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Abstract: State-of-the-art optical belt sorters commonly employ line scan cameras
and use simple assumptions to predict each particle’s movement, which is required
for the separation process. Previously, we have equipped an experimental optical
belt sorter with an area scan camera and were able to show that tracking the
particles of the bulk material results in an improvement of the predictions and
thus also the sorting process. In this paper, we use the slight gap between the
sensor lines of an RGB line scan camera to derive information about the particles’
movements in real-time. This approach allows improving the predictions in optical
belt sorters without necessitating any hardware modifications.
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1 Introduction
Automatic sensor-based sorters [1] are a key technology for ensuring quality of
food [2, 3], minerals [4], and glass as well as a means for highly efficient waste
management [5]. Notably, optical belt sorters are a technology that can be used
to sort a wide variety of bulk materials using a dry sorting process, necessitating
only few changes to the sorter for differing bulk materials. Due to their universal
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applicability, improving optical belt sorters has an impact on a variety of bulk
material sorting tasks.

Current optical belt sorters used in industrial applications, as illustrated in
Fig. 1, usually employ line scan cameras, which are imaging sensors that only
provide a single line of pixels. By using cameras with high frame rates, one side of
the surface of each particle passing by the line scan camera can be fully inspected.
The observation of the particle is used both for localizing and classifying the
particle of the bulk material.

A common way to perform the separation in optical belt sorters is to target
one class of particles using bursts of compressed air to alter the flight paths of
these particles. The particles that are hit then land in a different container than
the particles that fly unobstructed. The bursts of compressed air are emitted by
nozzles aligned orthogonally to the transport direction of the belt.

For the prediction as to when and where a particle will pass the array of
nozzles, current systems used in industrial settings assume that all particles
move precisely in the transport direction with an identical speed. While many
bulk materials exist for which this assumption is sufficiently accurate, so-called
uncooperative bulk materials feature a much more differentiated motion behavior
and, in general, do not follow a straight motion path even when significant effort
is put into enforcing this behavior. In common strategies to alleviate this problem,
motion orthogonal to the transport direction is reduced by altering the sorter.
But such changes, e.g., using longer belts or using belts with a fluted surface,
induce additional costs or have other undesirable implications.

As an alternative to these expensive hardware extensions to alter the motion
behavior, we have presented an extension that only requires the use of an area
scan camera and appropriate algorithms [6, 7]. In these works, we replaced the
line scan camera in the system with an area scan camera to observe the particles
travel along the belt. Using multiple observations of a particle, we can predict
the time and place the particle will pass the separation mechanism with higher
precision—an approach that we refer to as predictive tracking. We have validated
this approach using real image data and also using simulations in our subsequent
works [8, 9] and presented ways to maintain real-time capabilities in [10].

The predictive tracking approach has a variety of benefits that go beyond
improving the accuracy of the separation. The classification can be enhanced via
the use of multiple observations, e.g., by utilizing the increased amount of visual
data and the characteristics of the motion behavior.

In this paper, we present a novel approach for which no area scan camera
is required. In our new approach called ColorTrack, we use the offset between
different color channels of an RGB line scan camera to derive information about
the particle’s motion behavior. This approach features some of the advantages
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Fig. 1. Illustration of an optical belt sorter.

of the predictive tracking and can be used in real-time on existing optical belt
sorters equipped with a line scan camera with a compatible sensor layout.

2 Key Idea
To record color images, incoming light is usually filtered in such a way that
individual pixel sensors of an image sensor only capture certain wavelengths. The
information of multiple pixels is then combined into one pixel featuring a mixture
of the colors red, green, and blue. For area scan cameras, a popular scheme to
filter the light and combine multiple monochromic pixels into one RGB pixel is
the so-called Bayer filter [11]. As an individual pixel sensor capturing one color
channel is square, four pixel sensors can be combined to cover a square region
on the chip. Out of these four sensors, one captures the color red, one the color
blue, and two capture the color green1.

For line scan cameras, similar challenges arise as the RGB pixels are also
generated using multiple pixels capturing only certain wavelengths. However, as
line scan cameras only record a one-dimensional array of RGB pixels, different
requirements apply and patterns designed specifically for line scan cameras are
commonly used. Three frequently used patterns for RGB line scan cameras

1 The color green is commonly deemed more important than red and blue because the
human eye is more sensitive to green [11].
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that can be used in our new approach are the so-called bilinear, trilinear, and
quadlinear patterns [12, 13].

In the trilinear pattern [14, 15] illustrated in Fig. 2a, three separate lines
for each color are arranged in parallel. Some cameras are also available with
a quadlinear pattern shown in Fig. 2b, which includes a fourth line for near
infrared or monochrome pixels [16, 17]. In the bilinear pattern [18, 19] illustrated
in Fig. 2c, a single line of pixels alternatingly capturing blue and red is placed
beside a line of pixels that only captures green. Line scan cameras using a
bilinear pattern commonly feature a lower resolution than those using a trilinear
or quadlinear pattern as pixels of two colors alternate along a single line.

A very important feature of the sensor patterns are the gaps between the
individual lines of pixels. In order to obtain an RGB pixel using three pixel sensors
capturing different wavelengths, the visual information is usually combined with
a certain temporal offset that depends on the speed of the bulk material moving
in the transport direction. A weakness is that if the assumption about the speed
is not sufficiently precise or if there is movement orthogonal to the transport
direction, the color information cannot be combined seamlessly.

There are, however, color line scan cameras for which this usually undesirable
property does not exist. For one, there are cameras using a monoline pattern [20],
which is a simple round robin pattern as shown in Fig. 2d. Another solution is
to use a prism to distribute the incoming light to three separate arrays of pixel
sensors. But this solution, while also applicable to area scan cameras, is costly
and thus used only infrequently.

In this paper, we focus on line scan cameras using a bi-, tri-, or quadlinear
pattern and use their usual weakness to our advantage. First, we disable any
temporal offset in the combination of the color channels. Second, we assume that
all particles are visible in all color channels, allowing for multiple observations
of each particle. Due to the spatial offset of the multiple lines, we observe the
particle at two or three different points in time.

In our ColorTrack approach, we use these multiple observations of each
individual particle to approximate its velocity. The first step is to find the particle
of the bulk material in at least two color channels and to correctly associate the
observations to the respective particle. By approximating all possible flight paths
with a curved plane as shown in Fig. 3, we can project the particle’s centroid in
each channel into world coordinates. The centroid is used to take into account
that non-rotationally symmetric particles may be viewed in slightly different
orientations and that the translatory part of a motion can be described by the
motion of its centroid.

Using the different color channels, we obtain the coordinates of the particle’s
centroid at multiple points in time. Since we have a known sampling rate, we
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(a) Illustration of the trilin-
ear layout. The green line is
usually placed in the middle.

(b) Illustration of the quad-
linear layout. The fourth line
serves to record monochrome
images or to capture near-
infrared wavelengths.

(c) Illustration of the bilinear
(also called dual line) layout.
Commonly, the pixels for red
and blue alternate along the
mixed sensor line.

(d) Illustration of the mono-
line layout.

Fig. 2. Visualizations of the different sensor layouts. The gaps between the lines are kept
small for illustration purposes and are usually wider.

Fig. 3. Visualization of the three sensor lines of a trilinear line scan camera projected on
the curved plane of possible flight paths. The gaps are shown larger than in reality for
illustration purposes.
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can use the number of time steps between observing the centroid in one channel
and observing it in the other channels to determine the time that has passed
between observing the centroid in the first, second, and (depending on the sensor
layout) third and fourth channel. This temporal offset can then be combined with
the spatial offset observed in the multiple channels to determine the particle’s
velocity.

This approach can be realized well in real-time. Compared with state-of-the-
art optical belt sorters in which the particles are to be detected once, only twice
as much image processing operations are required when using ColorTrack using
two observations. Assigning the observations in the different color channels to
one particle poses an additional overhead. However, the numbers of particles that
are observed simultaneously by a line scan camera are commonly considerably
lower than the numbers of particles observed by an area scan camera, making
this step far cheaper than in the predictive tracking approach.

3 Implementation
To test our concept, we have created an implementation in Matlab that can read
recordings of line scan camera images and generate predictions for each particle
recorded. We wrote our implementation for trilinear line scan cameras to be
able to evaluate the approach using an Advanced Camera Components (ACC)
SAPPAN CL [14] line scan camera that we have at our disposal.

When recording images with a camera continuously, the time can be seen as
an additional dimension [21, Ch. 1]. Usually, when applying image processing
algorithms to image data obtained on belt sorters equipped with line scan cameras,
a two-dimensional image is generated by concatenating the lines recorded at
subsequent time steps. The resulting image of the particle obtained is similar
to an image recorded by an area scan camera but it may appear stretched or
shrunk along the temporal axis, depending on the sampling rate.

In our approach, we order the color channels on an additional dimension.
This leads to a three-dimensional coordinate system as illustrated in Fig. 4. We
denote the first axis along the pixels of the sensor as the 𝑥-axis and use 𝑡 for the
axis at which the line scan camera images are concatenated. The different color
channels are ordered on the 𝑦-axis.

In all our illustrations given, the indexing of the pixels starts at the upper
left of the image and the index increases along the 𝑥-axis horizontally and along
the 𝑡-axis vertically. Furthermore, as illustrated in Fig. 4, we define a coordinate
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Fig. 4. Coordinate system comprising three axes.

system that allows subpixel indexing that starts on the upper left corner of the
upper leftmost pixel.

Ordering the multiple color channels on the 𝑦-axis is motivated by the sensor
layout of line scan cameras featuring a bi-, tri-, or quadlinear layout. As shown
in Fig. 2a, Fig. 2b, and Fig. 2c, the sensor lines are lined up in parallel along
the axis orthogonal to the 𝑥-axis. Thus, line scan cameras with these patterns
feature a two-dimensional sensor array. As the sizes of the gaps are usually a
multiple of the size of a pixel sensor, the line scan camera can be seen as an area
scan camera of which we only observe certain pixels. Using a coordinate system
that also takes the pixels left out in between into account, image coordinates
can be projected into world coordinates in the same manner as for area scan
cameras. As the sizes of the gaps between the color channels are camera specific,
the coordinates along the 𝑦-axis depend heavily on the sensor layout of the line
scan camera used.

The sensor layout of the ACC SAPPAN CL that we use in our evaluation is
illustrated in Fig. 5. The sensor features a gap of seven pixel sizes between each
pair of neighboring lines. To be compatible with bilinear layouts, we focus on
using two color channels in our implementation: the red and the blue channel.
These two channels are separated by a gap of the size of 15 pixels in the ACC
SAPPAN CL.

3.1 Determining the Centroids Using Image Processing

In this subsection, we explain how to find the centroid of each particle in all
color channels. For this, we regard two-dimensional images of the particles with
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Fig. 5. Sensor layout of the ACC SAPPAN CL line scan camera according to the documen-
tation [14].

the 𝑥-axis on one axis and (part of the) 𝑡-axis on the other. In our figures, we
overlay all color channels without temporal correction for visualization purposes.
In the implementation, all color channels are regarded separately.

An easy solution to calculate the centroid is to separate the object from
the background using binarization and to then determine the particle’s centroid
based on the pixels occupied. An exemplary result of the binarization is shown
in Fig. 6.

However, including the color intensities into the generation of the contour
of the particle has proven to allow for a more accurate determination of the
centroid. For this, we approximate the object as a series of edges as shown in
Fig. 7. The edges were generated by interpolating the color intensities in the
image and then tracing along the interpolated line of one specific color intensity.
For all particles in one data set, the same intensity was used that was empirically
chosen to result in little influence from imaging noise while ensuring that a large
part of each particle is included in the shape.

To calculate the centroid of the particle approximated as a polygon, we first
number the vertices clockwise from 1 to 𝑛. Then, we calculate the area occupied
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(a) Raw data. (b) Result of the binarization.

Fig. 6. Visualization of the binarization. On the basis of the displacement on the horizontal
axis, the particle on the left can be seen to not move straight in the transport direction.

(a) Raw data modified for
improved visibility.

(b) Shapes extracted from
the raw data.

Fig. 7. Visualization of the approximation of the particles using polygons.
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by the particle using the 𝑥 and 𝑡-coordinates of each vertex 𝑥𝑖 and 𝑡𝑖 using [22]

𝑎 = 1
2

𝑛∑︁
𝑖=1

(𝑥𝑖𝑡𝑖+1 − 𝑥𝑖+1𝑡𝑖) .

Afterward, we use the area to calculate the particle’s centroid in image coordinates
𝑥im and 𝑡im via the formulae [22]

𝑥im = 1
6𝑎

𝑛∑︁
𝑖=1

(𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑡𝑖+1 − 𝑥𝑖+1𝑡𝑖) and

𝑡im = 1
6𝑎

𝑛∑︁
𝑖=1

(𝑡𝑖 + 𝑡𝑖+1)(𝑥𝑖𝑡𝑖+1 − 𝑥𝑖+1𝑡𝑖) .

Another possible approach to determine the centroid is to calculate an image
moment over the region in which the particle is located and assume that the
color intensities correspond to the mass of the object in this area [21, Ch. 7.2.2].

3.2 Calculating the Velocities

In order to calculate the velocities from the individual centroids, we have to find
an assignment of each centroid observed in one color channel to one centroid in
each other channel. Using a rough guess for the particle’s movement, we were able
to obtain reliable assignments. While the rough guess results in a non-negligible
uncertainty as to where the centroid should be in the other channels, the extent
of each particle was, in our experiments, always large enough to determine a
point on the surface of the particle in the other color channels. We deem problems
in the matching to only be of importance if the gaps in the sensor pattern are
large and the particles are small and feature a lot of movement orthogonal to
the transport direction.

Algorithmically, matching multiple observations to one particle can be im-
plemented in the same way as in the predictive tracking approach, when using
the rough velocity guess available to generate a prediction. We then have a
problem in the form of linear assignment problem, for which fast solvers such
as LAPJV [23] and the auction algorithm [24] are available. While the problem
scales cubically in the number of particles, the field of view of a line scan camera
can only contain numbers of particles that result in problem sizes that can still
be solved easily in real-time by current desktop PCs.

Having determined the centroids of a particle in all color channels in image
coordinates, we can now use the coordinates of the centroids to get an estimate
of the particle’s velocity. For this, we need the sampling frequency, intrinsic
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parameters of the camera and the lens, and some information about the extrinsic
calibration. First, we need to determine the time that has passed between
observing the particle in one channel and observing it in the next. Since we have
disabled the temporal offset for the different lines of the line scan camera, the
time that has passed between the observations is directly proportional to the
distance along the 𝑡-axis. As there is no optical distortion in the 𝑡-coordinate,
we can first determine the distance along the 𝑡-axis between the centroids in the
individual color channels in the image coordinate system. Afterward, we only
have to multiply the distance by the reciprocal of the sampling frequency, e.g.,
by 0.5 ms when the sampling rate is 2 kHz.

For all compatible sensor layouts, only two color channels need to be used.
In our implementation, we use the red and the blue color channel as this results
in the largest gap between the lines of the sensor. We use 𝑡im to denote the
time coordinate at which the centroid was detected in one color channel in
image coordinates and 𝑡w to denote the corresponding time in world coordinates,
meaning the actual time that has passed since the first line was recorded. In the
following, we use the lower indices b, g, and r to indicate in which color channel
the detection occurred. We can calculate the temporal offset Δ𝑡w

r,b between
spotting the particle in the red and the blue color channel in world coordinates
via

Δ𝑡w
r,b =

𝑡im
b − 𝑡im

r
sampling frequency .

Having the temporal offset at our disposal, we now further require some
parameters of the extrinsic calibration. One way to approximate the required
information is to use a camera calibration pattern for line scan cameras [25]
and place the calibration pattern where the particles are expected to pass by.
However, the parameters can only be approximated as the distance between the
particles and the camera may differ as the height of the particles when they
pass the sensor during the flight phase may vary. There are also other ways
to approximate the parameters of the calibration, such as deriving parameters
from recordings of particles with known extent or approximating the parameters
manually by measuring. Furthermore, approaches to approximate the required
parameters that are more experimentally-driven could also be employed.

Irrespective of how the calibration was approximated, a projection of image
to world coordinates has to be derived. The different lines may correspond to up
to four lines along the flight parabola. An illustration of the three lines present
when using a scan camera with a trilinear pattern is given in Fig. 3. As the lines
do not lie in a single plane in general, multiple extrinsic calibrations may be
necessary. We use 𝜋(·) for the projection that uses the correct calibration to map
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image to world coordinates according to[︂
𝑥w

𝑦w

]︂
= 𝜋

(︂[︂
𝑥im

𝑦im

]︂)︂
.

To approximate the velocity of a particle, we need to use the centroids in two
color channels. As previously mentioned, we use the red and the blue color
channel of our trilinear line scan camera as the two lines observed are the furthest
apart. We can approximate the velocities �̇�w and �̇�w in world coordinates using
the coordinates of the centroids in the blue and the red color channel (indexed
by b and r) via the formula[︂

�̇�w

�̇�w

]︂
= 1

Δ𝑡w
r,b

(︂
𝜋

(︂[︂
𝑥im

b
𝑦im

b

]︂)︂
− 𝜋

(︂[︂
𝑥im

r
𝑦im

r

]︂)︂)︂
.

4 Evaluation
For our evaluation, we recorded multiple data sets using an area scan camera
and a line scan camera simultaneously. We recorded data sets both on a large
industrial-scale optical belt sorter and on our small-scale optical belt sorter used
for rapid prototyping called TableSort. The belt of the former ran at a velocity
of approximately 2.7 m/s and the belt of the latter ran at approximately 1.1 m/s.
No ground truth data of the movement of the particles was recorded as this was
deemed infeasible. Instead, we used our predictive tracking approach [6] on the
image data captured using the area scan camera (Allied Vision Technologies
Bonito CL-400) to provide a reference to compare with.

The setup of the sorters used for recording the image data is illustrated in
Fig. 8. For both sorters, the fields of view of the line scan camera and area scan
camera did not overlap and we did not have a perfect calibration between the
two cameras. While we deem it possible to combine calibration patterns of line
scan cameras [25] and area scan cameras into one calibration pattern to attain a
calibration of the line scan camera to the area scan camera, we have not used
any sophisticated approaches and instead performed an approximate manual
calibration, which was then improved using the data recorded.

The particles passed the field of view of the area scan camera before being
observed by the line scan camera. To match the particles in the recordings of the
two cameras, we generated a prediction as to when and where each particle will
pass the line scan camera based on the data observed by the area scan camera. We
then determined the matching that minimizes the sum of the distances between
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Fig. 8. Layout of the sorters used for recording the data for the evaluation.

these predictions and the actual positions at which the particles were observed
by the line scan camera.

We evaluated the approaches based on two criteria that are laid out in the
next subsection. As bulk materials to evaluate, we used cuboid-shaped plastic
granule as shown in Fig. 9a on the industrial-scale sorter in the first scenario
and spherically-shaped airsoft ammunition (commonly referred to as BB) as
shown in Fig. 9b on both the industrial-scale sorter and TableSort in the second
and third scenario. The third scenario also features an additional disturbance in
the form of a current of air disrupting the motion of the particles. The results
were calculated based on the performance achieved for 682 particles in the first
scenario, 310 in the second scenario, and 121 in the third. These numbers only
include particles that were successfully matched between the recordings of the
line scan camera and of the area scan camera.

While the particles of the granule are expected to settle on the belt and
adapt to the belt velocity accurately, the particles of the BB feature more motion
relative to the belt. The granule as a highly cooperative bulk material is well
suited to the use of the prediction straight in the transport direction. Therefore,
we do not expect a significant benefit to using the ColorTrack approach for
this bulk material. The BB behave less cooperatively and thus a significant
improvement is expected for this bulk material. We did not mix bulk materials
and only evaluated the precision of the predictions to be able to give an assessment
of the reliability of the separation process.

4.1 Evaluation Criteria

As we do not have an accurate calibration between the line scan camera and
the area scan camera, we are unable to map specific coordinates in one camera



14 Florian Pfaff et al.

(a) Granules used as bulk
material.

(b) Spherically-shaped BB
used as bulk material.

Fig. 9. Photographs of the bulk materials used.

coordinate system to the coordinate system of the other camera. Therefore, we
use an aspect of the prediction that can be compared reliably even without
an accurate calibration. To assess the quality of the prediction, we determine
the accuracy of the angle on the 𝑥w𝑦w-plane. This criterion is invariant under
translation and scaling without requiring strong assumptions. The deviation
is given as the difference between the estimated angle and the reference angle.
Close care needs to be taken when calculating measures of the deviation on
angular quantities [26, Ch. 1.3.2], but the small angles in our application do not
necessitate adjustments.

The edges of the field of view of the area scan camera were aligned parallel
and orthogonal to the transport direction. As in actual bulk sorting tasks, the
line scan camera observed a line (or, to be precise, multiple lines) orthogonal to
the transport direction. The precision of the alignment, however, was limited due
to the manual installation of the cameras. As no precise calibration was available,
we used our data combined with assumptions to compensate the difference in
the orientation between the line scan camera and area scan camera. For this,
we first assumed that the mean of the angular errors is zero and shifted the
angles so that the mean of the predicted angles and the reference angles became
equal. For low numbers of particles, this assumption would significantly skew
our assessment. Since more than 100 particles were regarded in each scenario,
the assumption does not have a major impact on the evaluation results.

A more important aspect affecting this evaluation of the angle is the imprecise
reference that the error is based on. The error ErrEval determined in our evaluation
is partly composed of the error ErrPT of the prediction provided by the predictive
tracking that we use as a reference and partly of the error ErrCT of the ColorTrack
approach. Due to this additional component, the actual error of the ColorTrack
approach is expected to be lower than the error calculated based on this reference
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as
ErrEval ≥ ErrPT + ErrCT

holds on average, unless there is a reason to believe that the errors cancel out.
To get an impression of how much of the deviation is caused by the predictive

tracking and to give a reference, we approximate ErrPT in a similar way as in [6].
For this, we artificially introduce a prediction phase in the tracking based on the
area scan camera images during which measurements of the particle’s position
are intentionally disregarded and only predictions are performed. By comparing
the prediction based on part of the measurements with the result of the tracking
based on all measurements, we can assess the quality of the prediction. Due to
the limited usable area in the images of the area scan camera, the prediction
horizon was chosen to be 6 cm.

To evaluate the old model of performing a prediction straight in the transport
direction, the angle for each prediction is chosen to be the mean of the reference
angles for all particles. This choice minimizes the mean squared error and is
thus favorable to the old model that we aim to outperform using the ColorTrack
approach.

Based on the angles and positions determined, we provide a second criterion
to give an impression of the impact that the deviations in the angles have on
the separation. For this criterion, we integrate the actual aim to perform an
accurate separation using the array of compressed air nozzles into the evaluation.
Using knowledge of the setup of the optical belt sorters, we try to assess what
percentage of the particles would be hit under certain assumptions, given the
reference and the estimated angle.

This criterion heavily depends on the size of the nozzles and on the distance
between the start of the prediction and the array of nozzles. For both sorters, we
used the distances and the numbers of nozzles that are present when the sorters
are used for actual sorting. In the industrial-scale sorter, the array of nozzles
measured 70 cm, comprising 128 nozzles at a distance of 12 cm to the start of
the prediction phase. In TableSort, the array measured 16 cm and featured 16
nozzles located at a distance of 15 cm from the start of the prediction phase.

To calculate the percentage of particles hit, we make a couple of assumptions
and perform approximations as illustrated in Fig. 10. We say that the array
of compressed air nozzles is subdivided into multiple equally sized parts that
are precisely covered by that nozzle. For simplicity, we assume that the array
of nozzles is only a line and has no extent along the transport direction. The
flight paths of the particle based on the reference angle and the estimated
angle are determined and the intersections with the array of compressed air
nozzles are calculated. The nozzle that would be activated and the nozzle that
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Fig. 10. Illustration how the hit ratio is calculated in the evaluation. The blue arrow shows
the expected flight path of the particle and the green arrow shows the true flight path. Only
a few nozzles are shown and the lengths are not drawn to scale.

should be activated are then determined based on the intersections. If the correct
nozzle would be activated for the respective particle, the separation is considered
successful, otherwise, it is deemed unsuccessful. Only one nozzle is activated for
each particle. This leads to lower hit ratios than can be observed in practice as
it is common practice to activate multiple nozzles. Especially if the particle of
the bulk material is expected to pass by in the middle of two nozzles or at the
edge of one nozzle, activating the neighboring nozzle significantly increases the
probability of hitting the object. For simplicity, we employ the straightforward
strategy to only activate a single nozzle, which is a strategy that can be used to
save air pressure (and thus costs) and reduce by-catch.

4.2 Evaluation Results

The evaluation results for the error in the angle are shown as boxplots in Fig. 11.
Boxplots are a very expressive way to visualize the deviations as the ranges in
which the error commonly lies is evident. The red lines in the middle of the boxes
show the median while the boxes show the range from the 25th percentile to the
75th percentile and thus contain 50% of all values. All values that deviate more
than ±2.7𝜎 from the median (covering approximately 99.3% of all deviations
when the data is normally distributed) are considered outliers. The whiskers
(the lines that go beyond the boxes) extend to the furthest point that is not
considered to be an outlier. The whiskers can be conveniently used to determine
how many additional nozzles should be activated to achieve a hit ratio of about
99%. Outliers were omitted in the boxplots as plotting them would induce the
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need for different axes ranges and reduce the clarity of the presentation in the
plots.

In Fig. 11a, the results of the predictive tracking for a 6 cm prediction phase
are shown. It can be seen that the predictions for almost all particles are correct
up to an angle of ±0.4° for the two scenarios featuring the industrial-scale sorter.
For the scenario using the TableSort system, the error is within the range of
−0.3° and 1.4° for almost all particles. There is a significant bias in this scenario
caused by the external disturbance in form of a current of air that disturbs the
motion of the particles and accelerates them in one direction.

In Fig. 11b, we show the angular errors for the prediction straight in the
transport direction when the result of predictive tracking is used as the refer-
ence. The error is between −0.8° and 0.8° for almost all particles in the first
scenario, which is the scenario best suited for the old prediction model due to the
cooperative behavior of the granules. In the second scenario featuring the BB,
the deviation is almost always between −1.5° and 1.5° and is thus considerably
higher. In the third scenario, in which the TableSort system is used, the error is
between −3.5° and 3.6° for almost all particles. The median is always close to
zero as our calibration ensured that the mean of the errors is zero.

Fig. 11c shows the deviations between the angles obtained using predictive
tracking and those obtained using the ColorTrack approach. The error in the
angle in the first scenario is between −0.8° and 0.9° for almost all particles. In this
scenario, the prediction straight in the transport direction slightly outperforms the
ColorTrack approach. This shows the limitations of the ColorTrack approach—the
precision of the approach is limited by the quality of the image acquisition and the
suitability of the assumptions. If the bulk material is very cooperative, resulting
in a very low variation of the angles, assuming the angle to be zero can lead to a
lower deviation than that caused by the imprecision of the ColorTrack approach.
Thus, using the ColorTrack approach may only pay off if the variation in the
angles is sufficiently high.

In the second scenario that is significantly harder, the ColorTrack approach
can be seen to provide good results. With an error between −0.9° and 1.0°
for almost all particles, using ColorTrack results in a performance close to the
performance achieved for the very cooperative granules. Compared with the
prediction straight in the transport direction, the superiority of the ColorTrack
approach is evident. The deviation in the third scenario, in which the TableSort
system was used, is almost always between −2.1° bis 1.8°. This is also a significant
improvement when compared with the performance achieved using the prediction
straight in the transport direction.

The hit ratios determined in the second part of the evaluation are in ac-
cordance with the angular errors observed. As shown in Tab. 1, the hit ratio is
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(a) Error in the angles when using the predictive
tracking approach that requires an area scan camera.

(b) Error in the angles when the prediction straight in
the transport direction is used.

(c) Error in the angles when using the ColorTrack
approach.

Fig. 11. Errors in the angles for the three approaches applied to the three scenarios shown
as boxplots.
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Granules Industrial BB Industrial BB TableSort

Prediction in the transport direction 91.50% 79.35% 73.55%

Prediction of ColorTrack 88.42% 87.42% 82.64%

Table 1. Hit ratios for the prediction straight in the transport direction and the ColorTrack
approach for the three scenarios.

slightly better for the prediction straight in the transport direction in the first
scenario. For the second and the third scenario featuring BB, the hit ratio is
significantly higher when using the ColorTrack approach.

All in all, our evaluation shows that the ColorTrack approach improves the
separation process if the bulk material is not highly cooperative. We expect the
advantage of the ColorTrack approach to be even more pronounced for bulk
materials that feature even more motion orthogonal to the transport direction,
such as peppercorns.

5 Conclusion
In this paper, we have shown that the chromatic offset of line scan cameras can
be used effectively in the context of optical belt sorters to improve the predictions
of the particles’ flight paths when the bulk material features significant motion
orthogonal to the transport direction. The improved prediction quality of our
novel approach allows improving the separation process while requiring neither
much more computational power for real-time implementations nor additional
hardware, which are required by the approach presented in [6]. Thus, our approach
can be used to improve existing systems without a need for hardware modifications.
Furthermore, the ColorTrack approach can be employed when the high frame
rate and resolution of line scan cameras is required that cannot be matched by
today’s area scan cameras.

The proposed approach is a modification that can be applied to state-of-the-
art optical belt sorters to improve cost efficiency, e.g., by reducing the amount of
compressed air required, while only necessitating algorithmic improvements and a
sufficiently fast computer. As future work, we aim to consider other improvements
that can be made using only algorithmic innovations, such as optimizing which
additional nozzles are to be activated to achieve a desired hit ratio. Rather than
regarding all particles of the bulk material individually, taking a whole series
of particles into account can help to improve the hit ratio while minimizing
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by-catch. Furthermore, more effort will go into data-driven calibration, which
could result in, e.g., an optical belt sorter using predictive tracking that can
automatically calibrate itself.
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