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To facilitate recursive state estimation in the circular domain 
based on circular statistics, we introduce a general framework 
for estimation of a circular state based on different circular 
distributions. Specifically, we consider the wrapped normal 
(WN) distribution and the von Mises distribution. We propose 
an estimation method for circular systems with nonlinear sys-
tem and measurement functions. This is achieved by relying 
on efficient deterministic sampling techniques. Furthermore, 
we show how the calculations can be simplified in a variety of 
important special cases, such as systems with additive noise, as 
well as identity system or measurement functions, which are 
illustrated using an example from aeronautics. We introduce 
several novel key components, particularly a distribution-free 
prediction algorithm, a new and superior formula for the mul-
tiplication of WN densities, and the ability to deal with nonad-
ditive system noise. All proposed methods are thoroughly eval-
uated and compared with several state-of-the-art approaches.

I.  INTRODUCTION

Estimation of circular quantities is an omnipresent issue, be it the 
wind direction, the heading of a ship, the angle of a robotic revo-
lute joint, the orientation of a turntable, or the direction a car is fac-
ing. In particular, a variety of aerospace applications include cir-
cular estimation problems, such as heading estimation of aircrafts. 
Circular estimation is not limited to applications involving angles, 
however, and can be applied to a variety of periodic phenomena. 
For example, phase estimation is a common issue in signal pro-
cessing, and tracking objects that periodically move along a certain 
trajectory is also of interest. Considering circular estimation prob-
lems is not only motivated by the immediate application on the 
circle. Beyond that, it forms an important foundation for research 
into higher-dimensional estimation problems, involving periodic 

quantities, for example, toroidal estimation of correlated angles, 
estimation of orientation, and estimation of rigid body motions. To 
solve these higher-dimensional problems, a good understanding of 
the circular case is essential.

A. PRIOR WORK ON CIRCULAR ESTIMATION

Standard approaches to circular estimation are typically based 
on estimation techniques designed for linear scenarios that are 
tweaked to deal with some of the issues arising in the presence 
of circular quantities. Early work in this area dates back to the 
1960s and was typically intended for aerospace applications [1]. 
Although much time has passed, this type of approach is still fre-
quently used today [2, 3, 4]. However, modifying linear methods is 
not only tedious and error prone but also yields suboptimal results 
because certain assumptions of these methods are violated. For ex-
ample, solutions based on Kalman filters [5], or nonlinear variants 
thereof [6], fundamentally neglect the true topology of the under-
lying manifold and assume a Gaussian distribution, which is only 
defined on . In the linear case, the use of a Gaussian distribution 
is frequently justified by the central limit theorem. This justifica-
tion no longer holds in a circular setting, as the Gaussian is not a 
limit distribution on the circle.

To properly deal with circular estimation problems, we rely 
on circular statistics [7, 8], a subfield of statistics that deals with 
circular quantities. More broadly, the field of directional statistics 
[9] considers a variety of manifolds, such as the circle, the hyper-
sphere, or the torus. Unlike standard approaches that assume linear 
state spaces, methods based on circular statistics correctly use the 
proper manifold and rely on probability distributions defined on 
this manifold. Circular statistics has been applied in a variety of 
sciences [9, Section 1.4], such as biology [8], bioinformatics [10], 
meteorology [11], medicine [12], space situational awareness [13], 
and geosciences [14].

Early results on circular filtering have been proposed by Will-
sky and Lo [15]. In their work, a Fourier series representation and 
wrapped normal (WN) mixture distributions are used, which yield 
nice theoretical results. However, questions of the issues arising 
in implementation, such as the truncation of the Fourier series to a 
finite number of terms and the reduction of the number of mixture 
components, are only briefly addressed. There has been some more 
recent work on filtering algorithms based on circular statistics by 
Azmani et al. [16], which was further investigated by Stienne et al. 
[17]. Their research is based on the von Mises (VM) distribution 
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and allows for recursive filtering of systems with a circular state 
space. However, it is limited to the identity with additive noise as 
the system equation and the measurement equation. The filter from 
[16] has been applied to phase estimation of global positioning sys-
tem signals [18], as well as map matching [19]. A filter based on 
the WN distribution was developed by Traa and Smaragdis [20] 
for the purpose of azimuthal speaker tracking, but it is limited to 
the identity with additive noise for the system and measurement 
model as well. Chiuso and Picci [21] and Markovic et al. [22] have 
published similar filters based on the VM-Fisher distribution, a 
generalization of the VM distribution to the hypersphere.

We have previously published a recursive filter based on the 
WN distribution allowing for a nonlinear system equation [23]. 
The paper [24] extends this approach to make a nonlinear measure-
ment update possible. Both papers rely on a deterministic sampling 
scheme that is based on the first trigonometric moment. This kind 
of sampling is reminiscent of the well-known unscented Kalman 
filter (UKF) [6]. We have extended this sampling scheme to the 
first two trigonometric moments in [25], so the proposed filters 
are, in a sense, circular versions of the UKF. The developed meth-
ods have been applied in the context of constrained tracking [26], 
bearings-only sensor scheduling [27], as well as circular model 
predictive control [28]. An overview of all of these filters and the 
considered distributions, as well as system and measurement mod-
els, is given in Table I.

B. RELATED TOPICS

There are a number of topics that are closely related to circular 
estimation. We will give a short overview of these topics in this 
section and briefly explain how they differ from circular estima-
tion. However, we will focus on the specific problem of circular 
estimation for the remainder of the paper to maintain a reasonable 
length of the discussion.

Beyond estimation on the circle, it is possible to consider es-
timation on more complex manifolds, e.g., on the sphere [21], the 
torus [29], the group of rotations SO(n) [30], the cylinder [13, 31], 
or the group of rigid body motions SE(n) [32, 33]. Algorithms for 
estimation on these manifolds are often based on generalizations of 
circular methods. Thus, it is essential to understand estimation on 
the circle, as discussed in this paper, before moving on to higher-
dimensional problems.

Furthermore, there is much interest in applications in which 
the estimated state is a linear quantity, but the measurements are of 
a periodic nature [34], e.g., bearings-only tracking [27]. Although 
there is a close relation to circular estimation and it is also possible 
to derive solutions based on circular statistics, this is a distinct 
problem and it has to be treated differently.

Another closely related problem is the propagation of random 
variables through trigonometric functions, i.e., given the distribu-
tion of a random variable x, we seek to find the probability den-

TABLE I

Circular Filters Based on Directional Statistics

System Measurement

Publication Distribution Model Noise Model Noise

Willsky and Lo [15] WN mixture “Linear” Additive “Linear” Additive

Azmani et al. [16] VM Identity Additive Identity Additive

Markovic et al. [22] VM-Fisher Identity Additive Identity Additive

Traa and Smaragdis [20] WN Identity Additive Identity Additive

Kurz et al. [23] WN/VM Nonlinear Additive Identity Additive

Kurz et al. [24] WN Nonlinear Additive Nonlinear Any

Kurz, Hanebeck, and 
Gilitschenski, 2016

WN/VM Nonlinear Any Nonlinear Any
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sity function (pdf) or the moments of sin(x) or cos(x). This kind of 
problem is very widespread, e.g., in Rayleigh scattering [35, 36].

The problems of fitting a circle to data [37] or tracking an 
extended object [38] with a circular shape are also related to 
circular estimation, or, at least, they seem to be at first glance. 
However, neither state nor measurements are restricted to the 
circle in this case, i.e., this type of problem does not involve 
the circular topology and is usually not solved using directional 
statistics. Circular estimation may, however, be of interest when 
fitting or tracking more complicated shapes whose orientation 
has to be estimated.

A further well-known circular problem is Bertrand’s problem. 
It considers “random” straight lines intersecting a circle and the re-
sulting probability distribution of the length of the intersecting line 
segment [39]. The issue consists in the formal definition of what 
it means to draw “random” straight lines, as different methods for 
obtaining these lines affect the resulting distribution. Unlike circu-
lar estimation problems in which we are restricted to values on the 
circumference of the unit circle, this problem considers the area 
inside the circle.

C. CONTRIBUTION

This paper summarizes and combines our results, as well as ex-
tends the previous work by a number of additional contributions, 
and gives an introduction to the topic of circular filtering and pro-
vides an overview of our circular filters. Although many of the fun-
damentals can be found scattered through literature, e.g., [7, 8, 9, 
40], we tried to make the paper as self-contained as possible.

The contributions of this paper can be summarized as follows: 
First of all, we propose a general filtering framework that can be 
used in conjunction with a variety of system and measurement 
equations, different types of noise, and both the WN and the VM 
distributions. Our previous publications [23, 24], as well as the 
work by Azmani et al. [16], can be seen as special cases of the 
proposed framework. Furthermore, we introduce a new multiplica-
tion formula for WN distributions that outperforms the solution 
proposed in [23]. We generalize the prediction step from [23] to a 
moment-based solution that does not need to assume any kind of 
distribution. Compared with [24], we add the ability to deal with 
nonadditive noise not only in the measurement update but also in 
the prediction step. Finally, we perform a thorough evaluation, 
where we compare the proposed techniques to several state-of-the-
art approaches.

II.  PROBLEM FORMULATION

In this section, we formulate the problems under consideration and 
summarize some standard approaches that have been used to ad-
dress the issues associated with periodicity.

A. CIRCULAR FILTERING

Circular filtering considers estimation problems on the unit circle, 
which is commonly parameterized as the set of complex numbers 
with unit length, i.e., . To allow for a more conve-

nient one-dimensional (1D) notation, we identify S1 with the half-
open interval , while keeping the topology of the circle. 
Together with the operation,

for all x, y  [0, 2p) with standard addition  on , the circle 
S1 forms an Abelian group. Because S1 with the topology given 
previously has the structure of a differentiable manifold and + is 
continuous with respect to that topology, (S1, +) is a Lie group. This 
implies that transition maps between different charts are differen-
tiable and also serves as a justification for considering addition and 
subtraction on the unit circle.

We consider a system whose state xk at time step k is a value 
on the unit circle S1. System and measurement models are assumed 
to be given. We propose several methods to deal with different 
types of models. More complex models necessitate the use of more 
sophisticated algorithms, and conversely, simpler models allow the 
use of computationally less expensive algorithms.

1) System Model: In this work, we consider a system model 
whose state evolves according to the general system equation

 (1)

with (nonlinear) system function ak: S
1 × W → S1 and independent 

and identically distributed noise wk  W, stemming from some 
noise space W. Note that W is not necessarily S1 but may be an 
arbitrary set, for example, the real-vector space , some manifold, 
or even a discrete set. Also, there is no assumption that the noise is 
zero mean. An interesting and practically relevant special case is a 
(nonlinear) system with additive noise

 (2)

with ak: S
1 → S1 and wk  S1. In particular, we also consider the 

special case, where ak is the identity, i.e.,

 (3)

2) Measurement Model: The system state cannot be observed 
directly but may only be estimated based on measurements that are 
disturbed by noise. A general measurement function is given by

 (4)

where  is the measurement in the measurement space Z, 
hk : S1 × V → Z is the measurement function, and vk  V is 
arbitrary independent and identically distributed measurement 
noise in a certain noise space V. Note that the measurement and 
noise space can be arbitrary sets, in general. Interesting and spe-
cial cases are measurement functions in which the measurement 
noise is additive, i.e.,

 (5)
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with measurement function hk : S
1 → Z and vk  Z. In this case, 

we require Z to have a group structure with + as the operation. 
Additionally, we consider the more specific case in which hk is the 
identity, i.e.,

 (6)

with .

RemaRk 1 We do not consider linear system models because lin-
earity is a concept of vector spaces, not manifolds [23]. For this 
reason, there are no linear functions on the circle.

example 1 Yaw angle estimation in aeronautics: To illustrate the 
different models discussed in this paper, we consider the problem 
of estimating the yaw angle, or heading, of an airplane.

If we had no other information, we could assume an identity 
system model with additive noise as in (3), i.e., a random walk 
model on the circle. By considering nonzero-mean noise, we could 
also introduce a known offset into the system model, e.g., the rota-
tion since the last time step as obtained from a gyroscope or the 
expected rotation as a result of known control inputs by the pilot. 
A more complicated and nonlinear model with additive (2) or non-
additive (1) noise could, for example, consider the aerodynamic 
properties of the plane.

Models of different complexity can be used for consideration 
of measurements. The simplest case would be an identity measure-
ment model (6), i.e., the yaw angle is directly observed, for ex-
ample, with a magnetometer (if roll and pitch angles are assumed 
to be approximately zero). A more complex nonlinear model could, 
for example, consider position measurements of sensors, say time 
difference of arrival-based signal receivers, mounted at the nose 
and the tail of the plane. In this case, the noise could be modeled 
as either additive (5), i.e., added to the position measurements, or 
nonadditive (4), e.g., the time error in time-of-flight measurements.

B. STANDARD APPROACHES

As circular estimation problems are widespread in a variety of ap-
plications, a number of standard approaches have been employed. 
We introduce some of the most common methods and explain their 
strengths and weaknesses.

1) Gaussian-Based Approaches: Gaussian-based methods 
(wrongly) assume a Gaussian distribution and use standard filter-
ing techniques for Gaussians in conjunction with certain modifica-
tions to allow their application to circular problems.

a) 1D methods: One common approach is the use of a stan-
dard Kalman filter [5] or in case of nonlinear system or measure-
ment functions, UKF [6] with a scalar state xk containing the angle 
qk, i.e., xk = qk (that is, xk is defined on a chart of the manifold). 
However, two modifications are necessary before this approach 
can be used in practice. First, the estimate has to be forced to stay 
within the interval [0, 2p) by performing a modulo operation after 
every prediction, update step, or both. Second, if the measurement 
space is periodic, the measurement needs to be repositioned to be 
closer to the prediction step in certain cases. This problem occurs 
whenever the measurement and the current prediction are more 
than p apart. In this case, the measurement needs to be moved by 
±2p to an equivalent measurement that deviates at most p from the 
prediction. An illustration of this issue is given in Fig. 1. When 
the uncertainty is small, this kind of approach works fairly well, 
but it tends to produce unsatisfactory results if the uncertainty is 
high [23].

b) 2D methods: Another common approach is based on the 
Kalman filter or the UKF with two dimensional (2D) state sub-
ject to a nonlinear constraint. More specifically, an angle qk is 

represented by the state vector , and the 
constraint is  to enforce that  is on the unit circle (i.e., 

 is defined on the space where the manifold is embedded). To 
enforce this constraint,  is projected to the unit circle after each 

Fig. 1. 
This figure illustrates that repositioning of the measurement is necessary to obtain satisfactory performance when using filters 
for linear spaces on circular problems.
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prediction, update step, or both. More sophisticated approaches 
increase the covariance to reflect the fact that the projection op-
eration constitutes an increase in uncertainty [41]. One of the is-
sues of this approach is that the system and measurement models 
sometimes become more complicated when the angle qk is trans-
formed to a 2D vector [26].

2) Particle Filters: Another method that can be applied is 
particle filtering [42]. Particle filters on nonlinear manifolds are 
fairly straightforward to implement because each particle can 
be treated separately. For the particle filter to work, the system 
function and the measurement likelihood both need to respect the 
underlying topology. The reweighting step, as well as the com-
monly used sequential importance resampling are independent of 
the underlying manifold and can be used in a circular setting as 
well. However, issues that are typically associated with particle 
filters arise. If the measurement likelihood function is very nar-
row, particle degeneration can occur, i.e., (almost) all particles 
have zero weight after the reweighting step. Furthermore, many 
particles are required to obtain stable results. Even though these 
problems are less critical in a 1D setting, there can still be is-
sues if measurements with high certainty occur in areas with few 
particles. This can happen when, for example, information from 
sensors with very different degrees of accuracy is fused. Further-
more, note that sampling from certain circular distributions can 
be somewhat involved.

III.  CIRCULAR STATISTICS

Because of the drawbacks of the approaches discussed previously, 
we propose a filtering scheme based on circular statistics [7]. In the 
following, we introduce the required fundamentals from the field 
of circular statistics.

A. CIRCULAR DISTRIBUTIONS

A variety of circular distributions has been proposed in literature 
[8]. We give definitions of all distributions that are required for the 
proposed filtering scheme.
Definition 1 WN distribution: The WN distribution is given by 
the pdf

with x  S1, location parameter m  S1, and concentration param-
eter s > 0.

The WN distribution is obtained by wrapping a 1D Gaussian 
distribution around the unit circle and adding up all probability 
mass that is wrapped to the same point. It appears as a limit dis-
tribution on the circle [23] in the following sense. A summation 
scheme of random variables that converges to the Gaussian dis-
tribution in the linear case will converge to the WN distribution if 
taken modulo 2p. Even though there is an infinite sum involved, 
evaluation of the pdf of a WN distribution can be performed ef-
ficiently, because only few summands need to be considered [43].
Definition 2 VM distribution: The VM distribution is given by 
the pdf

with x  S1, location parameter m  S1, and concentration pa-
rameter k > 0. I0(×) is the modified Bessel function of order 0 [44].

The VM distribution has been used as a foundation for a circu-
lar filter by Azmani et al. [16].
Definition 3 Wrapped Dirac (WD) mixture distribution: The WD 
distribution with L components is given by

with Dirac delta distribution d(×), Dirac positions b1, …, bL  S1, 
and weights g1, …, gL > 0, where .

Unlike the WN and VM distributions, the WD distribution is a 
discrete probability distribution on a continuous domain, obtained 
by wrapping a Dirac mixture in  around the unit circle. WD dis-
tributions can be used as discrete approximations of continuous 
distributions with a finite set of samples.

In this paper, we use the following notation. We denote the den-
sity function of a WN distribution with parameters m and s with 

. If a random variable x is distributed according to this 
WN distribution, we write . The terms  
and  are used analogously.

B. TRIGONOMETRIC MOMENTS

In circular statistics, there is a concept called trigonometric (or cir-
cular) moment.
Definition 4 Trigonometric moments: For a random variable x ~ 
f(x) defined on the circle, its nth trigonometric moment is given by

with imaginary unit i.
The nth trigonometric moment is a complex number and, 

hence, has two degrees of freedom, the real and the imaginary part. 
For this reason, the first moment includes information about the 
circular mean arg m1 = atan2(Im m1, Re m1) as well as the concen-

tration  of the distribution, similar to 
the first two linear moments. The WN and VM distributions are 
uniquely defined by their first trigonometric moment [7]. For a 
Fourier series representation of the density function, the Fourier 
coefficients are closely related to the trigonometric moments ac-

cording to ; see [45, 46].

lemma 1 Moments for WN, VM, and WD distributions: For WN, 
VM, and WD distributions with given parameters, the nth trigono-
metric moment can be calculated according to

A proof is given in [9].
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C. TRIGONOMETRIC MOMENT MATCHING

As both WN and VM distributions are uniquely defined by their 
first trigonometric moment, it is possible to convert between them 
by matching the first trigonometric moment.
lemma 2 Trigonometric moment matching: We define 

 as given in [9].

1) For a given first moment m1, the WN distribution with this first 

moment has the density .
2) For a given first moment m1, the VM distribution with this 

first moment has the density .
3) For a given VM distribution with density 

, the WN distribution with identical first moment has the 

density .
4) For a given WN distribution with density 

, the VM distribution with identical first moment has the 
density .

The proof is given in [23]. Calculation of the function A–1(×) is 
somewhat involved. In [23], we use the algorithm by Amos [47]1 
to calculate A(×) and MATLAB’s fsolve to invert this function. A 
more detailed discussion of approximations of A–1(×) can be found 
in [12, Appendix], [48], [49, Section 2.3].

IV.  DETERMINISTIC SAMPLING

To propagate continuous probability densities through nonlinear 
functions, it is a common technique to use discrete sample-based 
approximations of the continuous densities. A set of samples can 
be easily propagated by applying the nonlinear function to each 
sample individually. This approach can be used for both the predic-
tion and the measurement update steps.

We distinguish between deterministic and nondeterminis-
tic sampling. Nondeterministic sampling relies on a randomized 
algorithm to stochastically obtain samples of a density. Typical 
examples include the samplers used by the particle filter [42] or 
the Gaussian particle filter [50]. Deterministic sampling selects 
samples in a deterministic way, for example, to fit certain moments 
(the sampler used by the UKF [6]) or to optimally approximate 
the shape of the density; see, e.g., [51]. Deterministic sampling 
schemes have the advantage of requiring a significantly smaller 
number of samples, which is why we will focus on this type of 
solution.

A naïve solution for approximating a WN density may be the 
application of a deterministic sampling scheme for the Gaussian 
distribution (such as the sampler used in [6]) and, subsequently, 
wrapping the samples. Even though this technique is valid for sto-
chastic samples, it does not provide satisfactory results for deter-
ministic samples. In extreme cases, wrapping can cause different 
samples to be wrapped to the same point, grossly misrepresenting 
the original density. This problem is illustrated in Fig. 2. For s ≈ 
2.5, one sample is placed at m, and two samples are placed on the 
opposite side of the circle, i.e., the mode of the approximation is 

1  Pseudocode of this algorithm is given in [23].

opposite to the true mode. Furthermore, for s ≈ 5, all three UKF 
samples are wrapped to the same position, i.e., the sample-based 
approximation degenerates to a distribution with a single Dirac 
component even though the true distribution is nearly uniform.

A. ANALYTIC SOLUTIONS

First of all, we consider analytic solutions to obtain determinis-
tic samples. These solutions are based on trigonometric moment 
matching and only provide a small, fixed number of Dirac com-
ponents but are extremely fast to calculate, making them a good 
choice for real-time applications.

In [23], we presented a method to obtain a WD approximation 
with three equally weighted components, which is based on match-
ing the first trigonometric moment (see Algorithm 1). We further 
extended this scheme to obtain a WD with five components by 
matching the first, as well as the second trigonometric moment (see 
Algorithm 2), which, as we proved in [25], necessitates the use of 
different weights.

B. OPTIMIZATION-BASED SOLUTIONS

If a larger number of samples is desired and there are more degrees 
of freedom in the samples than constraints (such as preservation 
of trigonometric moments), optimization-based solutions can be 
used. The number of samples can be adjusted by the user, and an 
optimal approximation is derived by minimizing a distance mea-
sure.

To simultaneously calculate optimal locations and weights for 
the samples, a systematic approach based on VM kernels has been 
proposed in [52]. For a WD mixture, an induced VM mixture is 
compared with the true distribution with a quadratic integral dis-
tance. A specific kernel width is considered for each component, 
which depends on the weight of the component and the value of the 
true distribution at the location of the component. Both the weights 
and the locations of a fixed even number of WD components are op-
timized to obtain an optimal symmetric approximation. Constraints 
in the optimization algorithms are used to maintain a predefined 

Fig. 2. 
Proposed approaches for generating samples of WN distributions with 
different concentration parameters s compared with the naïve approach 
of wrapping samples of a Gaussian with identical s. As s gets large, 
the UKF samples are eventually wrapped to the same location, which 
produces an extremely poor approximation.
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number of trigonometric moments. This approach results in well-
distributed Dirac mixtures that fulfill the moment constraints.
Examples from all discussed methods for deterministic sampling 
are depicted in Fig. 3.

V.  OPERATIONS ON DENSITIES

To derive a circular filtering algorithm, we need to be able to per-
form certain operations on the involved probability densities.

A. SHIFTING AND MIRRORING

For a given density f(x), we want to obtain the density f(c – x) for a 
constant c  S1. This operation is necessary in certain cases of the 
update step. We can split this operation into two steps: mirroring 
to obtain f(–x), and subsequent shifting by c to obtain f(c + (–x)). 
Mirroring  and  yields  and 

 because the distributions are symmetric around 
their mean. Shifting  and  by c yields

and

so the combined operation results in

and

B. CIRCULAR CONVOLUTION

Given two independent circular random variables x1 ~ f1(x1), x2 ~ 
f2(x2), the sum x1 + x2 is distributed according to

where * denotes the convolution. This operation is necessary in the 
prediction step to incorporate additive noise.

WN distributions are closed under convolution, and the 
new pdf can be obtained just as in the Gaussian case [23], i.e., 

. VM distributions are not 
closed under convolution. For this reason, Azmani et al. [16] 
used the approximation from [9], which is given by m = m1 + m2, 
k = A–1(A(k1) × A(k2)). The function A(×) is the same as defined in 
Lemma 2. This approximation can be derived from an intermediate 
WN representation [17]. A similar approximation has been used by 
Markovic et al. for the VM-Fisher case [22, Eq. (7)].

In this paper, we present a more general result that calculates 
the convolution based on trigonometric moments.
lemma 3 Moments after addition of random variables: Assume 
independent random variables x1 ~ f1, x2 ~ f2 defined on the circle. 
For the sum x = x1 + x2, it holds

pRoof 

If matching of the first trigonometric moment is used to fit a 
WN or VM to the density that results from the convolution, the 
solutions for WN and VM distributions from [16] and [23] arise as 
special cases of Lemma 3.
RemaRk 2 In fact, Lemma 3 allows us to calculate the convolu-
tion purely moment based. For this reason, we do not need to as-
sume any particular distribution.2

C. MULTIPLICATION

Multiplication of pdfs is an important operation for filtering algo-
rithms, because it is required for Bayesian inference. In general, the 
product of two pdfs is not normalized and thus, not a pdf. For this 
reason, we consider the renormalized product, which is a valid pdf.

1) VM: VM densities are closed under multiplication [16]. 
It holds that  where 

 k = |m1| with m1 = k1 exp(im1) + k2 
exp(im2).

2) WN: WN densities are not closed under multiplication. In 
the following, we consider two different methods to approximate 
the density of the product with a WN density.

a) WN via VM: In [23], we proposed a method to use the VM 
distribution to approximate the product of two WN densities. More 
specifically, we convert the WN densities to VM densities using 
Lemma 2, multiply according to the VM multiplication formula, and 
convert back to a WN distribution by applying Lemma 2 again. This 
method has the disadvantage that in general, the first trigonometric 

2  In general, the complexity of the density increases with each succes-
sive convolution, so considering a finite number of moments is an 
approximation.

Fig. 3. 
Example of the deterministic sampling of a VM and a WN distribution 
with equal first trigonometric moment. From top to bottom: (a) original 
densities, (b) result of Algorithm 1, (c) result of Algorithm 2, (d) ap-
proach based on VM kernels from [52] for 10 components. Note that the 
result of Algorithm 1 is identical for both densities because only the first 
trigonometric moment is matched.
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moment of the resulting WN does not match the first trigonometric 
moment of the true product. An example can be seen in Fig. 4.

b) WN via moment matching: In this paper, we present a new 
method for approximating the product of WN distributions. This 
method is based on directly approximating the true posterior moments.
theoRem 1 The first trigonometric moment of  

 after renormalization is given by

where  is a 1D Gaussian density with mean m and stan-
dard deviation s and

 (7)

 (8)

 (9)

We give a proof of this theorem in the Appendix. The involved 
integrals can be reduced to evaluations of the complex error func-
tion erf [44, 7.1]. This yields

and

There are efficient implementations of the complex error function 
by means of the related Faddeeva function [53]. Furthermore, the 
infinite sums can be truncated to just a few summands without 
a significant loss in accuracy. For example, the multiplication in 
Fig. 4 requires 5 × 5 = 25 summands for an error smaller than the 
accuracy of the IEEE 754 64-bit double-precision data type [54]. 
Consequently, the proposed method allows for efficient calculation 
of the approximate multiplication of WN densities.

VI.  CIRCULAR FILTERING

Based on the results of the previous section, we derive recursive 
circular filtering algorithms for the scenarios described in Section 
II.A. We formulate the necessary steps without requiring a particu-
lar density whenever possible such that most of the methods can 
be directly applied to WN, as well as VM distributions, and might 
even be generalized to other continuous circular distributions. An 
overview of all considered prediction and measurement update al-
gorithms is given in Table II.

A. PREDICTION

The prediction step is used to propagate the estimate through time.
1) Identity System Model: The transition density is given ac-

cording to

where fw(×) is the density of the system noise. For the predicted 
density, we consider the Chapman-Kolmogorov equation

 (10)

In the special case of an identity system model, this yields

where * denotes the convolution as defined in Section V.B. For a 
VM distribution, this system model has been considered in [16]. If 
a WN distribution is assumed, (10) is a special case of [23] where 
we omit the propagation through the nonlinear function.

2) Nonlinear System Model with Additive Noise: Similar to 
the previous case, the transition density is given by

We approximate the prior density  us-
ing, for example, Algorithm 1 or Algorithm 2 (L = 3 or L = 5, 
respectively). Then, the predicted density can be approximated ac-
cording to

Fig. 4. 
Multiplication of two WN densities with parameters m1 = 2, s1 = 0.7 and 
m2 = 4.95, s2 = 1.3. The true product and the results of both proposed 
approximation methods (VM and moment based) are depicted. Note that 
the true product is not a WN density.
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where  is obtained from the WD  using 
moment matching according to Lemma 2. The convolution can be 
calculated as described in Section V.B.

3) Nonlinear System Model with Arbitrary Noise: In this 
paper, we extend the previous results to deal with arbitrary noise 
in the prediction step. For arbitrary noise, the transition density is 
given by

We approximate the prior density , as 

well as the noise density  Note that 
the noise is not necessarily a circular quantity, and different ap-
proximation techniques may be required. If  the techniques 
presented in [51] may be applied. Then, the predicted density can 
be approximated according to

A continuous density can then be fitted to this result by trigono-
metric moment matching (see Algorithm 3). This algorithm can 
be executed based purely on the trigonometric moments of f(xk) 
and fw(wk), if the deterministic sampling scheme only depends on 
these moments. In that case, we do not necessarily need to fit a 
distribution f (xk+1) to the resulting trigonometric moments but can 
just store the estimate by retaining those trigonometric moments.

B. MEASUREMENT UPDATE

The measurement update step fuses the prediction with a measure-
ment that was obtained according to the measurement equation.

1) Identity Measurement Model: In the case of the identity 
measurement model and additive noise, the measurement likeli-
hood is given by f(zk|xk) = f v(zk − xk). For the posterior density, 
application of Bayes’ theorem yields

where f (xk) is the prior density. Thus, we obtain the posterior den-
sity  as the product of the prior 
density and f v (zk – xk), which can be obtained as described in Sec-
tion V.A. The multiplication depends on the assumed probability 
density and can be performed using the multiplication formulas 
given in Section V.C. For the VM case, this is equivalent to the 
measurement update from [16], and for the WN case, this is equiv-
alent to the measurement update from [23].

2) Nonlinear Model with Additive Noise: For a nonlinear 
measurement function with additive noise, the measurement like-
lihood is calculated according to , as 
given in [24]. The remainder of the measurement update step is 
identical to the case of arbitrary noise as described in the follow-
ing.

3) Nonlinear Model with Arbitrary Noise: For a nonlinear 
update with arbitrary noise, we assume that the likelihood is given. 
The key idea is to approximate the prior density f (xk) with a WD 
mixture and reweigh the components according to the likelihood 
f(zk |xk). However, this can lead to degenerate solutions, i.e., most 
or all weights are close to zero, if the likelihood function is narrow.

We have shown in [24] that a progressive solution as intro-
duced in [55] can be used to avoid this issue. For this purpose, we 
formulate the likelihood as a product of likelihoods

TABLE II

Prediction and Measurement Update Algorithms 

System Model Measurement Model

Method Identity Additive Noise Arbitrary Noise Identity Additive Noise Arbitrary Noise

WN [23] (special case) [23] Kurz, Hanebeck, and 
Gilitschenski, 2016

[23] [24] [24]

VM [16] Kurz, Hanebeck, and 
Gilitschenski, 2016

Kurz, Hanebeck, and 
Gilitschenski, 2016

[16] Kurz, Hanebeck, and 
Gilitschenski, 2016

Kurz, Hanebeck, and 
Gilitschenski, 2016

Moment 
based

Kurz, Hanebeck, and 
Gilitschenski, 2016

Kurz, Hanebeck, and 
Gilitschenski, 2016

Kurz, Hanebeck, and 
Gilitschenski, 2016

— — —
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where l1, …, ls > 0 and . This decomposition of the 
likelihood allows us to perform the measurement update step 
gradually by performing s partial update steps. Each update step is 
small enough to prevent degeneration, and we obtain a new sam-
ple set after each step, which ensures that the differences between 
the sample weights remain small. To determine l1, …, ls and s, 
we require that after reweighing the quotient between the small-
est weight gmin, and the largest weight gmax is not below a certain 
threshold R  (0,1) i.e.,  Using the conservative bounds

this leads to the condition

where  is the deterministic approxima-
tion at the nth progression step.3 The progression continues until 
Sn ln = 1. This method can be applied in conjunction with WN, as 
well as VM distributions (see Algorithm 4).

VII.  EVALUATION

A. PROPAGATION ACCURACY

To evaluate the deterministic sampling as introduced in Section IV, 
we investigate the accuracy when performing propagation through 
the nonlinear function g: S1 → S1,

where c  [0, 1) is a parameter controlling the strength of the non-
linearity, and  refers to multiplication in the field of real numbers 

. Furthermore, we consider the density  that we want 
to propagate through g(×). For this purpose, we sample  
deterministically using the methods described in Section IV and 
obtain . Then, we apply g(×) component-
wise, which yields .
The true posterior is given by

and can only be calculated numerically. We evaluate the first and 
the second trigonometric moment , i = 1, 2 of the resulting WD 
distribution and compare it to the first and the second trigonomet-
ric moment  of the true posterior, which is obtained by 
numerical integration.4 The considered error measure is given by 
3  Compared with [24], we extend the progressive scheme to handle 

discrete approximations with nonequally weighted components in 
this paper.

4  Numerical integration produces very accurate results in this case 
but is too slow for use in practical filtering applications.

 where |⋅| is the Euclidean norm in the com-
plex plane. Additionally, we fit a WN density to the posterior WD 
by trigonometric moment matching and numerically compute the 
Kullback-Leibler divergence

 (11)

between the true posterior and the fitted WN. The Kullback-Leibler 
divergence is an information theoretic measure to quantify the in-
formation loss when approximating f true with f fitted. This concept is 
illustrated in Fig. 5.

The results for different values of s are depicted in Fig. 6. 
We compare several samplers, the analytic methods with L = 3 
components (Algorithm 1) and L = 5 components (Algorithm 2, 
parameter l = 0.5) from Section IV.A, as well as a sampling with 
50 equidistant samples that are weighted according to the pdf. It 
can be seen that the analytic solution with L = 5 components is 
significantly better than the solution with L = 3 components. The 
equidistant solution is computationally more demanding but gives 
almost optimal results. However, the analytic solution with L = 
5 components has comparable performance in terms of the Kull-
back-Leibler divergence even though the posterior moments are 
not calculated as accurately.

B. MOMENT-BASED WN MULTIPLICATION

In this evaluation, we compare the two methods for WN multi-
plication given in Sections V.C.2a and Sections V.C.2b. For two 
WN densities  and  we calculate the true 
product  and compare it to the 
WN approximation f fitted.

To determine the approximation quality, we compute the Kull-
back-Leibler divergence (11). The results for different values of 
s1, m2, and s2 are depicted in Fig. 7. We keep m1 fixed because only 
the difference between m2 and m1 affects the result. Multiplication 
is commutative, so we consider different sets of values for s1 and 
s2 to avoid redundant plots.

As can be seen, the moment-based approach derived in Sec-
tion V.C.2b significantly outperforms the approach from Section 
V.C.2a in almost all cases. In particular, the new approach is supe-
rior for small uncertainties.

C. FILTERING

To evaluate the proposed filtering algorithms, we simulated several 
scenarios. First of all, we distinguish between models with additive 
and with a more complex noise structure. In the case of additive 
noise, we consider the system function

 (12)

with two parameters c1 = 0.1, c2 = 0.15, noise  
and  is multiplication in the field of real numbers . Intuitively, 
c1 determines the degree of nonlinearity, and c2 is a constant angu-
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lar velocity that is added at each time step. For the case of arbitrary 
noise, the system function is given by

 (13)

with the same c1, c2, and wk as shown previously. In both cases, the 
nonlinear measurement function is given by

with additive noise  h  {3, 0.1, 0.01}. An 
overview of all considered scenarios is given in Table III.

In the scenarios with additive system noise, we compare the 
proposed filter to all standard approaches described in Section 
II.B, i.e., a UKF with 1D state vector, a UKF with 2D state vector, 
and particle filters with 10 and 100 particles. To handle nonad-
ditive noise with the UKF, typically state augmentation is used, 
which is not applicable in scenarios with arbitrary noise. For this 
reason, we only compare the proposed approach to the particle 

Fig. 6. 
Propagation of  through the function g(×) with nonlinearity parameter c.

Fig. 5. 
Propagation of a WN distribution with parameters m = 0.1, s = 1 through the nonlinear function g by means of a deterministic 
WD approximation with five components. In this example, we use c = 0.7.
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filters in the nonadditive noise case. The initial estimate is given 
by , whereas the true initial state is on the opposite 
side of the circle  i.e., the initial estimate is poor, which 
is difficult to handle for noncircular filters. For the circular filter-
ing algorithm, we use the deterministic sampling method given in 
Algorithm 2 with parameter l = 0.5. The progression threshold is 
chosen as R = 0.2.

To evaluate the performance of different filters, we consider 
a specific error measure that takes periodicity into account. The 
angular error is defined as the shortest distance on the circle

This leads to an angular version of the commonly used root mean 
square error (RMSE)

between estimates xk and true state variables . We simulated the 
system for kmax = 100 time steps and compared the angular RMSE 
of all estimators. The results from 100 Monte Carlo runs are de-
picted in Fig. 8.

In the scenarios with additive noise, it can be seen that the pro-
posed filter performs very well, regardless of the amount of noise. 
Only the particle filter with 100 particles is able to produce similar 
results. However, it should be noted that the proposed filter uses 
just five samples. The particle filter with 10 particles performs 
much worse and fails completely for small noise as a result of par-

ticle degeneration issues. Both variants of the UKF perform worse 
than the proposed filter. Particularly the UKF with 2D state does 
not work very well, which can be explained by the inaccuracies in 
the conversion of the 1D into the 2D noise.

When nonadditive noise is considered, the proposed filter even 
significantly outperforms the particle filter with 100 particles. As 
a result of the low number of particles and the associated issues 
regarding particle degeneration, the particle filter with 10 particles 
has the worst performance.

Even though a particle filter with a 1D state and 100 particles is 
tractable to use in practice, the proposed approaches have several 
significant advantages. First of all, the methods are deterministic, 
i.e., the results are reproducible, and certain steps can be performed 
in an optimal way rather than using a stochastic approximation. 
Because of the smaller number of samples, they can be faster when 
the system or likelihood functions are expensive to evaluate. A fur-
ther comparison with the particle filter has been performed in [46, 
Figs. 2 and 4], which shows fairly slow convergence with respect 
to the number of particles. Also, particle filtering approaches tend 
to scale very badly with the number of considered dimensions, 
whereas some of the proposed approaches can also be generalized 
to higher-dimensional manifolds.

Finally, we would like to mention that the proposed filter was 
also independently evaluated by Nitzan et al. [56] and shown to 
achieve the Bayesian Cramér-Rao lower bound. Also, it outper-
formed a particle filtering approach and the Fourier-based solution 
by Willsky and Lo [15].

Fig. 7. 
Kullback-Leibler divergence between the true product of WN densities and the proposed approximations.
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TABLE III

Evaluation Scenarios

Scenario
System 

Function
Measurement 

Noise Cv

Small (12) 0.01 × I2 × 2

Medium (12) 0.1 × I2 × 2

Large (12) 3 × I2 × 2

Small-nonadditive (13) 0.01 × I2 × 2

Medium-nonadditive (13) 0. 1 × I2 × 2

Large-nonadditive (13) 3 × I2 × 2

VIII.  CONCLUSION

In this paper, we presented a framework for recursive filtering on 
the circle. The proposed filtering algorithms can deal with arbitrary 
nonlinear system and measurement functions. Furthermore, they 
can be used in conjunction with different circular probability distri-
butions. We have shown that the prediction step can be performed 
based on trigonometric moments only, without ever assuming a 
particular distribution. These algorithms are applicable to a wide 
range of problems, for example in aerospace applications, robotics, 
and signal processing.

For the purpose of evaluation, we have considered several as-
pects of the proposed methods. First of all, the accuracy of de-
terministic approximations was evaluated by considering the error 
when using them to propagate a continuous distribution through a 
nonlinear function. We have found that the proposed deterministic 
approximation with five samples yields good results for most prac-
tical scenarios. Second, we evaluated the novel moment-based WN 
multiplication method and showed that it is superior to the previ-

ously published method based on fitting a VM distribution. Finally, 
we evaluated the proposed filtering algorithms in several scenarios 
and compared it to state-of-the-art approaches. These simulations 
show the advantages of using a circular filtering scheme compared 
with traditional methods intended for the linear case.

Future work may include extensions of the proposed methods 
to other manifolds, such as the torus or the hypersphere. Addition-
ally, consideration of multimodal circular distributions may be of 
interest, for example by means of WN or VM mixtures.

An implementation of the proposed algorithms is available as 
part of libDirectional, a MATLAB library for directional statistics 
and directional estimation [57].  

APPENDIX.  PROOF OF THEOREM I

The true renormalized product is given by f(x) = c × f(x; m1, s1) × f(x; 
m2, s 2), where c renormalizes the product, i.e.,

We calculate

Fig. 8. 
RMSE (in radians) for different filters obtained from 100 Monte Carlo runs for additive noise (top) and nonadditive noise (bottom).
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where we use the dominated convergence theorem to interchange 
summation and integration. We use the abbreviations in (7)–(9) 
based on the multiplication formula for Gaussian densities given 
in [58,8.1.8].

To compute the renormalization factor c–1, we use a similar 
derivation and obtain
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