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Abstract: This paper is concerned with the optimal ap-
proximation of agiven multivariate Dirac mixture, i.e.,
adensity comprising weighted Dirac distributions on
a continuous domain, by a Dirac mixture with a reduced
number of components. The parameters of the approx-
imating density are calculated by numerically minimiz-
ing asmooth distance measure, ageneralization of the
well-known Cramér—von Mises-Distance to the multivari-
ate case. This generalization is achieved by defining an al-
ternative to the classical cumulative distribution, the Lo-
calized Cumulative Distribution (LCD), as a smooth char-
acterization of discrete random quantities (on continuous
domains). The resulting approximation method provides
the basis for various efficient nonlinear estimation and
control methods.
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Zusammenfassung: Dieser Beitrag befasst sich mit der
optimalen Approximation einer multivarianten Dirac-
Mischdichte durch eine Dirac-Mischdichte mit einer gerin-
geren Anzahl an Komponenten. Dirac-Mischdichten beste-
hen aus gewichteten Dirac-Distributionen auf einer kon-
tinuierlichen Domdne. Die Parameter der approximieren-
den Dichte werden durch numerische Minimierung eines
glatten Abstandsmafies gewonnnen, welches eine Verall-
gemeinerung der bekannten Cramér—von Mises-Distanz
darstellt. Diese Verallgemeinerung wird durch die Einfiih-
rung einer Alternative zu klassischen kumulativen Ver-
teilungen, den so genannten lokalisierten kumulativen
Verteilungen, als eine glatte Charakterisierung von dis-
kreten Zufallsgroflen (auf kontinuierlichen Doménen) er-
reicht. Die resultierende Approximationsmethode bildet
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die Grundlage fiir verschiedene effiziente nichtlineare
Schitz- und Regelungsverfahren.
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1 Introduction

1.1 Motivation

We consider sample sets 8, = {x,, X,,...,X;} where the
locations x;,i = 1,..., L are arbitrarily placed in RY. The
samples can be of arbitrary origin, e.g., be random sam-
ples from a probability density function, and are equipped
with probabilities wf‘ ,i=1,...,L that are positive and
sum up to one. These probabilities are not necessarily
equal.

The sample sets are interpreted as discrete probabil-
ity density functions over a continuous domain, where the
individual samples correspond to locations of Dirac dis-
tributions with associated weights. The sample sets will
be called Dirac mixture densities. Dirac mixture densities
are a popular representation of densities in stochastic non-
linear filters such as particle filters [1]. They characterize
random vectors by having a large number of components
(or large weights) in regions of high density and a small
number of components (or small weights) in regions of low
density. Hence, approximating one Dirac mixture density
by another one while maintaining the information content
is equivalent to maintaining its probability mass distribu-
tion.

1.2 Applications

In model-based estimation and control methods, a model
of the considered system is required. In case of stochastic



dynamic systems, a deterministic state-space model could
be employed together with models for the noise sources.
Alternatively, the entire system could be described by
a probabilistic model, i.e., by its transition density. In addi-
tion, during processing, the uncertain state has to be rep-
resented by some type of probability density function. In
many cases, only samples of the probability density func-
tions used for describing input and output signals and
samples of the probability density function for describing
the considered system itself are given, so it is natural to
describe all signals and systems by discrete densities. As
the number of samples of these discrete densities is often
too large for real-time processing, reducing the number of
samples of adiscrete density while maintaining its infor-
mation content as much as possible is a fundamental prob-
lem.

When given noisy samples of the unknown probabil-
ity density functions characterizing the noise sources of
the considered system, a more compact and efficient repre-
sentation is usually desired for further processing. One op-
tion is to perform density estimation with the goal of calcu-
lating an appropriate continuous probability density func-
tion explaining the samples. This requires assumptions
about the type or the smoothness of the underlying den-
sity and is computationally expensive. As a cheap and sim-
ple alternative, the proposed reduction method can be em-
ployed to represent the original samples by a much smaller
set of well-placed samples. These samples can either be di-
rectly used in the estimation and control methods or they
can serve as input for density estimation methods that are
then much cheaper to perform.

The proposed reduction method can also be used for
identifying amodel of an entire dynamic system includ-
ing endogenous and exogenous noise sources based on
input/output samples or samples of consecutive states.
These samples are represented by asmaller set of well-
placed samples as a discrete approximation of the transi-
tion density describing the system.

Once the model is available, estimation and control
can be performed. In estimation, the state estimate can
be represented by samples as, e.g., in the particle filter.
A typical operation, the addition of two random variables,
corresponds to the convolution of the corresponding den-
sities. For discrete densities, this convolution requires the
calculation of the Cartesian product of the two sample
sets. The number of resulting samples is the product of the
numbers of the two original sample sets, so that the num-
ber of samples explodes after a few steps. Usually, random
selection methods are used to keep the number of samples
at a constant level. The proposed reduction method can
be employed to systematically and adaptively reduce the

number of samples to facilitate further processing. The re-
duction method derived in this paper requires the samples
to be explicitly given, so that the Cartesian product has to
be explicitly performed, which sometimes is not practical
even for asingle processing step. A variant of the reduc-
tion method has been proposed in [2], where the Cartesian
product of two sample sets is implicitly approximated. This
method avoids the explicit calculation of all combinations
of samples from the two sample sets.

Open-loop model predictive control requires the re-
peated propagation of the state estimate through the sys-
tem model over a certain prediction horizon at every time
step. For nonlinear systems, this includes anonlinear
mapping of the state density and a generalized convolu-
tion with noise densities. As these operations can only
rarely performed analytically for arbitrary densities, the
original densities are often approximated by discrete den-
sities that can easily be propagated through the system.
However, repeated propagation again leads to an expo-
nential increase in samples and requires some sort of re-
duction. In [3], an early version of the proposed reduc-
tion method was successfully applied to keeping the num-
ber of samples in open-loop model predictive control at
amanageable level by performing regular reductions.

1.3 Related work

We will now take alook at different methods that have
been devised in the general context of reduction of point
sets or discrete densities.

Random selection

The most common technique for reducing the number of
components of a given Dirac mixture density is the random
selection of certain components. It is commonly used in
the prediction step of particle filters, where each prior sam-
ple is perturbed with a single sample from the noise distri-
bution before propagation through the system model [4].
The perturbation can be viewed as generating the noise
samples at once with a subsequent random selection from
the Cartesian product of prior samples and noise samples.

Intermediate continuous densities

Another common technique is to replace the given Dirac
mixture by a suitable continuous density in a first step [5].
In a second step, the desired number of samples is drawn
from the continuous density. With this technique, it is
also possible to increase the number of components as re-



quired. However, the first step is equivalent to density esti-
mation from samples, which is by itself a complicated task
and an active research topic. Furthermore, this reduction
technique introduces undesired side information via the
choice of the continuous smoothing density.

Clustering or vector quantization methods

Clustering or vector quantization methods also aim at rep-
resenting a point set by a smaller set of representatives. For
optimization purposes, adistortion measure is typically
used, which sums up the (generalized) distances between
the points and their representatives. Minimizing the dis-
tortion measure results in two conditions: i) Points are as-
sociated to their closest representative. ii) The representa-
tive is calculated as the average of all its associated points.
As no closed-form solution for performing the minimiza-
tion of the distortion measure exist, robust iterative pro-
cedures have been devised starting with Lloyd’s algorithm
proposed in 1957 and published later in [6], first called k-
means algorithm in [7], and its extension in the form of
the Linde-Buzo-Gray-algorithm [8]. Obviously, the repre-
sentatives fulfilling the above two conditions do not neces-
sarily maintain the form of the density, which will also be
shown by some examples in Sect. 6 of this paper. An addi-
tional problem of clustering or vector quantization meth-
ods is that the iterative minimization procedures typically
get stuck in local minima. Intuitively, the resulting sam-
ples are only influenced by samples in the corresponding
part of the Voronoi diagram, while the proposed method is
based upon a global distance measure.

Reapproximating continuous mixtures with continuous
mixtures

Dirac mixture reduction is a special case of general mix-
ture reduction techniques. As these techniques are usu-
ally focused on continuous densities such as Gaus-
sian mixtures, e.g., see [9], it is worthwhile to discuss
the differences. First, when continuous mixtures are re-
approximated with continuous mixtures, the densities or
parts of the densities can be directly compared in terms of
the integral squared difference [10] or the Kullback-Leibler
divergence [11]. Directly comparing densities with an in-
tegral measure is not possible when at least one of the
densities is a Dirac mixture density [12]. Instead, cumula-
tive distributions can be used in the scalar case or appro-
priate generalizations for the multivariate case [12]. Sec-
ond, for continuous mixtures two or more critical compo-
nents can be merged in order to locally reduce the number
of components [13], where different criteria for identify-

ing components are possible such as small weights. These
components are then replaced by anew component with
appropriate parameters, e.g., maintaining mean and co-
variance. Locally replacing components is not straightfor-
ward for Dirac mixture densitys as it is i) difficult to iden-
tify potential merging candidates and ii) a single replace-
ment component does not capture the extent covered by
the original components. Hence, a replacement of several
Dirac components by asmaller set of Dirac components
with a cardinality larger than one would be in order.

Reapproximating continuous mixtures with discrete
mixtures

The reduction problem can be viewed as approximating
a given (potentially continuous) density with a Dirac mix-
ture density. Several options are available for perform-
ing this approximation. Moment-based approximations
have been proposed in the context of Gaussian densi-
ties and Linear Regression Kalman Filters (LRKFs), see
[14]. Examples are the Unscented Kalman Filter (UKF) in
[15] and its scaled version in [16], its higher-order gen-
eralization in [17], and ageneralization to an arbitrary
number of deterministic samples placed along the coor-
dinate axes introduced in [18]. For circular probability
density functions, afirst approach to Dirac mixture ap-
proximation in the vein of the UKF is introduced in [19]
for the von Mises distribution and the wrapped Normal
distribution. Three components are systematically placed
based on matching the first circular moment. This Dirac
mixture approximation of continuous circular probabil-
ity density functions has already been applied to sensor
scheduling based on bearings-only measurements [20].
In [21], the results are used to perform recursive circu-
lar filtering for tracking an object constrained to an ar-
bitrary one-dimensional manifold. For the case that only
afinite set of moments of arandom vector is given and
the underlying density is unknown, an algorithm is pro-
posed in [22] for calculating multivariate Dirac mixture
densities with an arbitrary number of arbitrarily placed
components maintaining these moments while providing
ahomogeneous coverage of the state space. This method
could also be used for the reduction problem by calcu-
lating the moments of the given point set. Methods that
are based on distance measures between the given den-
sity and its Dirac mixture approximation have been pro-
posed for the case of scalar continuous densities in [23, 24].
They are based on distance measures between cumula-
tive distribution functions. These distance-based approxi-
mation methods are generalized to the multi-dimensional
case by defining an alternative to the classical cumula-



tive distribution, the Localized Cumulative Distribution
(LCD) [12], which is unique and symmetric. Based on the
LCD, multi-dimensional Gaussian densities are approxi-
mated by Dirac mixture densities in [25]. A more efficient
method for the case of standard normal distributions with
asubsequent transformation to arbitrary Gaussian densi-
ties is given in [26]. The LCD-based methods will be ex-
tended to the reduction of Dirac mixture densities in this

paper.

1.4 Key ideas and results of the paper

The key idea of this paper is the systematic reapproxima-
tion of Dirac mixture densities by minimization of a novel
distance measure. The distance measure compares the
probability masses of both densities under certain kernels
for all possible kernel locations and widths, which allows
the use of integral measures for the mass functions. This
approximation method is similar to the approximation of
multivariate Gaussian densities by Dirac mixtures in [25].
However, calculating the distance measure between mul-
tivariate Gaussians and Dirac mixture densities in [25] re-
quires a one-dimensional numerical integration, while the
distance measure for comparing Dirac mixture densities
with Dirac mixture densities proposed in this paper is
given in closed form.

The resulting distance measure is smooth and does
not suffer from local minima, so that standard optimiza-
tion methods can be used for calculating the desired Dirac
mixture approximation. The optimization results are de-
terministic and reproducible, which is in contrast to ran-
dom selection procedures and most clustering methods.

imation with L = 10, L = 20, and L = 30 components are
shown in Figure 1.

1.5 Organization of the paper

In the next section, arigorous formulation of the consid-
ered approximation problem is given. For comparing Dirac
mixture densities, an alternative to the classical cumula-
tive distribution, the so called Localized Cumulative Dis-
tribution (LCD) is introduced in Sect. 3. Based on this
LCD, a generalization of the Cramér—von Mises-Distance,
which is the integral squared distance between the LCD
of the given density and the LCD of the approximate den-
sity is given in Sect. 4. This new distance measure is used
for analysis purposes, i.e., for comparing the approximate
Dirac mixture to the given one. The synthesis problem, i.e.,
determining the parameters of the approximate Dirac mix-
ture in such a way that it is as close as possible to the given
Dirac mixture according to the new distance measure is the
topic of Sect. 5. Minimization is performed with a quasi-
Newton method. The required gradient is derived in [27].
Examples of using the new reduction method on specific
sample sets are given in Sect. 6. The new approach is dis-
cussed in Sect. 7 and an outlook to future work is given.

2 Problem formulation

We consider an N-dimensional Dirac mixture density
with M components given by

. M
f@ =Y wox-y) .
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Figure 1: Dirac mixture approximation of 2000 samples from a standard normal distribution with L = 10, L = 20, and L = 30. Blue: Random
samples representing the standard normal distribution. Red: Reduced point set.



with positive weights wiy >0fori=1,..., M, that sum up
to one and M locations

(N)]T

¥, = [y
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fori = 1,..., M. This density is approximated by another
N-dimensional Dirac mixture density with L components
given by

L
f@) =) wdx-x), ¢
i=1
with positive weights wf >0fori=1,...,L, that sumup
to one and L locations
5= [0
fori =1,...,L, where we assume L < M.

The goal is to select the weights w, i =1,..., L and
location parameters x,, i = 1,..., L of the approximating
density f(x)insuchawaythat f(x)is as close as possible
to the original density f (x). For simplifying the notation,
we define a parameter vector comprising weights and lo-
cations as

n= [wf,...,wf,gf,...,gf]T
and denote the dependence of the approximating density
from the parameter vector by f(x,#). The number of pa-
rameters is L — 1 for the weights as they have to sum up to
one plus N-L for the locations, giving a total of (N+1)-L—1
parameters.

For comparing the original density f (x) and its ap-
proximation f(x,#), adistance measure for probability
density functions is required, see [28] for an overview. Dis-
tance measures designed for directly comparing densities
such as the integral squared distance, the Kullback-Leibler
distance [29], or the Hellinger distance [28] are obviously
ill-defined for comparing Dirac mixture densities. Distance
measures comparing cumulative distributions instead of
densities such as the Kolmogorov-Smirnov distance [30,
p. 623] or the Cramér—von Mises-Distance [31] can be used
for continuous densities and for Dirac mixture densities.
However, they are difficult to use for N > 2, see [12] for
details. For point sets, many distance measures are avail-
able [32] such as the Hausdorff distance. Typically, they
do not view the point sets as densities and, therefore, do
not consider weighted points. In addition, they perform an
optimization themselves so that they have a high compu-
tational complexity and are not differentiable. A transport
metric [33] defines the distance between two densities as
the minimum cost of transferring one density into the

other. It is also called Wasserstein distance [34]. This dis-
tance is well defined for Dirac mixture densities [35]. As
the calculation of the distance includes an optimization it-
self, computational complexity is high and the distance is
not easily differentiable. In this paper, the squared integral
distance between transformations of the discrete densities
by the so called Localized Cumulative Distribution (LCD) is
used as a distance measure. This distance that we will de-
note by D( f (x), f(x,7)) is given in closed form, efficient
to compute, and differentiable.

The desired optimal parameters 7" are now obtained
by minimizing the distance measure

" = arg min D(f(x), f(x, 7))
" ; "

L
s.t. wf>0fori:1,...,Landwa:1, 3)

i=1

which is a constrained optimization problem.
When the weights of the approximating density are
fixed a priori, the parameter vector is given by

T
T T
=[x

is of length N - L, and the optimization problem is uncon-
strained
1" = arg min D(f(x), f(x.n) - @)

Equally weighted approximating densities are an im-
portant special case of fixed weights. Here, we can dis-
tinguish two cases for the original density: i) The orig-
inal Dirac mixture density might already have equally
weighted components, so that the information is solely
stored in the component locations. In this case, the goal
of the approximation is a pure reduction of the number
of components. ii) On the other hand, the components
of the original Dirac mixture density might have differ-
ent weights. This could be the result of, e.g., weighting
aprior Dirac mixture density by alikelihood function in
a Bayesian filtering setup. In that case, the approximation
replaces an arbitrarily weighted Dirac mixture density by
an equally weighted one. In the latter case, an equal num-
ber of components, i.e., L = M, can be useful.

So far, we considered the number L of components of
the approximating density as given. When an upper bound
D of the distance measure D is prespecified, the number of
components will be adapted in such a way that the result-
ing distance D* after performing the optimization is below
this bound, i.e., D* < D.



3 Localized Cumulative Distribution

For the systematic reduction of the number of compo-
nents of agiven Dirac mixture density, adistance mea-
sure for comparing the original density and its approxima-
tion is required. However, Dirac mixture densities cannot
be directly compared as they typically do not even share
acommon support. Typically, their corresponding cumu-
lative distributions are used for comparison purposes, asis
the case in certain statistical tests such as the Kolmogov-
Smirnov test [30, p. 623]. However, it has been shown in
[12] that although the cumulative distribution is well suited
for comparing scalar densities, it exhibits several prob-
lems in higher-dimensional spaces: It is non-unique and
non-symmetric. In addition, integral measures for com-
paring two cumulative distributions do not converge over
infinite integration domains when the underlying Dirac
mixture densities differ.

As an alternative transformation of densities, the Lo-
calized Cumulative Distribution (LCD) introduced in [12] is
employed here in a generalized form. An LCD is an integral
measure proportional to the mass concentrated in a region
with a size parametrized by a vector b around test points
m. These regions are defined by kernels K(x — m, b) cen-
tered around m with size b.

Definition 1 Let x be a random vector with x € RY, which
is characterized by an N-dimensional probability density
function f: RN-SR .. The corresponding Localized Cumu-
lative Distribution (LCD) is defined as

Fimb) = | f()K(x - m b dx
IRN
withb € RY and F: Q — [0,1], 2 ¢ RY x RY.

Definition 2 As a shorthand notation, we will denote the
relation between the density f(x) and its LCD F(x, b) by

f(x) o= F(m,b) .

In this paper, we focus attention on separable kernels of
the type

N
K(x-mb) = [ [K&® -m®,69) .
k=1

Furthermore, we consider kernels with equal width in ev-
ery dimension, i.e., b® =bfork =1,...,N, which gives

N
K(x-mb) = [ [K&™ -m®,b) .

k=1

Rectangular, axis-aligned kernels as used in [12] are
the obvious choice as they yield the probability mass of
the considered density in arectangular region centered
around m. They are well suited for analysis purposes and
are used, e.g., when assessing the discrepancy of a sample
set from a uniform distribution. However, for synthesizing
asuitable approximation for a given (nonuniform) Dirac
mixture with asmaller number of components, smooth
kernels lead to simpler optimization problems. Here, we
consider kernels of Gaussian type according to

N p (x® - m(k))z
K(x-m,b) = ECXP T ;2

Based on a Gaussian kernel, an N-dimensional Dirac com-
ponent §(x — X) at location X corresponds to its LCD
A(m, b)

O(x — X) o— A(m, b)

with

A(m,b) = j 8(x - %) K(x — m, b) dx
]RN

] (a‘c"‘) _ m(k))2

§
= exp| ———————
il 2 b?

With this LCD of a single Dirac component, the LCD of the
Dirac mixture in (2) is given by

£ ® _ 0
F(m,b) = Zw Hexp —%% . (5
i=1

For the original Dirac mixture f (x) in (1), we obtain
asimilar result

(k)2
R Hexp< 1%) G
i=1

4 A Modified Cramér-
von Mises-Distance
The Localized Cumulative Distribution (LCD) defined pre-

viously can now be used to derive a modified version of the
Cramér—von Mises-Distance suitable for comparing Dirac



Mixtures. This new distance is defined as the integral of
the square of the difference between the LCD of the true
density f(x) and the LCD of its approximation f(x).

Definition 3 (Modified Cramér—von Mises-Distance) The
distance D between two densities f: RN — R, and f:
RY - R, is given in terms of their corresponding LCDs

F(x,b) and F(x, b) as

D = j w(b) j (F(m,b) - Fm, b)) dmdb ,  (7)

R, RN

where w: R, — IR, is a suitable weighting function.

A weighting function w(b) has been introduced that con-
trols how kernels of different sizes influence the resulting
distance. This provides some degrees of freedom during
the design of an approximation algorithm. Alternatively,
aunit weighting function could be used while modifying
the kernels accordingly.

Theorem 1 By inserting the LCDs F(m,b) from (6) and
F(m, b) from (5) into (7) and by using the weighting func-
tion

L
w(b) = {(I;Nl be [O’ bmax]

elsewhere

the following expressions for the distance D

N

S0
L M N

23 S w500 -1
=1

with

}/(Z) = e {4 br%lax exp <

o )rem(-ai )
2 brznax 22br2nax )

are obtained, where Ei(z) denotes the exponential integral.
Proof. For the given specific weighting function w(b), the

distance measure is given by

bmax

D’ = J ﬁ J (F(m,b) — Fm,b))* dmdb . (8)

0 RN

Inserting the LCDs F(im, b) and F(m, b) leads to

1 M M N 1 (y(k) (k))2
D= [ | XY ww [Tew (-3
0 b RN i=1 j=1 k=1

1 (x(k) m(k) )2
2

)

)
XP<-% ’)
o (45

Exchanging integration and summation gives
Unax N (k) (k)2
1 ()’, —m )
D’ Zzw J pN-1 HJeXP<_5 b2

i=1j=1 k=1
exp(

® _ 02
10 ) ®)
T) dm® db
bmax

L M (k)2
2y Sutu) [ ok Jp< 1<xb_"1>>

i=1 j=1 o =1

(k)2
1 9 —m®)

N

For further simplification, the following closed-form ex-
pression for the occurring integrals

jex Lmm?t\ 1 mmr
J P\ P\ 727 1

(z; - )2
=+\b exp(—%%) , )



is used. This gives

Binax K (02
, du e 1 (7 -9)

D —;;wf'wj'oj br [ exp <_572b2 db
L M binax N ® _ 2
ZZZw,’C j’J Hexp(—%i(xl 21;:1 ) db

i=1 j=1 k=1
L L bmax N ( ® _ ()2
X x N L\ =X )
; bmr> —— | db.
+3 Y j n k_lexp< e

or

bmax i
D =SS [ bt ep |2
_;Zwi wj | b exp | =2 5
J=1 0
\ (k) (k)
bmax N lkz(xl y] )
“w B ke
—ZZsz w; an exp | -5 5 db
i=1 j=1 0

L L

i=1 j=1

With

bmax

Lz )\, m(-1 2
2207 220

3 {4 bl exp <

for z > 0, the final result is obtained. O

Remark 1 The exponential integral Ei(z) is defined as

z
t
e

[ “a
t

(&e]

Ei(z) =

For z > 0, Ei(z) is related to the incomplete gamma func-

tion I'(0, z) according to

Ei(-z) = -I'(0,2) .

Theorem 2 For large b,,,,, the distance D is described by
N

(DZ 2D, + Dﬁ) + % C, Dy ,

N
(k) K)\?
bmax 1 kz (xi - x] )
X % =1
0

(10)

with the constant C,, = log(4b.,,.) — I'. Here, only the last

term depends upon b,,,, and we have

DZ=§M wxlog(i( -y )) :

i=1 j=1 k=

.
—

L M N
D= ¥ ¥ uruos (¥ (0 -51') )
T =l =1 k=1
L L N 2
D= 33 urwjmos( 3 (- )
i=1 j=1 k=1

with xlog(z) = z - log(z), where xlog(0) = 0, and

N /L 2
DE=z<zw,. zwy <k>> .
k=1 \i=1

Proof. Forsmall z > 0, the exponential integral can be ap-
proximated by
Ei(-z) = T +log(z) -z , (11)

where I' = 0.5772 is the Euler gamma constant. As a result,
the function y(z) can be approximated according to

N 1 z?
y(z) = {4b§1ax exp( 230 )

max

z 1 =z
I +1
”g(zz%) zzzazmx)}

o]

= n87 {4 B+ ( ~log(4b? ) + log(z))}
= n87 {4 brznax -Cyz+ xlog(z)} .

Inserting the first term into the distance measure D in The-
orem 1 cancels due to the fact that

3 M M L M L L
2 y_ .y X .y X X
meax 2. . wiwj—ZZZwiwj+ZZwiwj

4 SIS y (k) _ ()2
LY | Y w0 )
2
L M 2
23 Y wu (5 - )
., 2
ey Y utu (- |



can be written as

N DA R

i=1 j=1

Pl O -2 Yt ()
L M - M 3
ZZZw w x yjk)+2wf'(yi(k)) ]
i=1

i=1 j=1

N
T2

+
M=
£

®
—~
R
=
—
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|
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M=
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]
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Canceling corresponding terms finally gives

Cbz<zwy (k) wa (k)>2 '

Inserting the third term gives the remaining expressions.
|

Remark 2 For equal expected values of the densities f (%)
and f(x), the distance measure in Theorem 2 does not de-
pend upon b,,,, anymore.

Remark 3 Thanks to symmetry, the summation in D, can
bereducedtoi=1,...,Mand j=i+1,..., M byremov-
ing redundant terms, resulting in M (M — 1)/2 operations.
A similar argument holds for D,.

5 Reduction

The goal is to find the optimal L weights w;,i=1,...,L
and Llocations x;,i = 1,..., L of the approximating Dirac
mixture density such that the distance measure D in (10)
in Theorem 2 is minimized according to (3). The last term in
(10) can be viewed as a penalty term for different means of
the densities f and f, where the penalty function is given
by D and the penalty coefficient depends on b ,,. oy iS

set to alarge value. Alternatively, the penalty term can be
removed in (10) and a set of N constraints

zw;v (k) wa (k) _

fork = 1,..., N is used instead for assuring equal means
of the densities f and f. When weights and locations are
optimized according to (3), this just adds more constraints
to the constrained optimization problem. In the case of just
optimizing the locations, however, the unconstrained op-
timization problem in (4) becomes a constrained optimiza-
tion problem when removing the penalty term.

wfwx (k)x +Zw ( ik) }

The distance measure D is a smooth and twice contin-
uously differentiable function, with the gradient G given
in closed form in [27]. Standard optimization methods can
be used for finding the minimum of D in (3) and (4). For
the unconstrained optimization, we use a quasi-Newton
method, specifically the Matlab R2014b implementation of
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
included in fminunc. BFGS is an optimization method in-
dependently proposed by Broyden [36, 37], Fletcher [38],
Goldfarb [39], and Shanno [40]. In contrast to Newton
methods, quasi-Newton methods do not explicitly require
the Hessian matrix and directly estimate the required in-
verse of the Hessian, thus avoiding the costly inversion.
For constrained optiization, we use the Matlab R2014b
function fmincon.

Evaluation of the distance D in (10) requires
O(M?*+M-L+L*-N) operations, with M the
number of Dirac components in the original Dirac mixture
and L the number of Dirac components used for the
approximation. N is the number of dimensions. The
first term D, only depends on parameters of the original

density f . As it does not depend on the desired parameter
vector #, its calculation is only required when the absolute
value of the distance is of interest, e.g., when comparing
approximations for different numbers L of samples. It
is calculated once before the optimization. During opti-
mization, only changes of the distance measure caused
by the parameter vector # are needed. When the value
of the distance measure is not required, the first term is
not calculated at all. Calculating changes of the distance
with respect to changes in the parameter vector # costs
O((M-L+L%-N) operations. When the number of
components L of the approximation is much smaller than
the number of Dirac mixture components M of the given
original density, i.e., we have L « M, the complexity of
calculating the third term in (10) can be neglected. In that
case, we obtain a complexity of O (M - L - N) operations,
which is linear in M, L, and N.

The optimization is not sensitive to starting values for
the parameter vector #, so initialization is usually per-
formed by simply draang the locations x,,i = 1,..., L of
the approximating Dirac mixture density from a Gaussian
density with variances given by the variances of the orig-
inal density f . Random samples can be used for this pur-
pose. When a fully deterministic optimization is desired,
deterministic samples precomputed with the method in
[25] are used. As an alternative, starting values for the lo-
cations of f are obtained by arandom selection of L sam-
ples from the M samples of the original density f . When
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Figure 2: Reduction of a Gaussian mixture density with four components and a varying number of samples per component from 4000 points
to 40 points. Blue: Random samples representing the Gaussian mixture density. Red: Reduced point set. (left) LCD reduction. (right) Result

of k-means clustering.

the weights are also optimized, equal weights are used as
starting values.

Arbitrary additional constraints can be added either
as penalty functions or as explicit constraints for the op-
timization problem. This includes constraints for main-
taining certain moments of the original density f or con-
straints for avoiding certain regions of the state space.

6 Numerical Evaluation

The proposed method for the optimal reduction of Dirac
mixture densities is evaluated and compared to a standard
clustering technique, the k-means algorithm [7]. The im-
plementation shipped with Matlab R2014b is used. The fo-
cus is on equally weighted approximating densities f.
The results of approximating random samples from
a standard normal distribution have already been shown
in Figure 1 in the introduction. We now approximate ran-
dom samples from a Gaussian mixture density with four
isotropic components placed at [+1.5, +1.5]7 with stan-
dard deviation 0.4, see Figure 2. It is important to note that
we have atotal of M = 4000 samples, but the number of
samples differs for each component: We have 500 sam-
ples for components (1,1) and (2,2) and 1500 samples
for components (1, 2) and (2, 1). After the reduction from
M = 4000 samples down to L = 40 samples, we would ex-
pect that the probability masses for each component of the
Gaussian mixture density are maintained. This is exactly

the case for the proposed LCD reduction as can be seen in
Figure 2 on the left side, where we end up with 5 samples
for components (1, 1) and (2, 2) and 15 samples for com-
ponents (1,2) and (2, 1). For k-means clustering, shown
on the right side in Figure 2, this is not the case, so the orig-
inal distribution is not maintained. In addition, the results
of k-means clustering are not reproducible. As the Matlab-
implementation employs randomly selected initial start-
ing points for the representatives, several runs produce dif-
ferent results even for the same sample set. This not only
means different point positions, but also a different num-
ber of points associated to each Gaussian mixture com-
ponent. For different sample sets, k-means clustering pro-
duces significantly different results. In contrast, the LCD
reduction method produces very similar results when run
several times on the same sample set even when using
random initialization. For different sample sets, the posi-
tions of the points change only slightly while the number
of points associated to each Gaussian mixture component
stays the same.

Another way to demonstrate that the proposed reduc-
tion method maintains the probability mass distribution
is to compare histograms of the samples before and after
reduction. To simplify visualization, histograms are calcu-
lated for the marginals in x-direction. Figure 3 shows the
histogram of the originals samples on the left side. The his-
togram after reduction with the proposed LCD reduction
method is shown in the middle, while the histogram of the
results obtained with k-means are shown on the right side.
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Figure 3: Normalized histograms of projections onto x-axis for reducing M = 5000 samples of a two-dimensional standard normal
distribution to L = 50 samples. (left) Marginal of original samples. (middle) Marginal of LCD reduction result. (right) Marginal of result of

k-means clustering.

0r °

Figure 4: Blue: Deterministic samples representing a standard normal distribution. One sample is replaced by an outlier at [3.5,3.5]. Red:

Reduced point set. (left) LCD reduction. (right) k-means clustering.

It is obvious that the histogram of the LCD reduction is
much closer to the original histogram than the histogram
of k-means.

We now consider the reduction of deterministic sam-
ples from a standard normal distribution corrupted by
asingle outlier. M = 100 deterministic samples of a stan-
dard normal distribution are shown in Figure 4. The sam-
ples are calculated with the method from [25]. One sample
is replaced with an outlier located at [3.5, 3.5] . The point
setisreduced to L = 10 samples. The left side shows the re-
sult of the LCD reduction. The samples are well placed and
only slightly shifted due to the outlier. On the right side,
k-means clustering produces a result heavily disturbed by
the outlier. In fact, one sample of the reduced point set is

placed directly on the outlier, which significantly changes
the mass distribution and the moments. Instead of repre-
senting 1 % of the distribution as before the reduction, the
outlier now allocates 10 %.

Finally, we investigate the robustness of the reduction
methods with respect to missing data. For that purpose,
we generate 2500 samples and remove samples located
within three vertical strips, see Figure 5. The remaining
samples are reduced down to L = 25 samples. Figure 5 left
shows the result of the LCD reduction, which almost gives
the same results as before. The right side shows the result
of k-means clustering, where it is obvious that samples are
more or less placed along lines and the original mass dis-
tribution is not well maintained.



L=25
4 "
3 L
2t D
1 MK, 5
ey
T o Y E
> R I,
M :.o.“-‘:\-.'
-1 L
. !"L‘
. :.‘
_2 L .2 N
-3} -
_4 I 1 1
-4 -2 0 2 4

T —

Figure 5: Blue: Random samples representing a standard normal distribution with some samples removed along three vertical lines. Red:

Reduced point set. (left) LCD reduction. (right) k-means clustering.

7 Discussion

A systematic approach for approximating agiven Dirac
mixture density by another one with less components
has been introduced that is radically different from cur-
rent clustering or vector quantization approaches. The
(weights and) locations of the approximating density
are calculated by minimizing a global distance measure,
ageneralization of the well-known Cramér-von Mises-
Distance to the multivariate case. This generalization is
obtained by defining an alternative to the classical cumu-
lative distribution, the Localized Cumulative Distribution
(LCD), as a characterization of discrete random quantities,
which is unique and symmetric also in the multivariate
case.

Although kernels are used to define the LCD, this is not
akernel method. The distance measure is obtained by in-
tegrating over all possible kernels with all locations and
widths, so that the final expression does not contain any
kernel.

The given Dirac mixture might be the result from ran-
dom sampling or from certain processing steps involving
deterministic Dirac mixtures. In any case, the resulting ap-
proximating Dirac mixture is fully deterministic and the
optimization process gives reproducible results.

Compared to clustering methods that find cluster
heads minimizing the distance to their nearest neigh-
bors, which is alocal method, the LCD reduction globally
matches the mass distributions of the given point set and
its approximation. This leads to a smooth distance mea-

sure with almost no local minima that can be efficiently
minimized with standard optimization procedures. How-
ever, it is important to note that due to its operating prin-
ciple, the proposed reduction method does not provide
an explicit mapping from old components to new compo-
nents.

Constraints on the state variables can easily be con-
sidered when performing the approximation of the given
density. An obvious application is the explicit avoidance
of certain regions in the state space in order to obey physi-
cal constraints. Another application is to maintain certain
moments of the original density f during the reduction.

Large data sets occur when performing Dirac mix-
ture based state estimation in high—dimensional spaces or
when considering product spaces of Dirac mixture densi-
ties. For a very large number of components, the compu-
tational effort for performing a direct reduction might be
too large. For coping with this complexity issue, the pro-
posed approach offers the unique feature of hierarchical
approximation. For that purpose, the data set is decom-
posed into several smaller sets that are individually ap-
proximated. The resulting Dirac components of the indi-
vidual approximations are then collected into a single ap-
proximating Dirac mixture, which subsequently is further
approximated to yield the desired number of components.
Of course, this approximation hierarchy may consist of
more intermediate approximation steps.
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