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Abstract

We consider state estimation based on observations which are simultaneously corrupted by a deterministic amplitude-bounded
unknown bias and a possibly unbounded random process. This problem is solved by developing a combined set-theoretic and
Bayesian recursive estimator. The new estimator provides a continuous transition between both concepts in that it converges to a set-
theoretic estimator when the stochastic error vanishes and to a Bayesian estimator when the deterministic error vanishes. In the mixed
noise case, the new estimator supplies solution sets defined by bounds that are uncertain in a statistical sense. £ 1999 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Considering unknown bias terms in state estimation
received some attention in the literature. Several authors
employed augmentation of the state-space model, Ander-
son and Moore (1979) used a bank of Kalman filters.
Hochwald and Nehorai (1995) criticized state augmenta-
tion and provided an innovative approach using min-
imum bias priors based on ignorance. The separate
estimation of state and bias has been discussed by
Friedland (1969).

We introduce a new idea for state estimation from
observations of several information sources that suffer
from two different uncertainties simultaneously. One
type of uncertainty is a deterministic but unknown error
for which hard amplitude bounds are given a priori. The
other type of uncertainty is a stochastic process with
given statistics. Prior knowledge of both forms of uncer-
tainty allows a two-fold uncertainty reduction during the
observation of sample paths of the information sources.
The combined Statistical and Set-Theoretic Information
(SSI) filter includes the classical estimation schemes as
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border cases. It converges to a set-theoretic estimator
when the stochastic error approaches zero and to
a Bayesian estimator when the deterministic error ap-
proaches zero. In the mixed noise case, the resulting
estimate is a solution set with bounds that are uncertain
in a statistical sense. For an infinite number of observa-
tions per source, this solution set converges to the inter-
section of the underlying noise-free sets. A rigorous prob-
lem formulation is given in Section 2. The special case of
two information sources is discussed in Section 3. A re-
cursive SSI filter for an arbitrary number of information
sources is introduced in Section 4. Numerical solution
formulae are given for arbitrary noise densities, simplifi-
ed solutions arise for the case of Gaussian densities. In
Section 5 numerical examples in the context of mobile
robot localization are presented to clarify the conveyed
concepts. While this paper is limited to the scalar case,
Section 6 provides some ideas for generalization to
higher dimensions.

2. Problem formulation

We consider the problem of estimating a static state
x from multiple measurement streams S;, i =1, ..., N,
where measurements become available at time instants ;.
In general, measurements are simultaneously corrupted
by both deterministic and stochastic errors. For example,
when measuring a distance with several range sensors,
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the location of each sensor is uncertain in a deterministic
sense, while each range measurement simultaneously suf-
fers from stochastic errors.

Problems of this kind are usually approached by pure
stochastic or pure deterministic estimation algorithms,
L., Bayesian estimation or set-theoretic estimation. Ap-
plication of these algorithms requires either neglecting
one type of error or approximating it via the other type.
Besides being theoretically incorrect, applying Bayesian
estimation in the presence of deterministic uncertainties
yields overoptimistic estimates. This is due to the fact
that for an infinity number of measurements the estimate
converges towards a biased estimate while reporting
a vanishing uncertainty. On the other hand, stochastic
errors with long-tailed densities pose a serious problem
for set-theoretic estimators. Neglecting these errors may
cause inconsistencies; approximating the errors by sets
results in rather conservative estimates.

Here, we provide an estimator for the state x, which
gives theoretically correct results in the presence of both
error types. Both errors are assumed to be additive,
because this is the most important case. The first error is
of deterministic type, ie., constant and unknown. It is
bounded in amplitude by a set, which is an interval for the
scalar case. The second error is represented by a discrete-
time, zero-mean, possibly colored stochastic process SP;
with known statistics. The stochastic processes for differ-
ent sources are mutually independent. For the scalar
case, the measurement equation may be written as?

Z¥ = x + leg + 'EF (1)

for each measurement stream S;, i = 1, ..., N. ey denotes
the deterministic error of measurement stream S;, which
is bounded by an interval of width b; according to

we] b b
e4€ 507 |

The stochastic error at time t, is denoted by ‘E¥, with
IE¥ ~ SP;. The estimate of state x at time ¢, is based on
the observations Z!, | < k, of the measurement streams
S;,i=1,...,N, which were available up to time t,. This
estimate is of course not a point estimate, but a set
estimate where the set bounds are uncertain in a statist-
ical sense.

3. Two information sources
In this section, the special case of two independent

information sources S;, i=1,2, is considered. Each
source is characterized by a priori knowledge on bounds

% Capital letters are used for random variables or processes, small
letters denote specific realizations or deterministic quantities.

b; of the deterministic and constant offset and noise
densities ff at time k. In what follows, we derive the joint
density for the left and right bound of the resulting
interval estimator. Analytical results are given for the
marginal densities in case of Gaussian densities /.

3.1. Arbitrary noise densities

Let X* be an estimator of x + ‘e, with density /%. The
joint density of the independent random quantities X,
i = 1,2, is then given by /%, = % f%_In the next step, the
additional prior knowledge on the bounds b; of the
deterministic error ‘e, is used to define the new estimators
X¥ i =1,2. This is done by climinating those regions of
the joint density f*, for which

|

|Xg'>§1|>%(b1 + b,)

holds.
The resulting normalized joint density f’§2 of the new
estimators X%, i = 1, 2, is thus given by

n [ Fha/2Ch for [R5 — 5 < 3(by + ba), )
2 {0 elsewhere. @
2C* is a normalizing constant, which accounts for the
eliminated parts of the original density f%,.

Since Xﬁ‘ i =1, 2, are estimators for the midpoint of
intervals of width b;, i = 1, 2, respectively (see Fig. 1) an
interval estimator combining the information of both
estimators )?:‘ i=1,2, is found by stochastic intersec-
tion. The left and right bounds ?L*, 2R* of the interval
estimator at time k are thus defined as

N b, =2 b

2L"=max<X’§ A?‘,X'g—f) (3)
2 by =2 b

2Rk = min (X’; + 71 X%+ f) (4)

For calculating the joint distribution ZFfLR(l,j’) of 2Lk,
ZR*, Egs. (2)~(4) provide constraints for x%. x%. From
Eq. (2), we deduce

Ak Ak 1 Rk Ak L
X5 — X7 <z2(by + by), X1 — X5 <32(b; + b3) (5)
X*
—_——
——
hj2  bi/2
0y /2 by /2
b
—
ZLk ERk
axis of real numbers
Fig. |. Intersection of two intervals with stochastic midpoints )?1‘
i=1,2, and a priori known widths b, i = 1, 2. The resulting interval

bounds 2L*, *R* are random variables.
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Eq. (3) provides the two inequalities
bl b2

2 k]

which must be simultaneously fulfilled. In contrast, Eq. (4)
gives the two inequalities

(6)

X<+

_ by

[
zflz(,R(l, r) = Z—C"

|
(- (-

N b {4 hy/2 R
+6(l+b, —1)f} <1+—2—‘)f f’;(z)dz}
z=1+by—hy/2

Ak Ak
X1 <r——, t<r , 7
' 2 2 @) for I<r<I+ by,

. . 9
where at least one inequality must be fulfilled. Hence, \0 elsewhere, ©)
these six inequalities define the shaded region depicted in ) _ .

Fig. 2. Integration of f 12 over this region gives where &(x) denotes Dirac’s impulse function.
(0 for r <1,
1 [=by/2 by + b2 A A P A Ak 1Ak
L U J FHE FH38) ik ddt
C e Ja=8_amn
r— b2 {+62 A N
S FhE P 085 adt
Hmlbyj2 JB=H b +h)2
1+ by/2 r—by/2 . " P
2Rk R r) = +f j A s (f’g)di’gdf’j} for l<r<i+ by, (8)
Bmrobmp2 JH=F b, +by2
1 1= hy/2 25 + by + b2 .
Pk Ay kA Ak 4 A
z—ck{j f fl(x1)f)§(x2)dx2dx
Beco JH=H-0 +n)2
I+ hy/2 1+ by/2 Ay A A A A
+j f’j()?'{)fﬁ()%'i)d)%’&d)?’}} for I+ b, <r <1+ b,,
fi=t-b2 JE = - +by12

!

where by < b, is assumed without loss of generality.
In a second step, the joint density *f% z(/, r) is derived
by applying
2

me L= 616 ZFLR(I r).

Calculating the derivative of *F¥(l, r) with respect to
| gives

{2 F%r(L 1) }

for r > 1+ b,,

3.2. Discussion of border cases

Eqg. (9) is the general expression for combing two esti-
mates suffering from both stochastic and deterministic
uncertainties simultaneously. Of course, for the border
cases of only stochastic or only deterministic uncertain-
ties, Eq. (9) simplifies to give the well-known classical
results: Bayesian estimation and set intersection.

for r < |,

1 —by2 e Ak b, . b, b2 ~
TCT({J" fx()?'i)dfxfg’ﬂLE +f’i<l+3f fEEEdRE Y for I<r<l+ by,
H=li-np H=l—hy2

i+ b, /2

a[ 1 . hl i+ by/2 R R P ' b
z_c"k{fli l+7>J f'é()?'é)df’5+J Fhk)dRt f<l+3 for I +b, <r<!+b,,
B=l—hbp B=t-b2

0{*F%g(l, r)}/ol is continuous at r =1 and r =1+ b,.
However, there is a jump discontinuity at r =1+ by.

Hence, further differentiation with respect to r yields

for r> 1+ b,.

3.2.1. Border case: stochastic uncertainties only
In this case, we consider the limit

by -0, b, =0,
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Fig. 2. Visualization aid for derivation of the joint distribution
2Fk (L p).
Lrl,

which leads to

1 ~ ~ ~ ~
P {8+ 50 /5 for L=,
zflIiR(l’ ") =

0 elsewhere,

which is equivalent to

zf’IiR( ) fLRmm_zckf /‘ m)

Hence, when only stochastic uncertainties occur, the SS1-
filter simplifies to the well-known Bayesian estimation
result.

3.2.2. Border case: deterministic uncertainties only
In this case, we have

[il®) = 6(% — (x + ),
Hence, (9) gives
zf,L(,R(lﬁ }") =

(%{5<r_<x+el+%
cofi- (o %))0( ( %))

+ 0l —(r—by)

i=1,2

[+ baf2
J oz — (x + ed)d } forl<r<Ii+ b,
{4 by —hy2

\0 elsewhere. (10)

Since | + b,/2 > x + e9, we find

1+ byy2 0 f b —
J 5(z~(x+e‘2’))dz={ or by = ba.

t= 4 by —hy2 I for by <b,.

Thus, Eq. (10) is equivalent to

b b
l:max<x+e?~~21,x+e§—72>,

. b b
r=m1n(x+e‘f+7l,x+e§+72>.

Hence, when only deterministic uncertainties occur, the
SSI-filter reduces to set intersection.

3.3. Gaussian noise densities

If f’,-‘, [ = 1,2, are Gaussian, of course fﬁ‘, i=1,2, are
also Gaussian with

) =~ exp (= L (XY
fi(X)—ﬂoA'?exp ) OA_i( > (11)

and so analytical expressions for the normalizing
constant as well as the marginal densities and ex-
pected values of left and right bounds, L* and *R%,
are obtained. The normalizing constant 2C* is given

— My + b2+ b2/2>

iy — s —by/2 + b2/2>
V/(&’i)z +(6%)?

(%)% + (6%
nh — I§+b1/2—b2/2>
5?

V(64)? + (6

enotes the error function defined as

<A’; mk + b2 + b2/2>
d

where erf (x)

erf(x)—fo ex (—y—2>d (13)
—\/% o P o A

according to Papoulis (1984).
The marginal density /% (I) = {*

rF=-X.

lower bound may be expressed as

X 1 N b [+ by/2 — itk
Zfli(l) = 20k |:f’i <l + 71) <erf <$>
<1—b2/2—nﬁ’§>>

—erf|{ ————

G2

4k
+ 7% (1 + ﬁ) <erf T by2 =i ’”‘)
2 01
—_ sk

- erf(M))J. (14)

g1

g, rydr of the
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g, r)dl of the

)

The marginal density *(%(r) =]~ __

upper bound is given by
.k
2fh(r) = [f"( b)(erf(—r-’_bz{% ma
2 (0

_ _ 4k
—erf (——7" bz/% m2>>
G2
pu— Ak
(=) (o (222
2 (1
. sk
-—erf<r b2 ml))] (15)
g1

Expected values for lower and upper bounds are given by

1105

bound denoted by /L¥, which contains the information
from sources 1, ..., J, and is defined by

b!

_),

3 (19)

ik = max(j‘lL", Xk
Hence, the joint density of / “1[*and X % is required for
calculating /L*. This joint density ig calculated from the
joint density of /7 'L¥, /"'R¥ and X%, which is given by
the product

f (X) i- lfliR(la r)a

because the stochastic errors of the corresponding
measurement streams are assumed to be independent.

LRX(Z r,X) =

| b b b
E{LM = —k<(&§)2 [g<rﬁ’; — ik +7‘—-23>—g<m';—m -f—b—;)}
b nk —mk + b2 2 nk — ik 2—b
n (yﬁ;; _ _2) l:erf(mz mjk‘z v/ _ sz/ )_ erf(mz jk _ by/ — 2/2>:|
2 (61)° +(d3) V(6% +(6Y)°
b b
+(a';)2[g<m'; —n‘a’g—%—l+72>—g<rﬁ’§ —mg_%—gﬂ
b nk — 2+ b,/2 nk — mk 2 —
+ (nﬁ'é ~—2> |:erf<ml = y A:-Z 2/ )—erf(m1 fk = b/ — 2/2>:|> (16)
2 (6%)* + (%) V(65 +(6Y)
and
1 b b b
E{?RY) = ((6’5)2 [{4 <m’§ —mh + 71 + —2’5> -9 <m§ —mh ~ 7‘ + %)]
b ak —mk +b,/2 2 ik — mk — b2+ by)2
+ (rfz'i + _2) l:erf<m2 mjkt J A:'sz/ > —erf (mz : Y2+ ba/ >]
2 @) +(6%) V65 + (85
b b b b
+ (%) [g<”; — 1k +7‘+72>—g<m’; — 1 +7‘—72>J
Ak oak ) sk k 7 — b
+ <m§ + E) |:erf (ml et D2 ) —erf (’"1 by 2/2>D, (17)
2 (61)° +(32) (01) +(6%)°
with
G = exp(—3x2/(6%)? + (6%)) (18) The joint density of /7 'L* and )?j‘ is then obtained by
B 2n S + (657 integrating over r according to

4. N information sources

The above results for two information sources are now
generalized to the case of N sources. We focus attention
on the derivation of the marginal densities for the upper
and lower bounds, since these are of major interest for
practical applications.

4.1. Arbitrary noise densities

We begin with the derivation of a source-recursive
expression for the marginal density /f% of the lower

X

il = | el
With Eq. (19), the marginal distribution 'F¥ of the lower
bound is given by

JF’i(jlk) = f f

The prior knowledge on the deterministic uncertainty
bound b; may be used to formulate the following inequal-
ities for spe01ﬁc realizations X%, /71K, I~ 1k

b

! <

3_

i, T+ byf2

=1k o, x) dxdl.

l=—w J x=—-w

&>J'—llk.
5 =

xk— x5+ (20)
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Making use of these inequalities for expressing f]
terms of f* 7 together with

'\

i) =7 Filh)
k
yields
O = 2 o JI JH J%
LV jCk 0’1 I=— J x=1-h,2 J r=x—h2
xf(x) 17 gl rydr dxdl, (21

where /C¥ is a normalizing constant. Performing differen-

tiation yields
b il «©
[f,(’lk )J j Ik e ) dr dl
2) Ji=-ndr=u

i+ b2 e
+f J 40 7y j UL, ) dr dx} (22)
x=—b2J r=x—5;2

il =

Lemma. The double integral over the joint density
Im1fh _ (U ¥) of the form

[ J Ik A drd (23)

I=—w Jr=z

may be expressed in terms of the marginal densities as

J 7RG = ) dy. (24
y=—x

Proof. Expression (23) may be rewritten as

j J itk (L r)ydrd!
I=—w0 Jr=—x

- J f imtek (0 r)drdl. (25)

Using the fact that /7 (1, r) is equal to zero for I > r,
we may replace the upper limit of the first integral in the
second expression by co. Interchanging the order of in-
tegration in the second expression yields

f "If’i(l)dl—r

which concludes the proof. [

I R(r)dr, (26)

Eq. (22) may be further simpliﬁed by using the lemma
and by again using the fact that /= !f% (I, ¥) is equal to zero
for [ > r. The lower limit x — b;/2 in the second integral of
the second expression may be replaced by —cc

The desired recursion for the marginal density of the
lower bound is now obtained as

) = [f? (t ¥ %) f

1+bj/2
— ROy dy + T l)f vc}de.

x=1-by/2

TR

27

T S
| 1 |

21t et Nt
‘t o 00 /

N

o2k ek "7

f ! ! f

iy 1% 1% £

Fig. 3. Lattice-type recursion for the marginal densities of lower and
upper bounds in the case of N information sources.

In analogy, the recursion for the marginal density of the
upper bound may be derived as

‘ 1 [ b\ [7 4
fktr) =,C,;z[f§ <r~ 5” _ W)
r+bjs2 N
—“fﬁe(y)}dyﬁt“f’iz(r)f / f'}(X)dx}
x=r—bj/2

(28)

where /C % is a normalizing constant.

This lattice-type recursion for the marginal densities
of lower and upper bounds is depicted in Fig. 3 and
initialized with

N b ~ b
= (ieR) w=n(r-Y) e

4.2. Gaussian noise densities

Again, |’ % is a Gaussian density. The above expres-
sions (27) and (28) for the marginal densities may be
reduced to

. AW ‘
L jck[ "<I+ 2” VL)
0 <erf <ﬁ’ bR ’“)
—erf (——’ — bf/i — mf)ﬂ (30)
gj
j % bj ’ j-trk
o 6= [ Ao
Ak
+ 77 R() <erf (_r * b’ﬁ _ mj)
—erf <——r —bil2 = mﬁ))} (31)
gj

— I k() dy

I -
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Fig. 4. Experimental setup for mobile robot localization: (a) sequential sampling, (b} simultaneous sampling.

5. Simulative verification

Since the authors’ backgrounds are in mobile robot
localization based on optical range data (Horn and
Schmidt, 1995a, b), acoustical range data (Hanebeck and
Schmidt, 1995), and angular measurements (Hanebeck
and Schmidt, 1996), a simple scalar mobile robot local-
ization problem is considered.

Two border cases of gathering information from sev-
eral sources are illustrated by numerical examples: The
first case consists of sampling the first source several
times, then sampling the second source, and so on. The
second case assumes that samples from all sources are
available simultaneously.

Consider a vehicle equipped with a range sensor that
measures the distance to a number of boxes as illustrated
in Fig. 4. The box positions are known within a given
geometric tolerance, ie.,

L . b;
p =S5+ Axp with |'Axp| <, (32)

where ‘Xp denotes the unknown true value and ‘Axp is
the unknown but bounded deviation of the nominal
value ‘xz. The range sensor is corrupted by additive
white Gaussian noise with zero mean and a variance ¢ ?
which depends on the surface characteristic of the box i.
The measurement equation is thus given by

xp + D¥ = x + ‘Axp + ‘Ek, (33)

where ‘EX ~ N(0, 5,), x denotes the vehicle position, and

D¥ is the measured distance. The two simulations are

now performed for a true vehicle position x = 200 and
the parameters given in Table 1.

f¥(x) is a Gaussian density where the mean and vari-
ance are recursively estimated by observing source i as
(Schweppe, 1973)
eGR4 0) 2 + dY)

’ @ (@)
@ =¥ N 2+ (e)™H7 1,

with /9 = 0, (69)7" =0,

(34)

Table 1

Parameters of localization experiment

Box 1 2 3 4
True value %5 125 82 22 6
Nominal value ‘x 120 80 40 0
Bound b; 40 20 30 ., 20
Standard deviation g; 10 10 10 10

The first simulation refers to Fig. 4a where the vehicle
moves along the four boxes. The boxes are sampled
sequentially with 100 samples for each box. We start with
the first box, and simply obtain the marginal densities as
the shifted versions of f%(x) according to (29). These
marginals serve as the initial densities for the recursion
formulae (30) and (31) that are used for including in-
formation sources 2, 3, and 4 sequentially. The SSI recur-
sion step from i—1 to i is performed whenever the
Bayesian update (34) for information source i has been
done, i.e., 100 times for boxes 2, 3, and 4, respectively.
Fig. 5a depicts the response of the expected values
of the lower and upper bounds of the set estimate.
Sampling a specific box reduces the stochastic uncer»
tainty. The initial deterministic uncertainty given by
the interval [175,215] is obviously reduced each time
the box is changed: When changing from box 1 to box 2,
the resulting intersection set without stochastic noise
would be [188,208], which is eventually approached
when sampling box 2 for an infinite number of times.
When traversing from box 2 to box 3, only the lower
bound is updated, since the noise-free interval inter-
section would yield [197, 208]. Switching from box 3
to box 4 produces an update for the upper bound only,
since the underlying interval intersection would yield
[197, 204].

The second simulation refers to Fig. 4b where the
vehicle samples all four boxes simuitaneously at time k.
The Bayesian update (34) is performed at every time k
for each source i. Subsequently, the SSI recursions
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Fig. 5. Expected values of lower and upper bounds: (a) sequential sampling, (b) simultaneous sampling.

(30), (31) are performed, starting with Eq. (29), up to
information source 4, at every time k. In this experiment,
the underlying noise-free intersection set is [197, 204]
for all k. This set is approached for an infinite number
of measurements.

Fig. 5 clearly demonstrates the realistic quantification
of the associated estimation uncertainty which is in sharp
contrast to the optimism of point estimators. This feature
may be exploited when attempting to navigate a mobile
robot through narrow openings.

6. Conclusions

A combined Statistical and Set-theoretic Information
(SSI) filter is introduced for the fusing of information
from several sources which are simultaneously corrupted
by a deterministic amplitude-bounded unknown bias er-
ror and a possibly unbounded random process. The new
approach unites proven schemes for handling pure
stochastic noise and for treating amplitude-bounded
uncertainties. As a result, set estimates are provided
rather than point estimates. Furthermore, the set bounds
are uncertain in a statistical sense. Thus, these estim-
ates do not suffer from the overoptimism encountered
when one form of uncertainty is neglected. Monte Carlo
simulations in the context of mobile robot localization
demonstrate the effectiveness of the proposed approach.
In addition, the simulation results demonstrate the
two-fold uncertainty reduction during measurement
acquisition.

The study presented only considered the scalar case.
Nevertheless, generalization to higher dimensions is
straightforward when attention is limited to hyper-rec-
tangles parallel to the coordinate axes. The treatment of
ellipsoidal set bounds is more involved, since ellipsoids
are not closed under intersection, and the detection of
ellipsoid overlap is tedious.
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