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Optimal Sequence-Based Control and
Estimation of Networked Linear Systems

Optimale sequenzbasierte Regelung und Schätzung digital vernetzter linearer Systeme

Jörg Fischer, Marc Reinhardt, and Uwe. D. Hanebeck, Karlsruhe Institute of Technology (KIT)

Vorgestellt wird ein einheitlicher Ansatz zur sequenzbasierten Regelung linearer, digital
vernetzter Systeme mit mehreren Sensoren. Übertragungsverzögerungen und
Datenverluste zwischen Regler und Aktor werden durch das Senden von
Regelungssequenzen kompensiert. Weiterhin wird die sequenzbasierte
Regelungsphilosophie auf den Datenkanal zwischen Sensoren und Regler übertragen,
ohne dabei die Netzwerklast zu erhöhen. Hierzu wird eine Erweiterung des sogenannten
Hypothesizing Distributed Kalman Filter (HKF) vorgestellt und in den übergeordneten
sequenzbasierten Regelungsentwurf integriert.

In this paper, a unified approach to sequence-based control and estimation of linear
networked systems with multiple sensors is proposed. Time delays and data losses in the
controller-actuator-channel are compensated by sending sequences of control inputs.
The sequence-based design paradigm is further extended to the
sensor-controller-channels without increasing the load of the network. In this context, we
present a recursive solution based on the Hypothesizing Distributed Kalman Filter
(HKF) that is included in the overall sequence-based controller design.
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Zeitverzögerungen, Paketausfälle, Hypothesizing Distributed Kalman Filter (HKF).
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1 Introduction

With advances in the development and distribution
of modern network technologies such as Ethernet or
WLAN (IEEE 802.11), general purpose networks and
cordless communication has become an easy and cheap
alternative to complex field buses. Though new flexibi-
lity is acquired, the communication is typically less re-
liable than in wired real-time system architectures and,
hence, users are faced with additional challenges regar-
ding network-specific disturbances such as transmission
delays and data losses. In control theory, these kinds of
network related problems are investigated in the area of
Networked Control Systems (NCS).

In the NCS community, several approaches have been
proposed that consider transmission delays and stocha-
stic data losses in the controller design (see [1] for an
overview). In this contribution, we focus on a design phi-

losophy called sequence-based control, which stems from
the idea that modern digital communication networks
usually transmit data in form of atomic packets, which
enforce that either all data of a packet is received or no-
ne. Therefore, the idea is to send not only the usual data
over the network but also extra information that is used
to mitigate the network-induced effects. However, the
transmission of extra information increases the network
load and in general causes higher transmission delays
and/or loss rates. Nevertheless, it is a common assump-
tion that transmitting additional information within a
data packet leads to increased system performance as
long as the additional information is not too extensive.

For the connection between controller and actuator
(CA-channel), additional information is usually atta-
ched in form of predicted control inputs that are ap-
plicable at future time steps. The actuator stores these
control inputs in a buffer so that it can fall back upon a
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predicted control input in case a data packet is lost or
delayed.

In literature, three major lines of sequence-based con-
troller designs can be distinguished. The first kind of
methods is based on a nominal controller that is desi-
gned for the system without consideration of networked-
induced effects and that is extended afterwards to ge-
nerate sequences [2, 3]. Another line of methods stems
from Model Predictive Control (MPC) theory, where the
control sequences are generated as byproduct of solving
an open-loop receding-horizon optimization problem [4].
In the third class of methods, the sequence-based NCS
is formulated as a stochastic optimal control problem
that is solved offline for some system classes [5, 6].

In this contribution, we extend a result of the third
group that has been derived in [5] for linear systems and
TCP-like network connections in two ways (see Sec. 2 for
comments on TCP-like networks). First, we extend the
system by multiple independent sensors that individual-
ly send partial state measurements over the network.
We show that in this scenario the separation principle
holds and discuss the structure of the optimal control
law that depends on the minimum mean squared error
estimate of the state. Second, we apply the sequence-
based design philosophy of the CA-channel to the data
connection between sensors and controller (SE-channel).

An intuitive approach for the latter extension is that
each sensor not only sends the most recent measure-
ment to the controller but also a (finite) set of mea-
surements obtained in former time steps [3]. This way,
the estimation performance is improved since in case a
sensor transmission has been dropped or delayed by the
network, the missing information is also part of followi-
ng transmissions. But, as pointed out above, the sent
measurement sequences should not be too large. In par-
ticular, in the presence of multiple sensors, the network
load increases considerably with the number of measu-
rements transmitted per packet.

Hence, in this paper we investigate an approach how in-
formation contained in (possibly infinite long) measure-
ment sequences can be comprised in recursive variables
and for that reason, assume the sensors to be capable of
performing minor processing tasks. While the Kalman
Filter is the optimal approach when all measurements
can be processed at one node [1], the estimation quali-
ty is no longer optimal when local Kalman Filters are
employed on multiple sensors [7].

As we are interested in an estimation principle that is
equivalent to processing the respective measurement se-
quences, we utilize recent results in estimation theory
where it has been shown in form of the so called Dis-
tributed Kalman Filter (DKF) [8, 9] that measurement
data can be comprised by a group of independent lo-
cal sensors in a way that the fused result still yields a
globally optimal result.

Unfortunately, in the presence of lossy communication
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Figure 1: The considered scenario with one actuator and mul-
tiple sensors that are connected to the controller via a network.

networks, the algorithm does not work because it is ne-
cessary to have a complete set of all sensor data at the
controller side to generate a state estimate. A genera-
lization that manages to provide estimates even under
uncertain conditions is the Hypothesizing Distributed
Kalman Filter (HKF) [10, 11]. The second part of this
contribution focuses on the extension and integration
of the recursive HKF algorithm into the sequence-based
controller design.

The following of the paper is structured as follows. Af-
ter the problem formulation in Sec. 2, we generalize
the sequence-based control result from [5] in Sec. 3 by
showing that the separation principle holds for further
classes of available measurement information. The main
part of this contribution is presented in Sec. 4, where
we derive a generalization of the HKF in order to ex-
tend the sequence-based methology to the measurement
channel. In particular, we propose novel recursive sum
formulas for the HKF, introduce a method to initialize
estimates from measurements, and derive an extension
of the HKF that is capable of handling the subsequent
inclusion of control inputs at the controller side. After
discussing the application of the proposed algorithm, we
give a short summary and an outlook in Sec. 5.

2 Problem Formulation

In this paper, we consider the system setup depicted in
Fig. 1 consisting of a plant that is controlled and obser-
ved over a digital network. The plant is supposed to be
linear and time-invariant and its output is not direct-
ly observable but measured by M ∈ N>0 independent
sensors1 according to

xk+1 = Axk + Buk +wk , (1)

yi
k

= Cixk + vik , (2)

with xk ∈ Rn, uk ∈ Rm, and yi
k
∈ Rqi denote the plant’s

state, the control input applied by the actuator and

1 The setup can easily be extended to the case of multiple
actuators and a time-variant plant. In order to give a concise
description of the unified sequence-based approach we limit
ourselves on this simplier setup.
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the measured output of the i-th sensor (with i ∈ N>0

and i ≤M). The matrices A ∈ Rn×n, B ∈ Rn×m, and
Ci ∈ Rqi×n are known by the controller and the sensors.
The termswk ∈ Rn and vik ∈ Rqi represent mutually in-
dependent, zero-mean, Gaussian white noise processes
with covariance matrices Ξ ∈ Rn×n and Θi ∈ Rqi×qi .
The initial state of the plant is assumed to be Gaus-
sian distributed with mean x0 and covariance matrix
P0.

The digital network connections are subject to time-
varying transmission delays and stochastic packet losses.
The stochastic characteristics of these effects are assu-
med to be known. Furthermore, a TCP-like protocol is
used for transmissions in the CA-channel, what means
that successfully transmitted data packets to the actua-
tor are acknowledged at the controller within the same
time step2. For transmissions between sensors and con-
troller we relax this assumption and consider the less
restrictive case that no acknowledgments are available.
Finally, we assume the network nodes to be synchroni-
zed, data packets to be tagged with a time-stamp, and
that controller, actuator, and sensors are time-triggered.

To compensate for time delays and data losses between
controller and actuator, at every time step the control-
ler sends control sequences to the actuator that not on-
ly contain a control input intended for application in
the current time step uk|k but also NA ∈ N0 control in-
puts for consecutive future time instants. Such a control
packet is referred to as Uk and is of the form

Uk =
[
uTk|k u

T
k+1|k . . . u

T
k+NA|k

]T
, (3)

where, for example, uk+1|k denotes a control input cal-
culated at time step k that is intended to be applied at
time step k + 1. The actuator is equipped with a buffer
to store the control sequence with the most recent infor-
mation (among all received sequences). By applying the
control input of this buffered sequence that matches the
current time step, time delays and losses of subsequent
data packets can be compensated until a packet with
more recent information arrives. In case the actuator
does not receive a new control sequence until the buf-
fer runs out of applicable control inputs, the actuator
applies a known default control input ud.

As a counterpart to the CA-channel, network effects bet-
ween sensors and controller are also compensated by a
sequence-based design philosophy. More precisely, the
sensors not only use the measurement of the current ti-
me step k to generate a data packet but also include

2 A TCP-like network does not reflect realistic Ethernet-
TCP/IP networks, where acknowledgments may be subject
to a considerable time delay. However, it is possible to realize
a TCP-like network connection by, e.g., message prioritiza-
tion. Furthermore, TCP-like networks are also of theoretical
interest since they give insights into the far more complex ca-
ses of real TCP connections or connections where no acknow-
ledgments are provided by the network (as, e.g., for Ethernet
UDP/IP networks).

measurements of the last NS ∈ N0 time steps. The in-
formation used to generate the output packet of the i-th
sensor Zout,i

k can formally be described by

Zout,i
k = g(yik−NS :k) , (4)

where g(·) denotes an arbitrary sensor algorithm and the
notation ya:b denotes the set of measurements {yk|a ≤
k ≤ b}. The union of all M sets Zout,i

k is denoted by

Zout
k = Zout,1

k ∪ Zout,2
k ∪ · · · ∪ Zout,M

k . (5)

Due to network disturbances, the controller may receive
no, one, or even more than one packet per sensor at each
time step. The set of packets received by the controller
of the i-th sensor at time step k is defined by the set
Z in,i

k and the union of these sets at time step k over all
M sensors by Z in

k .

The problem investigated in this paper is to find an
admissible control law that minimizes the quadratic cost
function

CK
0 = E

{
xT
KQxK

+

K−1∑
k=0

xT
k Qxk + uTk Ruk

∣∣∣∣∣U0:K−1, x0,P0

}
, (6)

with K ∈ N>0 is the final time step and Q and R are
symmetric weighting matrices that are positive semi-
definite and positive definite, respectively. A control law
is called admissible if it requires only information that is
available to the controller. In our case, the information
available to the controller is described by the informati-
on set

Ik =
{
x0,P0,Z in

1:k, U0:k−1, θ0:k−1
}
, (7)

where θk represents the information provided by the ack-
nowledgments of the TCP-like connection between con-
troller and actuator.

3 Optimal Control Law

To solve the sequence-based optimal control problem
formulated in Sec. 2, we use a result derived in [5], where
a simpler problem setup was considered containing only
one sensor that transmits one raw measurement per time
step. It turns out that the results can easily be extended
to the considered setup with multiple sensors that send
(possibly pre-processed) measurement information. We
summarize the extended result in the following theorem
that is formulated in terms of the augmented state

ξ
k

=



xk

[uTk|k−1 uTk+1|k−1 · · · uTk+N−1|k−1]T

[uTk|k−2 uTk+1|k−2 · · · uTk+N−2|k−2]T

...

[uTk|k−N+1 uTk+1|k−N+1]T

uk|k−N
ud


, (8)
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that contains the state of the plant and all control in-
puts of already sent control sequences that still could be
applied to the plant as well as the default control input.

Theorem 3.1 Consider the problem to find an opti-
mal control law to generate control sequences of length
NA ∈ N>0 that minimize the cost function (6) subject
to the available information (7), system dynamics (1),
actuator logic described in Sec. 2, and M sensors that
process data according to (2) and (4). Then,

1. similar as in standard LQG control, the separation
principle holds, i.e., the optimal control law can be
separated into a) an optimal state estimator that cal-

culates the conditional expectation E
{
ξ
k
|Ik
}

and b)

into an optimal state feedback controller that utilizes
the feedback matrix Lk,

2. the optimal control law is linear in the conditional
expectation of the augmented state according to

Uk = Lk · E
{
ξ
k
|Ik
}
,

3. and the state feedback matrix Lk explicitly depends
on the delay probability distribution of the controller-
actuator-network and can be calculated as given in
theorem 1 of [5] since it is identical to the feedback
matrix for the same system with only one sensor sen-
ding one raw measurement per time step.

Proof. If we replace the measurement equation and
information set Ik of [5] with the corresponding equati-
ons (2) and (7) of our problem then Lemma 1 of [5] still

holds. Therefore, the conditional expectation E
{
ξ
k
|Ik
}

is stochastically independet of the control sequence Uk.
This implies that the separation holds what proves part
one of the theorem. Part two and three can be proved
analogous to the proof of Theorem 1 in [5] with Ik
replaced by (7). �

Remark 3.1 It is interesting to note that Theorem 3.1
also holds for all information structures that can be cha-
racterized by cumulative subsets Ĩk of the informati-
on set Ik, i.e., by subsets that satisfy Ĩk−1 ⊆ Ĩk and
Ĩk ⊆ Ik. This holds regardless of the choice of NS, i.e.,
how much information of former time steps is transmit-
ted per packet. Therefore, Theorem 3.1 also holds for the
case of infinite measurement sequences.

According to Theorem 3.1, the optimal control law con-
sists of the combination of an optimal state estimator
and an optimal state feedback controller. Since the op-
timal state feedback controller is the same as in [5],
we concentrate in the following on finding the optimal
sequence-based state estimator to calculate the condi-

tional expectation E
{
ξ
k
|Ik
}

.

4 Optimal Estimator

As discussed in the introduction, one way to imple-
ment a sequence-based information approach for the
SE-channel is to include the last NS measurements into
the sensor output packet at every time step. This corre-
sponds to g ≡ id in (4), and results in

Zout,i
k =

{
yik, y

i
k−1, · · · , yik−NS

}
, (9)

for the output packet of the i-th sensor with yir = ∅ for
r < 1. Let Z in

1:k(NS) denote the set of all received mea-
surement sets Zout,i

t with 1 ≤ t ≤ k, i ∈ {1, . . . ,M} at
the controller side conditioned on NS and Ik(NS) the
corresponding information set. Then,

Z in
1:k(0) ⊆ Z in

1:k(1) ⊆ · · · ⊆ Z in
1:k(k) ⊆ Ik (10)

and thus, the estimation accuracy of the conditional
mean

E
{
ξ
k

∣∣∣Ik} = E
{
ξ
k

∣∣∣Ik(NS)
}

is best when the complete sequence of measurements is
transmitted to the controller, i.e., NS = k. As this is not
realizable due to the growing size of the data packet, we
seek to find a recursive estimation algorithm that gives

the same accuracy as E
{
ξ
k

∣∣∣Ik(k)
}

, i.e., an algorithm

that provides the same results as a central Kalman fil-

ter. Note, that in the given scenario, E
{
ξ
k

∣∣∣Ik(k)
}

is

identical to E
{
xk

∣∣∣Ik(k)
}

as the u’s in (8) are known.

In the following, an extension of the so called Hypo-
thesizing Distributed Kalman Filter (HKF) is derived,

which calculates E
{
xk

∣∣∣Ik(k)
}

based on locally prepro-

cessed measurements when an assumption about the
global measurement model has been met by the esti-
mates.

4.1 Hypothesizing Distributed Kalman Filter

The idea of the HKF is to process local estimates in a
transformed state space and filter measurements accor-
ding to gains that are optimized according to a global
measurement model. As the globalization of gains leads
to biased local estimates in general, a correction matrix
is maintained that allows to eliminate the induced bias.

A detailed derivation of the algorithm including consi-
stent mean squared error (MSE) matrix bounds is gi-
ven in [12]. More precisely, the correctness of a central
version of the HKF has been derived in [10] and has
been extended in [12] to the concept of maintaining lo-
cal variables that allow the calculation of a combined
correction matrix. We limit ourselves in this paper to
the presentation of key formulas and derive the sub-
sequent incorporation of control inputs in more detail
afterwards. All derivations and conclusions are given for
the time invariant system from Sec. 2 but are applicable
one-to-one to the time variant case.
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Let Gf
k ⊆ {1, . . . ,M} contain indices of sensors whose

estimates are available at the controller. In order to app-
ly the HKF, a hypothesis about the global measurement
model (HMM), i.e.,(

Pz
k

)−1 ≈ ∑
i∈Gf

k

(
Ci
)>(

Θi
)−1

Ci (11)

is necessary, which is chosen according to experimen-
tal data or is iteratively updated. Although an unbiased
estimate is provided by the HKF in any case, the esti-
mation quality in terms of the MSE matrix depends on
the choice of the HMM and is only equivalent to the
globally optimal one when the HMM meets the sum of
the measurement models in (11).

We consider sensors that have no prior information and
that initialize local values xik and Pi

k by helps of the first
locally obtained measurement according to

xi1 = Liyi
1

and Pi
1 = Pz

1 with Li = Pi
k

(
Ci
)>(

Θi
)−1

.

(12)

In case initial estimates xi0, P
i

0 are given on sensor side,
we set

xi0 = Pi
0(P

i

0)−1xi0 and Pi
0 =

( N∑
i=0

(P
i

0)−1
)−1

.

The variables are predicted according to

xik+1 = Axik and Pi
k+1 = APi

k

(
A
)>

+ Ξk .

Using Li from (12) and K = Pi
k

(
Pi

k|k−1
)−1

, the filter
operation is given by

xik =Kxik|k−1+Liyi
k

and Pi
k =
(
(Pi

k|k−1)−1+(Pz
k)−1

)−1
.

For further processing, it is sufficient to transmit xik to
the controller where the fused estimate

xfk =
∑
i∈Gf

k

xik (13)

is obtained. It has been shown that xfk equals the (cen-
tral) linear minimum MSE result when equation (11)
holds exactly with Gf

k representing the sources of the

estimates that are available [10]. Otherwise, xfk is bia-
sed and must be corrected.

To this end, a further variable ∆xi

k is maintained that
allows to reconstruct unbiased estimates independently
of Gf

k and of the HMM. The idea is to make sure that
E{xk} = E

{
(∆xi

k )−1xik
}

holds for all local estimates at
all time steps. Thus, we initialize the correction matrix
with ∆xi

1 = LiCi when the estimates are initialized from
measurements, or – when initial estimates are utilized –

with ∆xi
1 = P1(P

i

1)−1 . The prediction of the correction
matrix is led back to the last time step by

∆xi

k+1 = A∆xi

k

(
A
)−1

,

and in the filter step, we set

∆xi

k = K∆xi

k|k−1 + LiCi .

The correction matrix that corresponds to the fused esti-
mate xfk is given by

∆
xf

k =
∑
i∈Gf

k

∆xi

k . (14)

It is worth mentioning that ∆xi
1 is not regular at the

initialization step when the rank of Ci is below the
state dimension. However, this problem also occurs in
the central processing schema and is likewise solved af-
ter fusing values that together cover the complete state.
Apart from that, measurement models do not need to
be known at remote sensors as potential differences bet-
ween the HMM and the actually utilized models in (11)
can be corrected by helps of ∆x

k .

4.2 Subsequent Inclusion of Control Inputs

Up to now, we have not considered control inputs from
the state space model (1), which complicates the estima-
tion process as the local sensors must recursively estima-
te the state without having information about the de-
terministic inputs and thus, without knowing the com-
plete system model. In the following, we determine the
part of the control inputs that was not comprised in
the processed measurements and needs to be added to
the estimate. In a second step, we prove that the de-
rived procedure provides globally optimal estimates iff
the basic HKF is optimal.

In order to simplify the calculations, we w.l.o.g. expect
prediction and filter steps to be alternating. This as-
sumption allows us to find sum formulas for the key
variables. We define

Gl··k =

k−1∏
t=l

K ·A and
(
Al··k

)−1
=

k∏
t=l

(
A
)−1

,

with
(
At··l

)−1
= I when t = l or t = l + 1, and(

At··l
)−1

:= Al+1··t−1 when t > l + 1. Hence, the local
estimation values and correction matrices are obtained
as

xik =

k∑
t=1

Gt··kLiyi
t

and ∆xi

k =

k∑
t=1

Gt··kLiCi
(
At··k−1

)−1
.

The values of the fused estimate result in

xfk =

k∑
t=1

Gt··k

( ∑
i∈Gf

k

Liyi
t

)
and (15)

∆
xf

k =

k∑
t=1

Gt··k

( ∑
i∈Gf

k

LiCi
)(

At··k−1
)−1

, (16)
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which verifies the key result from [12] that the estima-
tion result of the HKF does not depend on whether in-
formation are processed locally or centrally as long as
they are finally combined. The true state is given by

xk =

k−1∑
t=0

(
At+1··k−1But +wt

)
+ A0··k−1x0 (17)

and, hence, measurements can be represented as

yi
t

= Ci

( t−1∑
l=0

(
Al+1··t−1Bul +wl

)
+ A0··t−1x0

)
+vit .

(18)

By helps of these formulas, we derive the part of the
control inputs that is already included in xfk and thus,
determine the vector that still needs to be added in order
to yield an unbiased estimate. We obtain:

Theorem 4.1 The variable xfk =
(
∆

xf

k

)−1(
xfk + x

uf

k

)
with

x
uf

k =

k−1∑
t=0

Gt··k∆
xf

t

(
A
)−1

But (19)

is an unbiased estimate of a system with dynamics (1).

Proof. Appendix A. �

With x
uf

k from Theorem 4.1 we are able to reconstruct
an unbiased estimate at the controller even if measure-
ments are processed locally at the sensors. But, as we
do not expect to have the same estimates available at
every time step, we need the following corollary that al-
lows to maintain the control input parts for every node
separately.

Corollary 4.1 The variable x
uf

k from (19) equals the
sum of node specific variables

xui

k =

k−1∑
t=0

Gt··k∆xi
t

(
A
)−1

But . (20)

Proof. Simple matrix algebra using (16). �

It is worth mentioning that (20) depends on the control
input as well as on the actually utilized model at the
node (implicitly by ∆xi

t ) and thus, both information
must be available at either the controller or the sensors.
In this paper, we focus on the first case, where ∆xi

t is
obtained at the controller. Nevertheless, it would also
be possible to communicate the control inputs directly
from the actuator(s) to the sensors and transmit xui

k in
combination with xik to the controller.

Before we finish the derivations, we provide a Lemma
concerning the optimality of the proposed procedure.

Lemma 4.1 The HKF with subsequent control input
correction is globally optimal when the HMM has met
the sum of the actually utilized measurement models
from (11) at all time steps.

Proof. When the global measurement model is met,
∆

xf

t = I, ∀t ∈ 1, . . . , k holds, and therefore, the fused
estimate xfk is obtained by(

∆
xf

k

)−1(
xfk + x

uf

k

)
= xfk + x

uf

k

(15)(19)
=

k∑
t=1

Gt··k

( ∑
i∈Gf

k

Liyi
t

)
+

k−1∑
t=0

Gt··k
(
A
)−1

But =

k∑
t=1

Gt··k

( ∑
i∈Gf

k

Liyi
t

+ KBut−1

)
.

By splitting up K and Li, we obtain

k∑
t=1

Gt··kPi
t

(∑
i∈Gf

k

(
Ci
)>(

Θi
)−1

yi
t
+
(
Pt|t−1

)−1
But−1

)
,

which equals the recursive information form of the
Kalman Filter when all measurements are processed
centrally and therefore, is the linear optimal solution.

�

4.3 Application

In the following, the derived approach is applied to the
plant that has been depicted in Sec. 2.

In order to minimize the communication and computati-
on at the sensors, we calculate only xik at the distributed
nodes and maintain xui

k and ∆xi

k at the controller. As
estimates can be delayed or lost, the controller stores the
measurement models and control inputs since the last ti-
me step of successfully received variables xit, t < k. By
helps of this information, the estimation variables are
predicted according to

xi
′

k =Gt··kx
i
t , ∆

xi′
k = Gt··k∆xi

t

(
At··k−1

)−1
, and

x
ui′
k = xui

t +

k−1∑
l=t

Gl··k∆xi

l

(
A
)−1

Bul = xui
t +

k−1∑
l=t

Gt··k·

·∆xi
t

(
At··l

)−1
Bul = xui

t + Gt··k∆xi
t

k−1∑
l=t

(
At··l

)−1
Bul

when no estimate of the current time step is available.
If it is likely that transmissions fail, it is meaningful to
store these predicted variables as future predictions are
based on them. Otherwise, it is sufficient to hold

Gt··k ,
(
At··k−1

)−1
, and

k−1∑
l=t

(
At··l

)−1
Bul
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not for every sensor but only for each time step for which
there is a chance that an estimate is predicted from.

Although several matrices have to be stored and calcu-
lated at the controller, this is unlikely to be a problem
in real world applications where it is necessary to spa-
tially separate controller, actuators, and sensors at the
costs of a bad communication. Apart from that, optimal
out-of-sequence algorithms, which are the alternative to
the proposed algorithm, have at least comparable costs.

It remains to discuss how the HMM is chosen best. In or-
der to apply the HKF it is possible to set the HMM to an
arbitrary matrix. However, as we are interested in opti-
mizing the estimation quality at the controller, two stra-
tegies are meaningful in the context of the presented sce-
nario. When the HMM is set to the sum of the measure-
ment models of all available nodes, i.e.,Gf

k = {1, . . . ,M}
in (11), the estimate at the controller is globally optimal
when all estimates from one time step are received. This
is especially meaningful when packet losses and delays
are unlikely. Alternatively, the HMM is chosen according
to the expected “measurement quality”, e.g., as the half
of the sum of all measurement models when the sensor
measurement models are similar and it is expected that
slightly more than half of the transmissions fail.

In plants with slowly changing communication quality, a
more sophisticated approach can be employed. Although
the exact procedure is out of the scope of this paper, it is
reasonable to adapt the HMM when the fused correction
matrix (14) differs substantially from the identity matrix
over multiple time steps. In this case, the HMM should
be reduced in dimensions with negative deviation to the
identity matrix and increased otherwise.

Independent of the specific strategy, the estimation re-
sult is almost optimal when the HMM approximately
meets the actually utilized models. In [11], it has been
shown for multiple systems and measurement models in
a sensor network consisting of ten nodes that the MSE
of the HKF does not exceed the one of the linear opti-
mal solution by more than six percent when the actually
utilized global measurement model from (11) does not
deviate by more than 40 percent from the HMM.

In summary, we have proven that by helps of xui

k

from (20), it is possible to reconstruct an unbiased esti-
mate from recursively gained information that is glo-
bally optimal when the HMM fits to the measurement
models of the available estimates, even if the control in-
puts are not known to the sensors but are subsequently
included at the controller. In order to apply the propo-
sed algorithm, we have discussed strategies to maintain
the relevant variables and to choose the HMM appro-
priately.

5 Conclusion

In this contribution, a unified approach to sequence-
based control for networked control systems was pro-

posed. We have extended recent results on the optimal
sequence-based control for systems with only one sen-
sor sending raw data to the case of multiple sensors,
that process measurement data in a sequence-based in-
formation framework. To this end, we introduced and
extended the Hypothesizing Distributed Kalman Filter
as distributed estimation algorithm. Although we have
not presented an estimator that is equivalent to the cen-
tral Kalman Filter in all cases, we have suggested me-
thods for choosing a meaningful hypothesis about the
global measurement model so that the estimator provi-
des slightly sub-optimal to optimal estimates when the
communication model does not change abruptly.

Future research will focus on relaxing the TCP-like as-
sumption on the controller-actuator-channel and on sui-
table approximations of the multiple actuator scenario.
The estimation procedure can be improved by hand-
ling measurement failures. Apart from that, we see great
potential in applying the proposed algorithm to a real
plant.

Appendix A Proof of Theorem 4.1

Proof. In order to prove the theorem it is suffi-

cient to show the equality between E
{
xfk + x

uf

k

}
and

E
{
∆

xf

k xk

}
. First, we note that the inner terms of x

uf

k

from (16) are given by

Gl··k∆
xf

l

(
A
)−1 (16)

=

l∑
t=1

Gt··k

( ∑
i∈Gf

k

LiCi
)(

At··l
)−1

.

(21)

The expected value of the estimate without considering
control inputs is given by

E
{
xfk

}
(15)
=

k∑
t=1

Gt··k

( ∑
i∈Gf

k

LiE
{
yi
t

})
(18)
=

k∑
t=1

Gt··k
∑
i∈Gf

k

LiCi

( t−1∑
l=0

Al+1··t−1Bul + A0··t−1E{x0}
)

,

which is transformed in order to factorize the control
inputs to

k−1∑
l=0

( k∑
t=l+1

Gt··k

( ∑
i∈Gf

k

LiCi
)
Al+1··t−1

)
Bul+ (22)

k∑
t=1

Gt··k
∑
i∈Gf

k

LiCiA0··t−1E{x0} . (23)

The inner term of (22) can be combined with the
corresponding inner term of x

uf

k that is given by
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Gl··k∆
xf

l

(
A
)−1

as

k∑
t=l+1

Gt··k

( ∑
i∈Gf

k

LiCi
)
Al+1··t−1 + Gl+1··k∆

xf

l

(
A
)−1

(21)
=

k∑
t=1

Gt··k

( ∑
i∈Gf

k

LiCi
)(

At··l
)−1

,

and thus, we obtain for E
{
xfk + x

uf

k

}
k−1∑
l=0

( k∑
t=1

Gt··k

( ∑
i∈Gf

k

LiCi
)(

At··l
)−1)

Bul+ (24)

k∑
t=1

Gt··k
∑
i∈Gf

k

LiCiA0··t−1E{x0} . (25)

With (16) and (17), the second term E
{
∆

xf

k xk

}
is given

by ( k∑
t=1

Gt··k

( ∑
i∈Gf

k

LiCi
)(

At··k−1
)−1)·

( k−1∑
l=0

Al+1··k−1Bul + A0··k−1E{x0}
)

,

which is simplified with
(
At··k−1

)−1
Al+1··k−1 =(

At··l
)−1

to (25). �
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