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Abstract— In estimation, control, and machine learning under
uncertainties, latent variables are usually described by a
probability density function (pdf). The optimal reconstruction of
a continuous pdf from given samples or moments is an important
and ubiquitous task. Unfortunately, it typically results in an
underdetermined optimization problem, as the pdf is not fully
constrained by the given samples or moments. For regularization,
we use Fisher Information (FI) that acts as a roughness measure,
i.e., selects the smoothest pdf fulfilling the constraints, in an
information-theoretic sense. For the important class of mixture
densities, FI can only be computed numerically. In this paper, we
derive a closed-form solution for FI for mixtures by transforming
the problem to the space R of root mixtures (RMs). This results
in a tandem processing scheme simultaneously working in the
original mixture space M and the corresponding RM space: The
density parameters are optimized in root mixture space based
on the closed-form FI. The desired constraints are evaluated in
the original mixture space M.

I. INTRODUCTION

In many applications, we face the problem of reconstructing
the full pdf f̃(x) describing a vector x of desired latent
variables from a set of constraints or specifications on the pdf.
Application include (1) replacing a moment representation
of f̃(x) with a continuous density representation f(x),
(2) estimating a continuous pdf representing a given set of
samples, (3) increasing the number of parameters of density
representation, e.g., increasing the number of components
of a mixture pdf, and (4) interpolating a density from
given density values. Common to these examples is the
incomplete specification of the desired pdf, which leads to
an underdetermined optimization problem.

In general, the specifications can simply be lower-order
moments, e.g., mean, covariance, and samples of f̃ . However,
they may also include higher-order moments, density values
f̃(xi) and/or its derivatives at selected xi, and probabilities
of x being in certain regions.

Given the specifications on the pdf f̃(x), we want to
reconstruct an approximation f(x) of f̃(x) without artificially
adding unwarranted information 1 . In summary, we desire
the least-informative pdf given the specification.

II. PROBLEM FORMULATION

First, we are given the set specifications Si(f) = 0 , Si ∈
S 2 about the desired pdf f(x). We assume an underlying pdf
f̃(x) that is unknown and that we would like to approximate
with the desired pdf f(x) 3 .

Uwe D. Hanebeck, Daniel Frisch, and Dominik Prossel are with
the Intelligent Sensor-Actuator-Systems Laboratory (ISAS), Institute for
Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT),
Germany. Please send correspondence to Uwe.Hanebeck@kit.edu.

Second, we are given a certain structure of the pdf f(x).
This can be achieved by confining f(x) to a certain class
of densities, say, spherically invariant densities [25]. More
concrete, the pdf could be fixed to being of a specific type,
say, a Gaussian density. Here, our focus is on pdfs from the
class of mixture densities (MDs) with a given number L of
components

f(x) =

L∑
i=1

wifi(x) (1)

with positive weights wi > 0, i ∈ 1:L, summing up to one

L∑
i=1

wi = 1 , (2)

and mixture component pdfs fi(·), i ∈ 1:L. As a concrete
density type, we will consider Gaussian components.

We want to find a MD f(x) that fulfills the given
specifications. Specifically we desire appropriate mixture
weights wi > 0, i ∈ 1:L, and parameters of the component
pdfs fi(·), i ∈ 1:L.

When the number of parameters is larger than the number
of specifications, which is often the case, the desired MD
f(x) is not uniquely specified. We propose to select the MD
with the lowest information content. The FI will be used
for that purpose, which will be shown to act as a roughness
measure, i.e., favors smooth pdfs.

III. STATE-OF-THE-ART

In this section, we briefly review the state-of-the-art in
calculating least-informative pdfs. Given a set of specifications
on the pdf, a least-informative pdf does not add more
information than necessary. A pdf with little information
content intuitively exhibits a high level of smoothness or
equivalently a low level of roughness. We will focus on
methods based on curvature, entropy, and FI as a basis for
the derivation of the proposed new method in Sec. IV.

A. Mean Curvature

At first look, mean curvature would be a good candidate
for quantifying smoothness. The problem is that integrating
over the curvature is numerically difficult. Hence, curvature is
often approximated by the second derivative of the considered
pdf. Expressions of this type are used as roughness penalties
for smoothing splines [26, p. 177].

For simplicity, we only consider the scalar case, which is
already quite complex. The local curvature of f is defined
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as 4

k
(
f(x)

)
=

f ′′(x)(
1 + (f ′(x))

2
)3/2

. (3)

The mean squared curvature is given as the integral over the
local curvature as

k(f) =

∫
IR

k2
(
f(x)

)
dx , (4)

which cannot be solved in closed form for densities of interest
here. For this reason, the local curvature is often approximated
with the second derivative of f as k(f(x)) = f ′′(x). In higher
dimensions, this can be generalized to k(f(x)) = ∇2f(x)
with Hessian operator ∇2 = ∇ · ∇⊤. The resulting mean
squared curvature

k(f) =

∫
IRD

∣∣∇2f(x)
∣∣2 dx (5)

can often be calculated in closed form, e.g., for Gaussian or
Gaussian Mixture (GM) densities f(x). However, although
this simplified mean curvature might be useful for, e.g., spline
smoothing, it is not a good indicator of smoothness for
pdfs. The reason is that in a typical reference situation, i.e.,
minimization of the roughness of a density with zero mean
and unit variance, minimization of the curvature does not
yield a Gaussian density as would be expected. On the other
hand, maximization of the entropy or minimization of the FI
yields the expected Gaussian density in this case as we will
see in Subsec. III-B and Subsec. III-C.
Summary: The mean curvature of a general density according
to (3) and (4) is difficult to compute even in the univariate
case. This is exacerbated for mixture densities. For this reason,
the curvature is often approximated by the second derivative
of f(x) in 1D. In the multivariate case, the definition of
curvature is even more complicated, which is another reason
for approximation by the Hessian of f(x). Unfortunately,
the simplified mean curvature, although easily computable
for mixtures, does not yield the expected results in simple
reference cases.

B. Entropy

Most methods for finding the least-informative pdf under
given specifications use the principle of maximum entropy.
It was conceived by Jaynes in 1957 [13, 14]. It received
its share of criticism [7], but was eventually adopted by the
research community. One example is the use of maximum
entropy for the trigonometric moment problem and orthogonal
polynomials [15].

For a continuous density f(x), the so-called differential
entropy is defined as

E{− log (f(x))} = −
∫

x∈IRD

f(x) log (f(x)) dx . (6)

The differential entropy has many nice properties. However,
it is an ad-hoc generalization of the famous Shannon entropy
for discrete random variables to the continuous setting. It can

assume negative values and is not invariant under a change
of variables.

A table with entropy expressions for standard pdfs is
provided in [16]. Expressions for the entropy in multivariate
settings are given in [6], but this does not include mixture
distributions. Because of the logarithm in the expression of
the differential entropy used in maximum entropy methods,
computation is complicated beyond simple cases such as
Gaussian densities. This is especially a problem for mixture
densities as these lead to logarithms of sums. As a result,
entropy is often calculated via numerical integration, e.g.,
Monte Carlo, which leads to a high computational load in
multivariate settings.

This led to an extensive development of approximations and
bounds, with a strong focus on mixture densities. Differential
entropy for GMs is approximated in [11] by a Taylor-
series expansion of the logarithm of the GM around each
component mean. For large component variances, splitting of
components is required to maintain a desired accuracy. In [10],
a deterministic sample representation is approximated by a
piecewise constant density to facilitate the computation of the
relative entropy. A piecewise constant approximation of a GM
is proposed in [29]. Sharp bounds on the so-called entropy
concavity deficit are derived in [18], i.e., the difference
between the mixture entropy and the sum of component
entropies. In [20], lower and upper bounds on the differential
entropy for the special case of GMs are provided when
all components have identical variances and only differ in
their means and weights. For a symmetric GM with two
components with equal weights and equal variances, lower
and upper bounds on the differential entropy are given in
[19].
Summary: As it requires integration over a logarithm of f(x),
differential entropy can be calculated in closed form only in
rare cases. In particular, MDs do not admit a closed-form
solution. In that case, one has to rely on the approximations
or bounds mentioned above.

C. Fisher Information
Using FI for finding the smoothest continuous density

has first been proposed in [8]. It was used as a roughness
penalty in maximum likelihood density estimation [9] based
on orthogonal Hermite polynomials. Similarly, FI is employed
in [28] for wavelet-based density estimation. As a roughness
measure, it prevents the density estimate to come too close to
the Dirac functions representing the observations. In [12], FI
is used for the robust estimation of a location parameter. This
method has been extended to minimizing FI over mixtures
in [1].

For deriving FI, we start with the so-called score [27, p. 18]
given by

s(x; θ) =
∂

∂θ
log (f(x; θ)) (7)

for some density f depending on a vector parameter θ or
equivalently

s(x; θ) =
∂f(x; θ)

∂θ

1

f(x; θ)
=

∇f(x; θ)

f(x; θ)
. (8)
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Following [8, p. 29], we define roughness as the difference
between the original density f(x) and a copy f(x+θ) shifted
by a small displacement θ. Thus, we have f(x; θ) = f(x+θ)
and the score is

s(x; θ) =
∂f(x+ θ)

∂θ

1

f(x+ θ)
=

∂f(x+ θ)

∂x

1

f(x+ θ)
.

(9)
With θ → 0, the score (8) can be written as [21, p. 2]

s(x) =
∂f(x)

∂x

1

f(x)
=

∇f(x)

f(x)
(10)

or the score (7) as

s(x) =
∂

∂x
log (f(x)) . (11)

Integrating over the entire domain in the original space of
mixtures M gives the FI [27, p. 15, (1)]

IMF (f) =

∫
{IRD, f>0}

∣∣∣∣∇f(x)

f(x)

∣∣∣∣2 f(x) dx (12)

or alternatively

IMF (f) =

∫
{IRD, f>0}

|∇f(x)|2

f(x)
dx . (13)

We exclude regions where the density approaches zero.
The FI is often simpler to compute than the differential

entropy. However, the division by f(x) in (13) still makes
computation difficult especially for mixture densities. In [1],
although minimizing FI over mixtures has been considered,
computational issues were not addressed.
Summary: FI in the form (12) or (13) cannot be calculated
in closed form for MDs because of the division by f(x).

IV. CLOSED-FORM FISHER INFORMATION
FOR MIXTURES

A. Key Idea

The key idea for obtaining a closed-form expression for the
FI of a mixture density is to work in the space of square-root
densities, see Fig. 1. In particular, we define RMs that yield
the original mixture upon squaring. The desired FI of the
original mixture can be calculated in closed form in the RM
space. We propose to simultaneously maintain both density
representations and perform tandem processing in both spaces.
The FI is calculated in the RM space R. The specifications
on the pdf f(x) are calculated in the original mixture space
M.

B. Root Densities

Square roots of densities r(x) =
√
f(x) have already been

considered in [9]. The reason for doing so was to ensure that
the squared density f(x) = r2(x) is non-negative. For the
same reason, densities based on squared Fourier series are
introduced in [2], generalized for multivariate densities in
[3], and improved in [24].

Root Mixture Space Original Mixture Space

r(x) f(x)
r2(x) = f(x)

r(x) =
√
f(x)

4

∫
x∈IRD

∣∣∇r(x)
∣∣2dx = IRF (r) = IMF (f) =

∫
{IRD, f>0}

|∇f(x)|2

f(x)
dx

R M

Fig. 1: The two spaces used for calculating least-informative pdfs
fulfilling given specifications.

Here, we use square-root pdfs, or in short root densities
(RDs), for an entirely different reason. Our considered density
representations, e.g., Gaussian mixtures, are non-negative
anyway. Instead, we want to obtain a closed-form expression
for the FI in (13).

The unit-mass constraint for the pdf f(x)∫
IRD

f(x) dx = 1 (14)

is equivalent to the constraint∫
IRD

r2(x) dx = 1 (15)

for the RD r(x). This means that r(x) is restricted to the
infinite-dimensional unit sphere S∞. This manifold is also
called the Hilbert sphere [5, p. 2]. When we restrict the RDs
r(x) to be non-negative, i.e., r(x) ⩾ 0 ∀x, r(x) is restricted
to the “positive orthant” of the Hilbert sphere.

C. Fisher Information for Root Densities

For RDs, the expression for the FI can be simplified. In
the univariate case, D = 1, with

r′(x) =
d

dx
r(x) =

d

dx

√
f(x) = − f ′(x)

2
√

f(x)
, (16)

we have (
r′(x)

)2
=

(
f ′(x)

)2
4 f(x)

. (17)

Finally, we can rewrite the FI in the original density space
in (13) in the RD space M as

IRF (r) = 4

∫
x∈IRD

(
r′(x)

)2
dx with r =

√
f . (18)

In the multivariate case, we have

IRF (r) = 4

∫
x∈IRD

∣∣∇r(x)
∣∣2dx with r =

√
f . (19)

These expressions for IRF (r) in the RD space R can
be calculated in closed form, e.g., for RMs. In fact, they
correspond to the simplified expressions for mean curvature
in (5) that are, however, given in the original density space.
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D. Root Mixtures
We define RDs in the case of MDs of the form (1) as

r(x) =

R∑
i=1

vi ri(x) . (20)

These square-root MDs will be abbreviated as RMs.
1) Conversion of Root Mixture to Mixture: The conversion

of an RM in (20) to a mixture in (1) is unique, always exists,
and can be calculated in closed form according to

f(x) = r2(x) =

(
R∑
i=1

vi ri(x)

)(
R∑
i=1

vi ri(x)

)

=

R∑
i=1

R∑
j=1

vi vj ri(x) rj(x) .

(21)

This expression contains redundant terms as ri(x) rj(x) =

rj(x) ri(x) for i ̸= j and can be written as 5

f(x) =

R∑
i=1

R∑
j=i

vi vj ci,j ri(x) rj(x) (22)

with

ci,j =

{
1 , i = j

2 , i ̸= j
. (23)

The MD f(x) in (22) contains a total of

L = R · (R+ 1)/2 (24)

components 6 and is non-negative by definition (although
its weights may be negative). However, without additional
constraints on r(x), the unit mass constraint may be violated.

For deriving specific constraints, we need to consider
specific mixture densities. Here, we will consider mixtures of
the form (1) with the special case of Gaussian components

fi(x) =
1√

|2πΣi|
exp

{
−1

2
(x− xi)

⊤ · Σ−1
i · (x− xi)

}
(25)

with x ∈ IRD.
The corresponding Gaussian RM for x ∈ IRD is given by

(20) with Gaussian components

ri(x) =
1√

|2πPi|
exp

{
−1

2
(x− ρ

i
)⊤ · P−1

i · (x− ρ
i
)

}
(26)

with weights vi, mean vectors ρ
i
, and covariance matrices

Pi.
According to (22), the conversion of a Gaussian RM with

R components and parameters vi, ρi, Pi to a GMs results
in L = R · (R+ 1)/2 components with wi, xi, Σi given by
the well-known result of multiyplying two Gaussians, which
again yields a Gaussian.

Basic Constraints on Parameters of r(x): The GM f(x)
resulting from the conversion of the Gaussian RM r(x) does
not necessarily have positive weights that sum to one. For
this reason, basic constraints on the parameters of r(x) in
RM space R are derived from the constraints

wi > 0 , i = 1:L ,

L∑
i=1

wi = 1 (27)

on the GM f(x) in the original mixture space M.

Root Mixture Space Original Mixture Space

r(x) f(x)

IRF (r)

Optimization

Conversion

Fisher Information Constraints

R → M

Si(f)

Root Mixture Mixture

Fig. 2: Overview of optimization via tandem processing in RM
space space R and original mixture space M.

Number of Parameters: The number of parameters of
the Gaussian RM r(x) and the GM f(x) are equal as the
squaring operation in (22) does not add parameters. In the
multivariate case, the parameters of r(x) with R components
are given by 7

v1, v2, · · · , vR︸ ︷︷ ︸
R

, ρ
1
, ρ

2
, · · · , ρ

R︸ ︷︷ ︸
R·D

, P1, P2, · · · , PR︸ ︷︷ ︸
R·D·(D+1)

2

. (28)

With the above mentioned basic constraint we lose one degree
of freedom in the weights, so that we end up with

(R−1)+R·D+R·D · (D + 1)

2
= R·D

2 + 3D + 2

2
−1 (29)

parameters.
2) Conversion of Mixture to Root Mixture: An RM r(x)

corresponding to a given MD f(x) does not necessarily
exist. This is due to the smaller number of parameters in
r(x) compared to f(x) so that not every possible f(x) can
be represented by r(x). In addition, even when it exists,
an appropriate RM is non-unique due to, e.g., squared
weights. Again, we can exploit small overlaps between distant
components when performing the conversion. This reduces
the differences in numbers of parameters between the RM
and the original mixture.

E. Tandem Processing for Optimization

The RM r(x) in root mixture space R is convenient as it
allows a closed-form calculation of the FI. In addition, the
nonnegativity of the corresponding mixture f(x) = r2(x) in
mixture space M is automatically guaranteed. However, the
unit integral constraint for f(x) has to be explicitly ensured
by an appropriate constraint in mixture space M. Also, the
specifications on f(x) are formulated in mixture space M.

During the optimization procedure, i.e., minimization of
FI, see Fig. 2, we maintain both density representations in
RM space R and in mixture space M. This is achieved by
directly converting the RM in root mixture space R to a
mixture in the original mixture space M after any parameter
change. FI calculation is performed in RM space R in tandem
with the constraint evaluation in mixture space M.

The optimization problem can be written as

min
f∈M

IMF (f) s.t. Si(f) = 0 , Si ∈ S , (30)
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x →

−3 −2 −1 0 1 2 3

f(x
)

→

0.0

0.1

0.2

0.3

0.4

0.5
R = 3, L = 6

x →

−3 −2 −1 0 1 2 3

f(x
)

→

0.0

0.1

0.2

0.3

0.4

0.5
R = 4, L = 10

x →

−3 −2 −1 0 1 2 3

f(x
)

→

0.0

0.1

0.2

0.3

0.4

0.5
R = 5, L = 15

Fig. 3: Red: Smoothest GM f(x) under specifications zero mean
and unit variance in the first example for different numbers of root
mixture components R and corresponding mixture components L.
Blue: Corresponding mixture components fi(x), i ∈ 1:L. Green:
Gaussian density with zero mean and unit variance as reference.

with the FI IMF (f) from (12). This is equivalent to

min
r∈R

IRF (r) s.t. f = r2 , Si(f) = 0 , Si ∈ S , (31)

with the FI IRF (r) from (18) and IMF (f) = IRF (r).
For solving the constrained optimization problem, we use

an unconstrained optimizer (BFGS) with a penalty function
summing up the constraints. The penalty factor is tightened
during optimization until the desired constraint accuracy is
reached.

V. EXAMPLES

We will now give two examples, where we assume a one-
dimensional GM f(x) of the form (1) with L components
of the form (25).

Example zero mean and unit variance: Besides the
constraints on the weights (larger than zero and unit sum), the
specifications are only zero mean and unit variance. We know
that of all pdfs with given covariance matrix, the Gaussian
density minimizes the FI 8 [22] and [23, Lemma 1, p. 184].
Hence, we would expect the GM f(x) to approach a Gaussian
shape when the number of components grows. We force the
mixture components to have a variance less than 1 to avoid the

x →

−4 −2 0 2 4

f(x
)

→

0.0

0.1

0.2

0.3

R = 10, L = 55, order = 4

x →

−4 −2 0 2 4

f(x
)

→

0.0

0.1

0.2

R = 10, L = 55, order = 6

x →

−4 −2 0 2 4

f(x
)

→

0.0

0.1

0.2

R = 10, L = 55, order = 10

Fig. 4: Red: Smoothest GM f(x) with moments up to a certain
order in the second example for a fixed numbers of root mixture
components R and corresponding mixture components L. Green:
Underlying (unknown) density function used for calculating the
moments. Blue: Corresponding mixture components fi(x), i ∈ 1:L.

trivial solution with all components zero mean and variance 1.
The results are shown in the original mixture space M in
Fig. 3 for R ∈ {3, 4, 5} RM components. With (22), we
obtain L = R · (R+ 1)/2 ∈ {6, 10, 15} mixture components.
For L = 6, the number of parameters in the GM f(x) is
not sufficient to approach the expected Gaussian density. For
L = 10, f(x) is closer and for L = 15, f(x) is visually
indistinguishable from the Gaussian. For R = 5 and L = 15,
it is apparent, that not all components significantly contribute
to the density shape as some components are very small.

Example higher-order moments: In this example, we
use the weight constraints and moments up to a certain order.
For generating the moments, a piecewise linear trapezoidal
density function is used, which is shown in green in Fig. 4.
The results are shown in Fig. 4 R = 10 RM components and
L = 55 mixture components and for moment orders up 4,
6, and 10. For an increasing order, the calculated mixture
density comes closer to the underlying true density.

VI. CONCLUSIONS

We derive a closed-form expression for the FI of a GM
density f(x) given in a mixture space M. This is achieved by
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introducing an RM space R and calculating the FI there. The
resulting expression consists of a combination of higher-order
moments of Gaussian densities, containing nonlinear terms
of the component means and covariances. We consider very
general specifications of the shape, probability mass distribu-
tion, and (central) moments of f(x). These specifications can
also typically be described by nonlinear equations containing
component means and covariances. Standard optimization
procedures for minimization under equality constraints can
be employed to find the least-informative GM density f(x)
under the given specifications.

ENDNOTES

1: By selecting the density f(x) from a certain class of densities,
we inadvertently add information.

2: As a generalization, we can also allow ranges or inequalities for
certain specifications. An example would be a mean constraint
of the form E{x} ∈ [−0.2, 0.2]. Another example is a value
constraint of the form f(x0) ∈ [y, y].

3: The underlying pdf f̃(x) is mainly a vehicle for explanation.
However, in some cases, the goal might indeed be to reconstruct
f̃(x) from given moments or samples. It is important to note
that f̃(x) is completely unknown and not used anywhere in the
procedure of calculating the desired pdf f(x).

4: Defining curvature in the multivariate case is much more
complicated, see for example [17].

5: Please note that the summations range in i ∈ [1, R] and j ∈
[i, R] as we exploit symmetry.

6: When we prespecify the minimum number of components L we
desire of a GM in the original mixture space M, the number
of RM components in the RM space R for a full expansion
according to (22) are given by

R =

⌈√
8 · L+ 1− 1

2

⌉
, (32)

where ⌈·⌉ denotes the next largest integer.
7: The covariance matrices Pi are positive-definite and symmetric.

Thus, each Pi is specified by D · (D + 1)/2 parameters.
8: For a given covariance matrix, the Gaussian density also

maximizes the relative entropy [4, p. 411, Example 12.2.1].
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