQS + τSY + τYV. The sampling time
T is chosen such that the τis are approximately multiples
of T . Note that (6) is not in standard form (to obtain
it, one can use state augmentation, as described in [15]).
Related to this, note that under the assumption of constant
and known inputs r(t) = r, all states of the sequence
q
k+1

, . . . , q
k+kA

can be predicted solely based on the stored

history of measurements of q
k+1−kA−kB

, . . . , q
k−kB

and the
known history of control variables uk+1−kA

, . . . , uk without
any assumptions on future control variables uk̃, k̃ > k.
Furthermore, all states of the sequence q

k+kA+1
, . . . , q

k+k̂
,

with k̂ = kA + kB being the number of time steps for one
cycle, only depend linearly on the future control variables
uk+1, . . . , uk+kB

and the stored history of measurements of
q
k−kB+1

, . . . , q
k
. This is a direct consequence of uk only

influencing q
k+kA+ik̂

, i ∈ N0 via the state dynamics (6a)
and sk+ik̂ via the output equation (6b). In our MPC, we
have additional measurements of y via the measurement
equation y

k−kYV
= Γ(q

k−kB
)q

k−kB
, which we can plug

directly into (6a). Thus, for predicting q
k+1

, . . . , q
k+kA+kYV

,
we use the measurements of y

k+1−kA−kYV
, . . . , y

k
and

uk+1−kA
, . . . , uk+kYV

instead of the measurements of q.

B. Optimization

In each time step, the MPC solves the optimization problem

min
ũ

(
k+N∑
i=k+1

Ji

)
, s.t. (6a), 02N ≤ ũ ≤ 12N ,

in which ũ⊤ =
[
u⊤
k+1 . . . u⊤

k+N

]
is the sequence of future

control variables, Ji the objective function at time step i, k
the current time step, and N ∈ N the control horizon. Note
that the inequality constraints are linear. When choosing the
control horizon N ≤ k̂, the equality constraints (6a) are also
linear, as previously discussed.

We propose to use a combined objective function

J
(E1+E2)
i = c(E1)J

(E1)
i + c(E2)J

(E2)
i

that considers both E1 and E2 via the terms J
(E1)
i and J

(E2)
i

and weights c(E1), c(E2) ∈ R≥0. E2 is taken into account by

J
(E2)
i = cP

sTP,i

sTP,i + sFN,i
+ cN

sTN,i

sTN,i + sFP,i
, (7)

with weights cP, cN ≤ 0. Thus, minimizing J
(E2)
i directly

maximizes the system’s TPR and TNR. E1 is considered by

J
(E1)
i = cϵϵ(qi+kA

) + cζζ(qi+kA
) ,

with weights cϵ, cζ ≤ 0, which directly aims to improve the
TPR and TNR of the sorter without recirculation. J (E1)

i is
quadratic since (2) is quadratic. Note that J (E2)

i alone (with a
large enough N ) would be sufficient to optimize the system’s
TPR and TNR. Nevertheless, it has proven useful to combine
both objectives since this allows choosing N ≤ k̂ and thus
exploiting linear equality constraints while still considering
E1. However, incorporating J

(E1)
i generally comes with the

drawback that the objective function is no longer quadratic.

VI. SIMULATION

We evaluate our MPC using a DEM–CFD simulation of the
sorting system with recirculation on three different scenarios
and compare it with the same sorter without recirculation. For
this purpose, we use the DEM–CFD model from Sec. III and
integrate a recirculation as shown in Fig. 1. The scenarios



(a) Scenario S1, TPR controlled. (b) Scenario S2, TNR controlled. (c) Scenario S3, TPR controlled.

Fig. 6: Results of controller application to the DEM–CFD simulation model of the optical sorting system with recirculation. Comparison of the uncontrolled
system, i.e., the system without material recirculation (dashed) and the controlled system (solid). In red, objective functions J according to (7) are plotted.
The curves show the overall sorting accuracies up to the respective point in time, i.e., the accuracies w.r.t. all particles sorted by then.

considered are described by Tab. II. They all have constant
mass inflow, i. e., r(t) = r, but vary in the mass flows of
incoming accept and reject particles and the weights of the
objective function. 60 s are considered in each scenario.

A. Parameters of the MPC

We use the objective function J
(E1+E2)
i , where c(E1) =

c(E2) = 0.5, cP = cϵ, and cN = cζ . The delays τRQ, τQS,
τSY, τYV, and τVR were set to the approximate delays from
the DEM–CFD model: 0.445, 0.125, 0, 0, and 3.7425 s.
Following the explanations in Sec. V, the sampling time
was set to T = 62.5ms and a control horizon of N = k̂ was
used in order to ensure linear constraints. The MPC receives
measurements of y and q and knows r. To smooth high-
frequency changes in the measurements of y, a moving mean
filter covering ten time steps was applied. The optimization
problem was solved in MATLAB by using a built-in sequential-
quadratic programming method with a constraint tolerance
of 1× 10−2, an optimality tolerance of 1× 10−3, and a step
tolerance of 9.9 × 10−5. In each step, it took the MPC an
average of 0.12 s to find the optimal control variables.2

B. Results

Fig. 6 presents our simulation results. In scenario S1
(see Fig. 6a), the TPR at 60 s of the controlled system
is at 96.3% compared with 95.4% of the sorter without
recirculation. Thus, the MPC reaches its goal to improve the
TPR as determined by the chosen weights. The improvement
in the TPR comes with a notable decrease in the TNR from
98.4% to 93.3%. The objective function J as computed
according to (7), however, lies above J in the uncontrolled
case at all times. Thus, the overall sorting performance is
gradually higher when controlled by the MPC. If we change
the weights, as in S2 (Fig. 6b), the MPC is able to improve
the TNR by roughly 1 p.p. to 99.5%. Again, there is a sharp
decline of 13 p.p. in the TPR. Consequently, no improvement
in J is achieved. In S3, the mass flow was halved while the
fraction of rejects was doubled compared with S1 and S2.

2Evaluated with an AMD Ryzen 9 3950X at 3.5GHz and 32GB RAM.

TABLE II: Scenarios considered in the simulations

Scenario rP rN cP = cϵ cN = cζ

S1 90 g s−1 10 g s−1 −0.909 −0.091
S2 90 g s−1 10 g s−1 −0.091 −0.909
S3 40 g s−1 10 g s−1 −0.909 −0.091

As with S1, the weights were chosen such that the TPR is
improved. While the system without recirculation performs
similarly to S1 and S2, controlled recirculation again achieves
an increase of roughly 1 p.p. At the same time, the TNR is
reduced by nearly 1 p.p. Expressed in terms of J , the summed
sorting accuracy is 0.6 p.p. higher if we apply the MPC.

In summary, the application of our proposed MPC to a
simulated DEM–CFD sorter model yielded good results. The
controller was able to improve the targeted quantity in all
analyzed cases. As scenarios S2 and S3 show, even in cases
where the targeted quantity was already very high in the
uncontrolled case, a further significant improvement can be
achieved by controlled recirculation. Again, it can be observed
that improving TNR is accompanied by a decrease in TPR
and vice versa. Especially if the targeted rate is near optimal,
a further increase is connected to a significant loss in the
second, not targeted rate.

VII. CONCLUSION

We proposed a new setup for direct control of TPR and
TNR of optical sorters by returning controlled fractions of the
sorted mass flows. To this end, we modeled the sorting system
as a nonlinear, time-delayed system and showed by analyzing
its static behavior that a higher accuracy, as measured by an
application-dependent weighted sum of TPR and TNR, can
be achieved. However, an improvement in TNR generally
comes with a decrease in TPR and vice versa. Moreover, we
proposed an MPC for control of the system and showed using
a DEM–CFD simulation that even for uncontrolled TNRs or
TPRs greater than 95%, absolute gains up to 1 p.p. can be
achieved. Thus, as demonstrated, the setup allows control and
optimization of the TNR and TPR without manual tuning or
cascading of sorters.
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