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Abstract — Both, the ISO-GUM [1] and the Supplement
S1 of the GUM [2] require expressing the knowledge about
the measurement process by a so-called measurement func-
tion [3], which represents the mathematical relationship
between the relevant parameters, the influence quantities,
and the measurand(s). Nevertheless, both documents are
confined to lumped-parameter systems in the steady state.
Since dynamic measuring systems gain more and more
importance, modern uncertainty determination must develop
appropriate modelling approaches for dealing with dynamic
measurements. This paper exemplarily describes a possible
modelling approach for dynamic measurements that utilizes
discretized state-space forms. The basic role of the cause-
effect approach and its necessary inversion for the
uncertainty evaluation is emphasized. The paper is an
extension and refinement of former work of the authors [4].
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1. INTRODUCTION

For evaluating the measurement uncertainty, the GUM
framework [1, 2] requires to express the knowledge about a
measurement by the so-called measurement function [3],
which represents the mathematical relationship between the
relevant parameters, the influence quantities, the
indication(s), and the measurand(s). But the GUM
framework [1, 2] does not (yet) provide any assistance on
modelling of measurements. Moreover, today it is confined
to lumped-parameter systems in the steady state.

This paper describes a modelling approach that starts
from a cause-effect analysis of the measurement process.
For modelling of dynamic measurements in the time
domain, discretized state-space forms are proposed. These
mathematical forms originate from signal and system
theory. Due to their obvious advantages (see Section 5), they
form an appropriate means for modelling of measuring
systems.

2. THE CAUSE-EFFECT APPROACH AND THE
MEASUREMENT FUNCTION

In measurement, usually the measurand and other in-
fluence quantities can be seen as causative signals which
are physically transformed by the measuring system into
effects, for example into indications. Therewith, the
measuring system assigns values to the measurand(s), and
the system is influenced by system-disturbing influence
quantities. The cause-effect approach is the most commonly
used and comprehensible methodology for representing
basic relationships in modelling of measurements [5, 6]. It is
based on the constitutions of the path of the measurement
signal from cause to effect. A model that describes the
cause-effect behaviour of a measuring system or sensor is
often termed 'measurement equation’ or 'sensor equation’.

In contrast to this, for determining the measurement
uncertainty, usually an ‘inverse model' is needed that
establishes the relationship between the 'target quantity’, i.e.
the measurand(s), ¥, and all relevant influence quantities
and the indication(s), X = (Xi,..., Xy)". So far, this model
category has been termed 'model equation' or 'measurement
reconstruction model' [5].
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Fig. 1. Comparison of model categories: 'Measurement equation'
vs. 'model equation' or 'reconstruction model' or ‘measurement
function’ [4-6].
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The new ISO IEC Guide 99 (‘VIM 3’) [4] uses the term
‘measurement function” which is generally expressed as



Y:fM (X],...,XN). (1)

Fig. 1 illustrates the difference between the two model
categories.

In practice, due to its comprehensibility and deducibility
from the real system, the cause-effect approach almost
always forms the basis for the modelling of measurements.
The cause-effect approach itself is founded on the transfer
behaviour of the functional elements of the measuring chain.

3. DESCRIBING AND MODELLING THE
TRANSFER BEHAVIOUR

Measuring systems are usually modelled the same way
as any other technical information system. First, the system
is decomposed and modularized into functional elements.
Then, the transmission behaviour of each functional element
is mathematically described [5-6]. The so-called transfer
function [7] relates the output signal(s) to the input signal(s):

Xour=h X, 2

where Xiy = Xivt--.s XIN”)T — input signal(s), Xoyr — output
signals, and & — transfer function.

Fig. 2 exemplarily shows a depiction of a general steady-
state transmission element (a) and its application to an
example (b) [6].
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Fig. 2. General transmission element: (a): General depiction. (b):
Example: air buoyancy correction. Symbols: & — transfer function;
(XiNgsees X))t = Xy — input signal(s); Xour — output signals; W —
air buoyancy correction in terms of mass; p, — air density, pg —
density of the body; m, — uncorrected (true) mass [6].

In measurement, the great majority of systems are treated
as being linear and time-invariant [6]. Therefore, a proper
description of this system category is of great importance in
metrology and industrial measurement. Moreover, today, in
analytical metrology, it is best practice to treat even slightly
nonlinear and time-variant systems this way with account-
ting for additional uncertainty contributions owing to
nonlinearity and dynamic effects [6].

The transfer function of a time-invariant system or
transmission element is represented by an algebraic equation
(see Table 1). For a linear system, the transfer function
consists of constant transmission factors,

Xovr=h Xn)=A = A, An)' A3)

where A = (A,..., Am)T are constant factors.

Linear and time-invariant transfer functions can easily be
inverted into the so-called ‘measurement function’ [3] or
'reconstruction model' (see Equation (1) and Section 2).

But to an increasing extend, dynamic measuring systems
gain importance in metrology and industrial measurement.
The time-dependent behaviour of these systems or transmis-
sion elements results from transient and storage effects
affecting the quantity of interest. This might be briefly
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Table 1. Survey on static and dynamic systems along with tools for
their appropriate mathematical description.

explained with an example [4, 6, 10]: A liquid-in-glass
thermometer that indicates the ambient air temperature 9,
plus its (statical) instrumental error, Jnp = 9, + A9insTRS 1S
at the time #, being immersed into a water bath with
temperature Jg. Then, the cause-effect relationship of the
measurement and temperature equalization process may by
expressed by the following differential equations

d$s
Fo =% +Ase =T - )]
dt
Consequently, the model equation becomes
dg
&= A% s =T d;h > )

where T - i

=09,y (1) can be seen as dynamic error

component, whose expectation is approximately

9oy (1) = (Fp - ) - exp (t_t"j [5-6,9].

In general, dynamic measuring systems can be classified
as lumped-parameter systems or distributed-parameter
systems. The key characteristic of a lumped-parameter
system is that the state of the system, which uniquely
describes the system behaviour, depends only on time. In the
time domain, it is generally described by a set of ordinary
differential equations [7]. Table 1 gives an overview on the



mathematical tools used for the description of analogue
static and dynamic systems in both the time domain and the
frequency domain [6-8].

It should be emphasized that in today's practice, the
system description is usually discretized. Discretization
allows for treating many types of systems as being linear (at
a discrete point of time) and offers advantages for digital
signal processing [11].

4. INVERTING THE TRANSFER FUNCTION

Whereas for linear and linearizable systems, the
measurement function [3] is usually established by alge-
braically inverting the mathematical cause-effect rela-
tionship expressed by the transfer function, in case of non-
linearizable and dynamic measuring systems this might be
awkward, i.e., in case of so-called ill-posed inverse pro-
blems.

Alternatively to algebraically inverting the cause-effect
relationship, for uncertainty evaluation, the following
strategies might be applied:

(a) Incorporating the mathematical cause-effect-
relationship as a so-called ‘Model Prior’ into the
‘Likelihood” of the Bayes Theorem [9] and
computing the ‘Joint Posterior’ probability density
function (pdf) for the measurand.

(b) Estimating the parameters of the measurement
function [3] by means of recursive estimation
algorithms (see Section 4), such as, for example,
Kalman Filters.

(c) Combinations of (a) and (b).

5. STATE-SPACE FORMS

State-space forms are a useful alternative approach to
describing dynamic measurements in the time domain. In
general, they consists of a combination of a system equation
(6) and a so-called output equation (7) [8, 9] according to

Z:fS[Z(t), XIN(I)’ t]’ (©6)

Xout(®) = four [Z(2), Xin(®)], @)

where the state vector Z represents the present state of the
system. For example, an appropriate state variable (vector)
may be the (real) temperature of a thermometer immersed
into a water bath (see Section 3).

State-space forms are mathematically equivalent to the
description by means of ordinary differential equations (see
(4)). The relevant advantages are:

(a) technically easy interpretation of the state vector

(b) having first order differential equations only

(a) allowing to easily derive the input and the output
quantities/vectors from the state vector/variable.

Additionally, time discretization results in a finite-state
form that basically allows to treat a measuring system as
being linear (and time-invariant) at a discrete state Z; [11].
Consequently, (6) and (7) become

Zin =AcZi+ By - Xing (®)
Xouti = Ck Z (+ Dy Xing)s 9

where k indicates a discrete point in time and A;, B;, C; and
D, representing constant transmission vectors at k.

With a view to evaluate the (measurement) uncertainty
for a (measurement) process described in space-state form,
the above variables (vectors) X, Xour and Z are to be
described by appropriate probability density functions (pdf)
g(Xmw), gXoum) and g(Z;), which represent the incomplete
knowledge about the variables (vectors). Furthermore, based
on the existing knowledge about the measuring system, both
the state equation and the output equation may be
augmented by additional noise/uncertainty components to
account for the imperfection in modelling of the whole
(measurement) process.
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Fig. 3. Illustration of the example described: Modelling of dynamic
error and uncertainty.

For better illustration of the application of state-space
forms to measuring systems, the thermometer example
given in Section 2 is changed and extended to a calibration
of the instantly immersed thermometer, and the bath
temperature is made known by a standard thermometer (see
Fig. 3) [4, 10]. Assume, the calibration aims at the (steady-
state) systematic error Adnstr- Obviously, the (real)
temperature of the thermometer to be calibrated, Jr,, might
be taken as a state variable, and the bias-corrected
temperature indicated by the standard, .9, is an appropriate
system input. Then, the discretized system and output
equations would formally read as

Zin=Ay-Zi+ B - ASnstr + By 5. (10)
Xoutk = ok =Zi + Wi, (11)

where v, represents a random uncertainty component. Fig. 4
illustrates the basic structure of this model [4, 10].
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Fig. 4. Basic structure of a discretized state-space model in
accordance with Equations (10) and (11) [4, 11].



6. MODEL-BASED ESTIMATOR

Assume the above example (see Figure 4 and Equations
(10) and (11) in Section 3): At the end of a thermometer-
production process, the instruments are calibrated, and the
measurand is the (steady-state) instrumental error. The
calibration is carried out by immersing the thermometers
into a water bath of known temperature. For efficiency
reasons, one cannot wait until the thermal steady state is
reached. Therefore, a good estimate of the unknown dyna-
mic error is needed. This estimation can be carried out on
the basis of a state-space model [4, 7, 10]. Fig. 5 illustrates
the idea [10]: Both the uncertainties for the system equation
and the output equation are taken into consideration. The
system input and the state vector are described by
appropriate PDFs. Due to the fact that in the given example
the output quantity Xoym, Which is chosen to be the
indication of the instrument to be calibrated (see Equations
(10 and (11)), is well known, the (easy obtainable) inverse
output equation might be used for obtaining a second
estimate of the state-vector PDF g (Z,) that is derived from
real measurement data. Employing the Bayes theorem, this
estimate is used to permanently update the PDF g, (Z))
provided by the system equation. For an optimal estimation
result, g. (Z;), possible systematic uncertainty contribution,
which can result in a significant covariance of the states Z;
and Z,,,, are to be taken into consideration. Therefore, the
estimation algorithm used for the ‘Bayesian step’ (see
Figure 5) must be capable to cope with unknown
correlation, by employing, for example, so-called covariance
bounds [10, 12].
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Fig. 5. Model-based estimator [4,10] for the example given (see
[4D).

Based on real input data, this model-based estimator has
successfully been proven [4, 10].

The possible physical definitions and allocations of the
state-space vectors (see Equations (8) and (9)) to a particular
measurement process mainly depends on the model structure
of the process or system and, hence, on the measurement
method [3] utilized [5].

7. CONCLUSION

Modelling the measuring process is a necessary task for
evaluating measurement results and ensuring their

reliability. Since dynamic measurements gain more and
more importance, modern uncertainty evaluation must
develop appropriate modelling approaches. It is exemplarily
demonstrated that discretized state-space forms in
connection with model-based estimators are a suitable
alternative for modelling dynamic measurements in uncer-
tainty evaluation. First results show the performance and the
potential of this approach.

Acknowledgement: The authors wish to thank Felix Sawo
for valuable diskussion and comments.

REFERENCES

[1] ISO 1993 Guide to the Expression of Uncertainty in
Measurement (GUM) 1* edn, corrected and reprinted
1995 (Geneva: International Organization for
Standardization (ISO)).

[2] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and
OIML Evaluation of measurement data — Supplement
1 to the Guide to the Expression of Uncertainty in
Measurement — Propagation of distributions using a
Monte Carlo method.

[3] ISO IEC Guide 99:2007. International vocabulary of
metrology — Basic and general concepts and
associated terms (VIM). International Organization for
Standardization (ISO) Geneva 2007.

[4] Sommer, K.-D.; Hanebeck, U.; Krystek, M. and Sawo,
F.: Modelling of Dynamic Measurement Systems and
Uncertainty Analysis Employing Discretised State
Space Forms. Proceedings of the IMEKO Conference
on Advanced Mathematical and Computational Tools
in Metrology and Testing (AMCTM). ENS Cachan
(France), 23 - 25 June 2008.

[5] Sommer, K.-D.; Siebert, B.R.L.: Systematic Approach
to the Modelling of Measurements for Uncertainty
Evaluation, Metrologia 43 (2006) 4.

[6] Sommer, K.-D.: Modelling of Measurements, System
Theory and Uncertainty Evaluation. In: Pavese, F. and
Forbes A. B. (Eds.) Data Modelling for Metrology and
Testing in Measurement Science, Springer, 2009.

[7] Kliencke, U.; Jidkel, H.: Signale und Systeme,
Oldenbourg Verlag Miinchen Wien 2005.

[8] Hemmi, P.; Profos, P.: Dynamische Messfehler. in
Profos, P.; Pfeifer, T. (Hrsg.):Grundlagen der Mess-
technik, R. Oldenbourg Verlag Miinchen Wien 1997.

[9] Lira, L.: Evaluating the Measurement Uncertainty.
Institute of Physics Publishing Bristol and Philadelphia
Ltd, 2002

[10] Sawo, F.; Hanebeck, U.D.; Sommer, K.-D.: A
Bayesian Approach to Consistently Describing and



[11]

[12]

Analysing Dynamic and Distributed Parameter
Measurement Systems, 238" PTB Seminar on Analysis
of Dynamic Measurements, Berlin, 6" November
2007.
http://ib.ptb.de/de/org/8/Nachrichten8/2008/grundlage
n/seminar.html

Oppenheim, A. V.; Schafer, R.W.; Buck, J.R.: Dis-
crete-Time Signal Processing. (2nd Ed.) Pearson Edu-
cation / Prentice Hall 2004 (ISBN 3-8273-7077-9) .

R.H. Deaves: Covariance bounds for augmented state
Kalman filter application, Electronic Letters, Vol. 35,
Iss. 23, pp. 2062-2064.



