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ABSTRACT In this paper, we show how to analyze the achievable position accuracy of magnetic
localization based on Bayesian Cramér-Rao lower bounds and how to account for deterministic inputs in
the bound. The derivation of the bound requires an analytical model, e.g., a map or database, that links
the position that is to be estimated to the corresponding magnetic field value. Unfortunately, finding an
analytical model from the laws of physics in not feasible due to the complexity of the involved differential
equations and the required knowledge about the environment. In this paper, we therefore use a Gaussian
process (GP) that approximates the true analytical model based on training data. The GP ensures a smooth,
differentiable likelihood and allows a strict Bayesian treatment of the estimation problem.
Based on a novel set of measurements recorded in an indoor environment, the bound is evaluated for
different sensor heights and is compared to the mean squared error of a particle filter. Furthermore, the
bound is calculated for the case when only the magnetic magnitude is used for positioning and the case
when the whole vector field is considered. For both cases, the resulting position bound is below 10 cm
indicating an high potential accuracy of magnetic localization.

INDEX TERMS Bayesian Cramér-Rao lower bound, finger-printing, Gaussian process, indoor localization,
magnetic field-based localization, particle filter

I. INTRODUCTION

MAGNETIC localization uses position-dependent dis-
tortions of the Earth magnetic field. Distortions are

caused by ferromagnetic material in the environment and
are persistent over time as long the environment remains
the same. The existence and the usefulness of such distor-
tions have been shown for different environments and use
cases. The majority of the literature published in this area is
concerned with indoor localization of pedestrians and robots
[1]–[9], where the distortions are due to steel in the walls,
floors, and in furniture. For indoor environments, magnetic
localization is often combined with an inertial navigation
system or an odometer to improve the accuracy and reli-
ability. Besides indoor environments, magnetic distortions
were shown to enable localization also along roads [10]–[12],
railway tracks [13]–[15], and in the airspace [16]. While on
roads and railway tracks, the distortions are well pronounced
and can be measured with low cost magnetometers, in the
airspace the magnetic variations have smaller amplitudes.

Hence, high quality magnetometers in combination with an
inertial navigation system are required in the airspace.

Position estimation based on magnetic distortions is a
highly nonlinear estimation problem. The nonlinearity is
introduced in the likelihood in which a map of the distortions
is required as the link between the estimated position and
the observed magnetometer measurements. Due to this non-
linearity, also nonlinear estimation algorithms are required.
A popular approach for magnetic localization is the particle
filter used, e.g., in [3], [4], [6], [10], [13], [16]. Besides the
particle filter also fingerprinting methods based on convo-
lutional neuronal networks [8], k-nearest neighbors [2] and
dynamic time warping [1] are proposed in the literature that
perform position estimation based on a batch of data that is
fitted to a database of magnetic fingerprints. In this paper
we focus on approaches based on Bayesian filters because
they allow an easy integration of motion models and control
inputs and provide the uncertainties of the estimated position.
In particular particle filters are investigated, were the advan-
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tage of the particle filter is its simple implementation and
capability to handle also “strong” nonlinearities for which
linearized filters like the unscented or extended Kalman filter
might diverge or give unsatisfying results.

The sampling-based nature of the particle filter has the
disadvantage of a high computationally cost compared to
Kalman filters, particularly in large state spaces. Fortunately,
when only position, speed, and acceleration have to be es-
timated, the complexity is small enough to carry out the
calculation in real time with a reasonable update rate. Even
though the particle filter was shown to achieve good results
in different scenarios, it is still unclear if it is even close to
optimality. In this paper, we therefore show how to obtain a
lower bound on the mean squared error. The benefit of such
a bound is that it allows to determine the minimal achievable
position error for a given magnetic field and it can be used
as a benchmark during the development of a localization
system to check if a specific estimation algorithm is close
to optimality. The bound can also be used to check if a
given magnetic field, e.g., inside a room, enables localization
with an accuracy that fulfills the requirements of the targeted
application. If the requirements are not fulfilled, one has to
think about using additional sensors in combination with
the magnetometer to achieve the desired accuracy before
developing the actual localization system.

The proposed lower bound is based on the Bayesian
Cramér-Rao lower bound (BCRLB) introduced by Van Trees
[17]. The BCRLB combines the Cramér-Rao bound defined
by the inverse Fisher information matrix (FIM) with a state
space model allowing to incorporate prior knowledge, e.g.,
a motion model into the bound. Furthermore, in [18] a
recursive version of the bound was derived that reduces the
computational complexity. The BCRLB requires a measure-
ment model that is analytically known and that leads to a dif-
ferentiable likelihood. For magnetic localization this causes
some difficulties because the true magnetic field map and
hence the likelihood is unknown in general. The magnetic
map is only known (with some uncertainty) at positions at
which it was measured. Using the laws of physics to describe
the magnetic field in analytical form is not possible because
this would require an exact knowledge of all materials in
the environment, its physical properties, and dimensions.
In addition, even when the environment is exactly known,
the involved differential equations have to be solved with
numerical methods. In this paper, we therefore follow the
approach presented in [19], where Gaussian processes (GPs)
are learned based on a training data set to describe the
measurement model. In [19], the authors applied this idea
to obtain a lower bound for localization with received signal
strength fingerprints. In contrast to this, here we adapt this
methodology to the problem of magnetic localization and
we derive the equations required for implementation and we
show how a deterministic input can be incorporated into the
bound. To the best of our knowledge this has never be done
before.

After an introduction to the topic in Section II and a deriva-

tion of the equations specific for magnetic localization in
Section III, an evaluation on a novel data set is performed in
Section IV. In the evaluation, we use magnetometer measure-
ments recorded in our laboratory to investigate the achievable
accuracy of magnetic localization. The bound derived from
the measurements is compared to the mean squared error
(MSE) of a particle filter to check if the filter is close to
optimality. Furthermore, the bound for the magnetic field
measured at different heights is investigated and we compare
the bounds for the cases when the whole magnetic vector or
only its magnitude is considered in the estimation.

II. BAYESIAN CRAMÉR-RAO LOWER BOUND
In this section, the BCRLB and GPs are introduced and it is
shown how they can be combined. In addition, an efficient
recursive version of the bound is derived.

A. BCRLB FOR ANALYTICAL LIKELIHOOD MODELS
The BCRLB is a Bayesian bound on the minimal achievable
MSE. In contrast to the classical Cramér-Rao bound, which is
a bound on the variance of an unbiased estimator, the BCRLB
is also valid for biased estimators. The BCRLB is defined by
the inverse of the Bayesian information matrix (BIM) J and
fulfills the matrix inequality

M = Ex,z

[
(x̂(z)− x)(x̂(z)− x)T

]
≥ J−1, (1)

where M is the MSE matrix for an estimator x̂ that estimates
the state vector x given the observations z. The index of
the expectation operator Ex,z [·] indicates that the expec-
tation is taken w.r.t. the joint probability density function
(pdf) p(x, z). The inequality sign states that the difference
M − J−1 is a positive semi-definite matrix. The BCRLB
and the BIM was first introduced by Van Trees in [17] and is
given by

J = −Ex,z [∆
x
x ln (p(z,x))] . (2)

The differential operator ∆a
b = ∇b∇T

a is an outer product
of the nabla operator ∇a =

[
∂

∂a1
· · · ∂

∂aN

]T
and when

applied to a function gives its Hessian matrix. The regularity
conditions for the bound are given in [17] and assume that
for the bias

B(x) =

∞∫
−∞

[x̂(z)− x] p(z|x)dz (3)

the following limits are fulfilled

lim
xi→∞

= B(x)p(x) = 0

lim
xi→−∞

= B(x)p(x) = 0 (4)

for each element xi of vector x =
[
x1 · · · xnx

]T
. In

addition, the first and second partial derivatives of the joint
density p(z,x) w.r.t. the state must be integrable to ensure
the existence of the expectations in the bound. The BCRLB
(2) can be also split into a data-dependent part and a part
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depending on prior knowledge by applying the Bayes’ rule
on the joint density p(z,x) = p(z|x)p(x)

J = Ex

[
Ez|x [−∆x

x ln p(z|x)]
]
+ Ex [−∆x

x ln p(x)]

= Ex [F(x)] + Ex [−∆x
x ln p(x)] , (5)

where F(x) is the FIM of the likelihood p(z|x). The BIM
therefore is the sum of the expectation of the FIM over the
state distribution p(x) and the information obtained from the
prior distribution itself. Connecting the BIM to the FIM is
useful in practice because for many likelihoods the FIM can
be found in the literature. In the BCRLB it is assumed that the
measurement model and the likelihood p(z|x) is analytically
known and the corresponding F(x) can be calculated. This
is the case for many estimation and localization problems.
For example, for global navigation satellite systems the range
measurement model is given by the Euclidean distance be-
tween the receiver and satellite antenna and some additive
white Gaussian noise (AWGN). For such models the FIM is
well defined and easy to calculate. As we will see in the next
section, this is not the case for magnetic localization.

B. BCRLB FOR MEASUREMENT-BASED LIKELIHOODS
In contrast to the previous section, now the case is addressed
in which the measurement model itself is not known analyti-
cally but noisy measurements are available. In the following,
we differentiate between the true but unknown measurement
model

zk = h̃ (xk) + nk (6)

where nk ∼ N (0, σ2
n) is AWGN and h̃ (·) is the function

that relates the state xk ∈ Rnx to the measurements zk
at time step k. Because h̃ (·) is unknown, an approxima-
tion h̃ (x) ≈ h (x,D) based on some measured training data
set D = {XD,ZD} is required, where ZD is a set of
noisy measurements of the true measurement model and XD
are the corresponding known inputs. Here only functions
from an input space with dimension nx to a scalar output
h̃ : Rnx 7→ R are considered. For vector-valued functions,
e.g., the magnetic vector field, the measurement model is
considered a combination of multiple scalar functions.

In principal, there are many ways to approximate a func-
tion but for the use in the BCRLB an approximation should
be chosen that accounts for its stochastic nature introduced
by the training data set. This paper follows the approach
proposed in [19] where the measurement function is approx-
imated with a GP. The advantage of the GP approximation is
that the resulting function will be differentiable and for each
input, here the state vector x, the function value is Gaussian
distributed allowing for a straightforward calculation of the
FIM and BIM. To properly derive the bound for GP based
measurement models the BCRLB is conditioned on the train-
ing data. This is achieved by conditioning all pdfs on the
training data set D. In contrast to the bound in [19], here we
condition the bound also on a deterministic control sequence
U which allows us to better control the state trajectories

over which the bound is calculated, more details on this are
presented in Section III. For brevity, in the following the
training data set and the control input is combined in the set
Du = {D,U}. The bound conditioned on Du is given by

M = Ex,z|Du

[
(x̂(z)− x)(x̂(z)− x)T

]
≥ J−1 (7)

with the BIM

J = −Ex,z|Du
[∆x

x ln (p(z,x|Du))] . (8)

The proof for the conditional bound is exactly the same
as the proof for the normal BCRLB in (1) which can be
found in [17]. The only difference is that the pdf p(z,x)
is exchanged with the conditional pdf p(z,x|Du). For the
regularity condition this results in

B(x) =

∞∫
−∞

[x̂(z)− x] p(z|x,Du)dz (9)

with the limits

lim
xi→∞

= B(x)p(x|Du) = 0

lim
xi→−∞

= B(x)p(x|Du) = 0. (10)

As before in (5), the bound consist of a data dependent part
and a part accounting for the prior information

J = Ex|Du

[
Ez|Du,x [−∆x

x ln p(z|x,Du)]
]

+ Ex|Du
[−∆x

x ln p(x|Du)]

= Ex|Du
[F(x)] + Ex|Du

[−∆x
x ln p(x|Du)] . (11)

The main step in obtaining the BCRLB is the calculation of
the FIM

F(x) = Ez|Du,x [−∆x
x ln p(z|x,Du)] , (12)

where the likelihood p(z|x,Du) conditioned on the training
data is required.

1) Likelihood of GP-based Measurement Models

In this section, we give a short overview on the GP equations
that are required for the derivation of the GP based BCRLB.
For a more detailed introduction about GPs and a detailed
derivation of the following equations we recommend reading
[20].

For the calculation of the BCRLB, the approximation of
h (·) is considered to be a GP. Therefore, the output of the
function itself is a Gaussian random variable with pdf

p(h (xk) |xk,Du)=N (h (xk) ;µ(xk,Du), r(xk,Du)) ,
(13)

where µ(xk,Du) is the posterior mean and r(xk,Du) the
posterior covariance. The posterior mean and covariance of a
GP are functions of the training data and the input for which
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the measurement function has to be evaluated

µ(xk,D)=m (xk)

+KxkD
[
KDD + σ2

DI
]−1

(ZD −m(XD)),

r(xk,D)=Kxk,xk
−KxkD

[
KDD + σ2

DI
]−1

KDxk
, (14)

where the shorthand notation KDD = K(XD,XD) and
KxkD = K(xk,XD) is used to describe the covariance
matrices between the training points with themselves and
the covariance between the training points and the input for
which the GP is evaluated. The covariance matrix K(·, ·) for
two sets A and B of input points has the form

K(A,B)=

 k ({A}1, {B}1) · · · k
(
{A}1, {B}|B|

)
...

. . .
...

k
(
{A}|A|, {B}1

)
· · · k

(
{A}|A|, {B}|B|

)


(15)

and is fully described by the covariance function k (·, ·)
evaluated at the different set elements {A}i and {B}j . The
noise of the training data is accounted for with the variance
σ2
D.
The choice of the covariance function depends on the

underlying true function that is approximated. In this paper,
the GP approximates a function that maps each input, here the
position of a magnetometer, to the magnetic field value at that
input. From practical experience it is known that the magnetic
field changes with the position and that the field at two
positions becomes less correlated when the distance between
the points increases. As proposed in [5], [7], this behavior can
be captured with the well-known squared exponential kernel

k (a,b) = σ2
k exp

(
− (a− b)T (a− b)

2l2

)
(16)

that decays with increasing distance between the input points.
The parameter l is the length scale and controls how wide
the kernel is and how rapid the covariance decays. The other
parameter is the variance σ2

k that is a measure of the overall
variance of the function that is approximated. The mean
function is assumed to be constant because we expect the
magnetic field to vary around the value of the Earth magnetic
field that can be considered homogenous in small areas like
a room.

To obtain the likelihood required for the FIM in (12), the
measurement model (6) is combined with (13). The observa-
tion zk is according to (6) the sum of two Gaussian random
variables, one for the GP that describes the measurements
function and one for the noise of the sensor. The sensor
noise is considered white and independent from the GP. The
likelihood of the observation is therefore the convolution of
the pdf in (13) and the noise pdf

p(zk|Du,xk) = N
(
zk;µ(xk,Du), r(xk,Du) + σ2

n

)
= N (zk;µ(xk,Du), rC(xk,Du)) . (17)

The resulting likelihood is again Gaussian and the covari-
ances of the GP and the noise are simply summed up.

Intuitively this is plausible, the likelihood gets wider and less
informative when the sensor noise, the uncertainty in the GP
or both increase.

2) Fisher Information Matrix of GP-based Likelihoods
In this section, the FIM for the likelihood in (17) is presented.
The equations for the FIM are obtained in a straightforward
manner from the equations of the general Gaussian case [21]

[F(xk)]ij =
∂µ(xk,D)

∂[xk]i
r−1

C (xk,D)
∂µ(xk,D)

∂[xk]j

+
1

2
r−2

C (xk,D)
∂rC(xk,D)

∂[xk]i

∂rC(xk,D)

∂[xk]j
. (18)

The FIM in (18) is defined element-wise, where [F(xk)]ij is
the element in i-th row and j-th column. To get the FIM for
the GP-based measurement model therefore the derivatives of
the mean and covariance in (17) w.r.t. the state variables are
required. For any differentiable covariance function k (·, ·)
and mean function m(·) the derivatives of the posterior mean
are

∂µ(xk,D)

∂[xk]i
=

∂

∂[xk]i
m(xk) +

M∑
l=1

[S−1z̃]l
∂k (xk, {XD}l)

∂[xk]i
.

(19)

For the posterior covariance the derivatives are given by

∂rC(xk,D)

∂[xk]i
=

∂

∂[xk]i
k (xk,xk)−

2

(
∂

∂[xk]i
KxkD

)
S−1KDxk

, (20)

where we used the notation S = K(XD,XD) + σ2
DI and

z̃ = zD−m(XD). For a specific GP model the only thing left
to do when calculating the FIM is to plug in the derivatives
of the mean and covariance function into (19) and (20). For
the GP in this paper those are the derivatives of the squared
exponential kernel (16)

∂k (xk,a)

∂[xk]i
=

∂

∂[xk]i
σ2
k exp

(
− (xk − a)T (xk − a)

2l2

)
= − k (xk,a)

([xk]i − [a]i)

l2
=

∂k (a,xk)

∂[xk]i
(21)

and the constant mean function
∂

∂[xk]i
m(xk) =

∂

∂[xk]i
m̄ = 0 (22)

where a is an arbitrary vector with appropriate dimension.

C. BCRLB FOR NONLINEAR FILTERING
Magnetic localization is a dynamic estimation problem be-
cause the position will change over time. Therefore, the
BCRLB for the state xk at a specific time step k introduced
in the previous section has to be extended to state sequences.
Furthermore, during localization the state at the current time
step typically depends on the previous one. This dependency
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can be described in form of a motion model as it is used, e.g.,
in Kalman and particle filters. For the following nonlinear
motion models of the form

xk = f (xk−1,U) +wk−1 (23)

are considered. The process noise wk−1 is assumed to be
AWGN. In the derivation of the BCRLB for nonlinear fil-
tering this is not required but for the implementation of the
BCRLB the AWGN case allows for some simplifications.
For the filtering bound let X0:k+1 =

[
xT
0 · · ·xT

k+1

]T
be a

vector in which the state sequence from time step 0 to k + 1

is stacked. Similarly Z1:k+1 =
[
zT1 · · · zTk+1

]T
is the vector

containing the sequence of measurements. According to (8),
for X0:k+1 the BIM is

J0:k+1 = −EX0:k+1,Z1:k+1|Du

[
∆

X0:k+1

X0:k+1
ln pk+1

]
, (24)

where the index of J indicates for which state sequence it is
valid and pk+1 is the joint pdf

pk+1 = p(X0:k+1,Z1:k+1|Du). (25)

The dimension of J0:k+1 is (k+2)nx×nx(k+2) and hence
for long sequences the BIM becomes hard to invert. In [18],
the authors address this issue with a recursive version of the
bound in which only matrices with dimension nx × nx are
inverted. In the next paragraph, we follow the proof given in
[18] and point out where some assumptions have to be made
about the GP in the measurement model in order to obtain
an efficient recursive form of the bound. The basis for the
recursive calculation is to split X0:k+1 =

[
XT

0:k xT
k+1

]T
,

which allows us to write the BIM as a block matrix

J0:k+1 =

[
Ak+1 Bk+1

BT
k+1 Ck+1

]
, (26)

where we used that the differential operator in (24) can be
written in block form

∆
X0:k+1

X0:k+1
=

[
∇X0:k

∇xk+1

] [
∇T

X0:k
∇T

xk+1

]
=

[
∆X0:k

X0:k
∆

xk+1

X0:k

(∆
xk+1

X0:k
)T ∆

xk+1
xk+1

]
. (27)

Furthermore, if J0:k+1 is the BIM for the sequence X0:k+1,
the BCRLB for the single state xk+1 is given by the lower
right block of J−1

0:k+1. With block matrix (26) and the Schur
complement we obtain

Mk+1 ≥
(
Ck+1 −BT

k+1A
−1
k+1Bk+1

)−1
= J−1

k+1. (28)

In (28) only the upper left block matrix Ak+1 has to be
inverted but this still has the dimension (k+1)nx×nx(k+1).
To further reduce the dimension of the involved matrices the
different blocks in (26) need to be broken down themselves
into blocks. In the following the expectations are always
taken w.r.t. the joint density p(X0:k+1,Z1:k+1|Du) when
no other density is explicitly mentioned in the index of the
expectation operator. For the joint density it is also useful to

define the identity

pk+1=p(xk+1, zk+1|Du,X0:k,Z1:k) p(X0:k,Z1:k|Du)︸ ︷︷ ︸
=pk

=p(zk+1|Du,X0:k+1,Z1:k)p(xk+1|Du,X0:k,Z1:k)pk.
(29)

The matrix Ak+1 is split into four blocks

Ak+1 =

[
A

(11)
k+1 A

(12)
k+1

(A
(12)
k+1)

T A
(22)
k+1

]

= −E

[[
∆

X0:k−1

X0:k−1
∆xk

X0:k−1

∆
X0:k−1
xk ∆xk

xk

]
ln pk+1

]
. (30)

Matrix Bk+1 is split only into two blocks

Bk+1 =

(
B

(1)
k+1

B
(2)
k+1

)

= −E

[[
∆

xk+1

X0:k−1

∆
xk+1
xk

]
ln pk+1

]
. (31)

With (30) and (31) the BIM in (28) becomes

Jk+1 = Ck+1−[
(B

(1)
k+1)

T (B
(2)
k+1)

T
][ A

(11)
k+1 A

(12)
k+1

(A
(12)
k+1)

T A
(22)
k+1

]−1[
B

(1)
k+1

B
(2)
k+1

]
.

(32)

The efficient form presented in [18] requires the matrix B
(1)
k+1

to be zero because this reduces (32) to

Jk+1 = Ck+1 − (B
(2)
k+1)

T (A−1
k+1)

(22)B
(2)
k+1. (33)

where the lower right block of A−1
k+1 is obtained from (30)

and the Schur complement

(A−1
k+1)

(22)=
(
A

(22)
k+1−(A

(12)
k+1)

T (A
(11)
k+1)

−1A
(12)
k+1

)−1

. (34)

It can be seen from the definition of B(1)
k+1 in (31) that the

matrix becomes zero when no part of the joint pdf in (29)
depends on xk+1 and X0:k−1 at the same time due the
differentiation w.r.t. this state vectors. This is fulfilled when
both, the likelihood and the motion model have the Markov
property

p(zk+1|Du,X0:k+1,Z1:k) = p(zk+1|Du,xk+1)

p(xk+1|Du,X0:k,Z1:k) = p(xk+1|Du,xk). (35)

The matrices in (33) all have the dimension nx × nx but the
calculation of (34) still involves larger matrices. Fortunately,
due to the Markov property it can be shown [18], that

Ak+1 =

[
Ak Bk

BT
k Ck +D11

k

]
(36)

where the matrices Ak, Bk, Ck are the matrices in (26) for
time step k and D11

k = −E
[
∆xk

xk
ln p(xk+1|Du,xk)

]
. Given

(28), (34) and (36) the connection to the previous BIM is
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established by

(A−1
k+1)

(22) =
(
Ck +D11

k −BT
kA

−1
k Bk

)−1

= (D11
k + Jk)

−1. (37)

Inserting (37) into (33) results in the recursive bound for
which all involved matrices have dimension nx × nx

Jk+1 = Ck+1 − (B
(2)
k+1)

T (D11
k + Jk)

−1B
(2)
k+1. (38)

For better readability and comparability in the following we
will use the notation from [18] where the bound is given by

Jk+1 = D22
k − (D12

k )T
(
D11

k + Jk

)−1
D12

k (39)

with Ck+1 = D22
k and B

(2)
k+1 = D12

k . The Markov property
required for the efficient recursive formulation of the filtering
bound implies that the GP as a part of the likelihood must be
learned offline. Theoretically, as it is the case for simultane-
ous localization and mapping, the GP can be also adapted
online based on all available measurements. For the online
learning case, the BCRLB has to be calculated by inverting
the large BIM for the whole sequence and the derivation of
the concrete equations for implementation becomes much
more involved as pointed out also in [19]. Fortunately, the
bound of interest here is for localization only and assuming
an offline trained GP is reasonable in practice.

III. IMPLEMENTATION OF THE BOUND
In the following, the implementation of the recursive bound
for motion models of the form (23) is discussed.

A. EQUATIONS FOR GENERAL NONLINEAR MOTION
WITH AWGN AND GP-BASED LIKELIHOODS
For the calculation of (39), the matrices D11

k , D12
k and D22

k

are required. In addition the recursion must be initialized with
the BIM J0 at time step zero at which no measurement is
available yet. From (30), (31), and (26) one can see, that the
required matrices are

D11
k = −EXk:k+1|Du

[
∆xk

xk
ln p(xk+1|Du,xk)

]
D12

k = −EXk:k+1|Du

[
∆

xk+1
xk ln p(xk+1|Du,xk)

]
D22

k = −Exk+1,zk+1|Du

[
∆

xk+1
xk+1 ln p(zk+1|Du,xk+1)

]
− EXk:k+1|Du

[
∆

xk+1
xk+1 ln p(xk+1|Du,xk)

]
. (40)

Note, in the above equations the expectations are theoreti-
cally over the complete joint density but the variables not
part of the argument are simply marginalized out of the joint
density by taking the expectation. A connection to the FIM
of the current measurement is obtained from rewriting D22

k

D22
k = Exk+1|Du

[
−Ezk+1|xk+1,Du

[
∆

xk+1
xk+1 ln p(zk+1|Du,xk+1)

]]
− EXk:k+1|Du

[
∆

xk+1
xk+1 ln p(xk+1|Du,xk)

]
= Exk+1|Du

[F(xk+1)]

− EXk:k+1|Du

[
∆

xk+1
xk+1 ln p(xk+1|Du,xk)

]
. (41)

For the system model (23) with the Gaussian pdf
p(xk+1|Du,xk) = N (f (xk,U) ,Q) this results in the fol-

lowing equations

D11
k = Exk|Du

[
FT

kQ
−1Fk

]
D12

k = −Exk|Du

[
FT

k

]
Q−1 = (D21

k )T

D22
k = Exk+1|Du

[F(xk+1)] +Q−1, (42)

where FT
k = ∇xk

f (xk,U)T is the Jacobian matrix of the
nonlinear motion model w.r.t. the state vector. The matrices
D11

k and D12
k only contain information related to the move-

ment model while D22
k contains the information obtained

from the newest measurement. For most cases the expecta-
tions have to be calculated numerically because the involved
integrals are intractable. One exception is the linear case, for
which closed -form solutions exist.

In (42), the expectations are all taken w.r.t. pdfs of the
state x conditioned on the data set and the inputs. After some
thought, this makes sense, since the bound assumes that the
motion model describes for each time step the distribution
of the state vector in the state space, e.g., how likely a robot
is at a certain position in space. In which part of the state
space the state vector ends up depends on the realization of
the process noise and all these possibilities must be reflected
in the bound. For the likely case that no closed-form solution
exists for the expectation, it can be obtained by simulating
multiple state trajectories, evaluating the FIM and the other
terms for the different trajectories and then averaging over
them in each time step. Due to the law of large numbers,
the numerical solution converges to the true solution when
enough trajectories are used. The calculation of the expected
values was also the reason to include inputs into the bound.
The input gives some control about the simulated trajectories.
This allows us to simulate more realistic trajectories, e.g.,
a pedestrian in a building most likely will not perform a
random walk. Also, the input enables the simulation of
trajectories that stay within a certain part of the state space
for which the GP in the likelihood is “well” defined by
sufficiently dense measurements. Including the inputs also
alters the estimation problem. The resulting bound holds only
for filters that also have access to the inputs. For the case
where no inputs are available, the equations for the bound
remain the same. One simply has to remove the conditioning
on U in the involved pdfs. The numerical evaluation of the
expectations comes with considerable computational costs
but is still much faster than evaluating the MSE of a filter
that requires not only the averaging over different realization
of the state vector but also over different realization of the
measurement noise.

B. EQUATIONS FOR 2D MOTION OF A WHEELED
ROBOT

With the above equations it is now possible to easily evalu-
ated the bound for different types of state space models. For
this paper the focus is on localization of a wheeled robot in a
2D plane. The state vector is assumed to contain the x and y
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position and the heading φ

xk =
[
xk yk φk

]T
. (43)

The motion model is

xk+1 = xk + cos(φk)Tvk + wx,k

yk+1 = yk + sin(φk)Tvk + wy,k

φk+1 = φk + Tωk + wω,k (44)

with the time T between two time steps and the inputs
speed vk and turn rate ωk. The inputs are considered de-
terministic but process noise accounts for imperfections
in the actuators that can not translate the input perfectly
into motion. The process noise is assumed to be Gaus-
sian wk ∼ N (0,Qk) with a diagonal covariance matrix
Qk = diag(

[
σ2
wx

σ2
wy

σ2
wφ

]
).

The Jacobian matrix for (44) is

Fk = (∇xk
f (xk,U)T )T

=

 1 0 0
0 1 0

− sin(φ)TvK cos(φ)TvK 1

T

. (45)

For the observation model we will consider two different
cases, first only the magnitude of the magnetic field is used in
the likelihood and second the vector field is used. Using only
the magnitude simplifies the mapping process because the
magnetometer attitude during map creation is not required
but may reduce the achievable accuracy. If the accuracy is ac-
tually reduced and by how much will be further investigated
in the evaluation part of this paper. The question how much
the accuracy is affected by the choice of the measurement
model is also a nice example for the usefulness of lower
bounds.

The measurement model for the magnitude is scalar and
of the form (6) with the likelihood defined by (17). The
FIM for the calculation of the expected value in D22

k is
obtained from (18). For the vector case we follow the approch
in [5] and assume that each component of the vector field
is approximated by a separate GP. Hence the measurement
model is given by

zbk = Rb
n(φ)h (xk,Du) + nk, (46)

with the magnetic map

h (xk,Du) =
[
hnx(xk,Du) hny (xk,Du) hnz (xk,Du)

]T
,

(47)

where each element is a GP that is independent from the
others. The superscript n indicates that the magnetic field in
the map is given in the local navigation frame and the index
stands for the different coordinate axis. The measurement is
obtained in the body frame b of the magnetometer, to relate
the measurement to the map therefore the rotation matrix
from navigation to body frame is required. For the rotation
matrix we assume the three magnetometer axis are aligned
with the vehicle frame as shown in Fig. 1. With this frame

xn

yn

.zn

xb
φ = 40◦

yb

.

zb

FIGURE 1. Definition of navigation and body frame for and heading angle of
φ = 40◦. The body frame is equal to the vehicle frame of the robot and hence
the x axis of the body frame points into the driving direction of the robot when
its speed is positive.

definitions the rotation matrix is

Rb
n(φ) =

 cos(φk) sin(φk) 0
− sin(φk) cos(φk) 0

0 0 1

 . (48)

Based on the measurement model (46) the likelihood for the
vector measurements can be calculated applying the rules
for affine transformation of multivariate Gaussian random
variables. When the random variable a ∼ N (µa,Σa) is
Gaussian distributed then the random variable b = Aa
follows the Gaussian distribution b ∼ N (Aµa,AΣaA

T ).
Thus, the mean and the covariance of the likelihood

p(zbk|Du,xk) ∼ N (zbk;µzb(xk,Du),Σzb(xk,Du) + σ2
nI︸ ︷︷ ︸

Σc(xk,Du)

).

(49)

are given by

µzb(xk,Du) = Rb
n(φ)µzn(xk,Du) (50)

and

Σzb(xk,Du) = Rb
n(φ)Σzn(xk,Du)R

b
n(φ)

T , (51)

where µzn(xk,Du) is the mean vector in the navigation
frame and Σzn is the covariance in the navigation frame

Σzn(xk,Du) =

rnx (xk,Du) 0 0
0 rny (xk,Du) 0
0 0 rnz (xk,Du)

 .

(52)

In (52) rni i ∈ {x, y, z} are the GP variances of the different
vector field components. Based on the Gaussian likelihood
above, the FIM is defined by the vector version of (18)
presented in [21]

[F(xk)]ij =

[
∂µzb(xk)

∂[xk]i

]T
Σ−1

c (xk)

[
∂µzb(xk)

∂[xk]j

]

+
1

2
tr

[
Σ−1

c (xk)

[
∂Σc(xk)

∂[xk]i

]
Σ−1

c (xk)

[
∂Σc(xk)

∂[xk]j

]]
.

(53)

In the FIM, all derivatives are w.r.t. the state vector therefore
the dependency on Du can be dropped for brevity. The
derivatives in (53) are element wise. The derivative of the

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223693

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Siebler et al.: Bayesian Cramér-Rao Lower Bound for Magnetic Field-based Localization

mean vector (50) therefore is a vector of the derivatives of
each component. The derivative w.r.t. xk is

∂

∂xk

µb
x(xk)

µb
y(xk)

µb
z(xk)


=

cos(φk)
∂

∂xk
µn
x(xk) + sin(φk)

∂
∂xk

µn
y (xk)

cos(φk)
∂

∂xk
µn
y (xk)− sin(φk)

∂
∂xk

µn
x(xk)

∂
∂xk

µn
z (xk).

 .

(54)

For yk the derivative have the same form and only ∂
∂xk

has to
be exchanged for ∂

∂yk
. For the heading one obtains

∂

∂φk

µb
x(xk)

µb
y(xk)

µb
z(xk)

 =

− sin(φk)µ
n
x(xk) + cos(φk)µ

n
y (xk)

− cos(φk)µ
n
x(xk)− sin(φk)µ

n
y (xk)

0

 .

(55)

For the covariance matrix (51) the derivative is again a matrix
containing the derivatives of each element. For xk the non-
zero elements of the derivative are[
∂Σc(xk)

∂x

]
11

= cos2(φk)
∂rnx (xk)

∂xk
+ sin2(φk)

∂rny (xk)

∂xk[
∂Σc(xk)

∂x

]
12

= cos(φk) sin(φk)

(
∂rny (xk)

∂xk
− ∂rnx (xk)

∂xk

)
[
∂Σc(xk)

∂x

]
21

=

[
∂Σc(xk)

∂x

]
12[

∂Σc(xk)

∂x

]
22

= sin2(φk)
∂rnx (xk)

∂xk
+ cos2(φk)

∂rny (xk)

∂xk[
∂Σc(xk)

∂x

]
33

=
∂rnz (xk)

∂xk
. (56)

As for the mean, the derivative of the covariance w.r.t. yk has
the same form as (56). For the heading derivative the non-
zero elements are[
∂Σc(xk)

∂φk

]
11

= 2 cos(φk) sin(φk)(r
n
y (xk)− rnx (xk))[

∂Σc(xk)

∂φk

]
12

= (cos2(φk)− sin2(φk))(r
n
y (xk)− rnx (xk))[

∂Σc(xk)

∂φk

]
21

=

[
∂Σc(xk)

∂φk

]
12[

∂Σc(xk)

∂φk

]
22

= 2 cos(φk) sin(φk)(r
n
x (xk)− rny (xk)).

(57)

In the equations (54)–(57) for the FIM now the derivatives of
the covariance (20) and mean (22) of the GP in the navigation
frame can be inserted. With the FIM then the recursive
BCRLB is obtained from (39) and (42).

IV. EVALUATION SETUP
In this section, the overall setup used for the evaluation is
introduced. This includes the measurement setup, the hyper-
parameter optimization, and an overview on the parameters

FIGURE 2. (left) Holodeck laboratory at the German Aerospace Center
Institute of Communications and Navigation with the definition of the
navigation frame. The xn- and yn-axis lie in the floor plane and the zn-axis
points upwards. On the ceiling the cameras of the Vicon reference system are
visible. (right) Magnetometer array with ten sensors and a overall height og
1.84m. The sensors are mounted in black aluminimu boxes and are separated
by ≈ 0.2m.

of the Monte Carlo simulation.

A. MEASUREMENT SETUP

The evaluation is based on measurements recorded in the
Holodeck laboratory at the German Aerospace Center In-
stitute of Communications and Navigation in Oberpfaffen-
hofen shown in the left part of Fig. 2. The magnetic field is
measured with an array of magnetometers. The array shown
in the right part of Fig. 2 consists of ten low-cost Kionix
KMX62 magnetometers that are connected via CAN bus to
a computer that records the data. The distance between two
neighboring sensors is fixed to ≈ 0.2m. The first sensor is
mounted 5.4 cm above the floor and the tenth sensor is at a
height of 1.85m. For the recording of the magnetic vector
field in the lab the array is moved around manually in a
vertical position. The magnetic field therefore is measured
in ten different planes with different heights. This enables
to investigate the impact of the height on the achievable
localization accuracy.

The magnetometer measurements are timestamped and
synchronized with ground truth pose information of an op-
tical tracking system from Vicon. In Fig. 2 the cameras of
the system mounted on the ceiling can be seen. The recorded
poses contain the position and the attitude. This enables
to correct rotations of the array during the measurements.
Prior to the Holodeck measurements, the magnetometers are
calibrated with ellipsoid fitting, see e.g. [22], based on a data
set recorded on a meadow at the German Aerospace Center
site without any buildings close by. The true magnetic flux
density of the Earth magnetic field for calibration is obtained
from the international geomagnetic reference field model and
has a value of 48.61 µT. From the calibration data also the
standard deviation of the sensor noise was estimated. The
average value over all sensors was σn ≈ 0.23 µT. The exact
value varies from sensor to senor by ±21.26%.
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TABLE 1. Hyper parameters and dynamic range for the different sensor 1, 6
and 10.

Height Kernel Mean Likelihood Dyn. range
Sensor h / cm Axis σk/µT l/m m̄/µT σD/µT D / µT

1 5.40 x 5.92 0.31 9.94 0.33 48.24
1 5.40 y 9.07 0.34 20.06 0.30 69.66
1 5.40 z 9.07 0.30 -42.32 0.34 76.80
1 5.40 mag. 8.42 0.29 51.37 0.29 75.68
6 105.40 x 2.53 1.03 10.91 0.35 13.17
6 105.40 y 4.43 1.15 16.67 0.27 18.30
6 105.40 z 7.83 1.37 -41.28 0.34 17.65
6 105.40 mag. 7.39 1.36 45.32 0.23 19.64

10 185.40 x 2.86 0.92 10.56 0.24 16.08
10 185.40 y 6.07 1.00 16.68 0.24 30.53
10 185.40 z 6.15 0.98 -43.59 0.24 28.05
10 185.40 mag. 5.34 0.95 48.85 0.21 29.98

B. HYPERPARAMETER OPTIMIZATION AND TRAINING
DATA

The hyperparameters of the GP are obtained by maximizing
the logarithm of the marginal likelihood. The optimization is
performed with the GPML Matlab toolbox presented in [23]
and uses Gaussian hyper priors on the value of the constant
mean function and the standard deviation σD of the noise of
the training data. For each sensor the hyperparameters are
optimized individually for each axis and the magnitude over
all axes.

During the lab measurements, the magnetometers were
moved freely while recording with an update rate of 200Hz
which resulted in a large amount of measurements. For
training this amount is reduced by placing an equidistant
grid in the measured area and then taking for each grid
point only the measurement that was closest to it. When
setting the distance between grid points there is a trade-
off between computational complexity and the accuracy of
the GP approximation. When the amount of points increases
the GP is more likely to describe the approximated function
accurately while the complexity will increase cubical with
the number of grid points. Here the distance in the x- and y-
direction between two neighboring point was set to 0.1m. To
check if this spacing is sufficient for a good approximation
of the magnetic field, cross validation was performed with
measurements that are not part of the training data set D.

In Fig. 3–Fig. 5 the result of the GP regression is shown
for magnetometer 1, 6 and 10. The measurement locations
for training and cross validation of sensor 1 are shown in
Fig. 6. We only show here the GPs of three sensors because
this already gives a good idea of the general behavior of
the magnetic field at different heights. The hyperparameters
obtained from optimization, the height and the dynamic
range for the investigated sensors are listed in Table 1. The
dynamic range is the difference between the maximum and
minimum value of the magnetic field of the respective axis.
The dynamic range and the hyperparameters confirm what
is also apparent from Fig. 3, the magnetic field close to the
floor has the highest spatial variability. The magnetic field
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FIGURE 3. Magnetic field of sensor 1, mounted close to the floor, obtained
from GP regression on an equidistant grid with a spacing of 0.1m. From top to
bottom the figures shows the x, y, z components and the magnitude of the
magnetic field.
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FIGURE 4. Magnetic field of sensor 6, mounted at a height of ≈ 1.05m,
obtained from GP regression on an equidistant grid with a spacing of 0.1m.
From top to bottom the figures shows the x, y, z components and the
magnitude of the magnetic field.

and parameters of the other sensors show, that when getting
higher above the floor the range and variability first decreases
and then increases again while the sensor becomes closer
to the ceiling. These results comply with our expectations,
when a sensor is close to the floor it is strongly affected by
ferromagnetic material like rebar. With an increasing distance
to the floor this effect is reduced until the sensor becomes
closer to the ceiling. This general trend of the hyperparame-
ters is also visible Fig. 7 where the length scale and the dy-
namic range is plotted over the ten different sensors heights.
Figure 7 also shows that although the hyperparameters follow
the same overall trend there are larger differences between
the different field components, e.g., from 80-140 cm for the
length scale. This could be expected because the influence of
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FIGURE 5. Magnetic field of sensor 10, mounted at a height of ≈ 1.85m,
obtained from GP regression on an equidistant grid with a spacing of 0.1m.
From top to bottom the figures shows the x, y, z components and the
magnitude of the magnetic field.
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FIGURE 6. Locations of training (red circles) and cross validation (blue
crosses) data of sensor 1. The array was moved first in meander pattern and
the diagonally through the magnetic field which leads to straight patterns for
the input locations.

ferromagnetic material on a magnetic field is not necessarily
the same for all field components as can be observed also
from Fig. 3-5.

Before the BCRLB for the above shown magnetic fields
is calculated, cross-validation is performed to verify that
the learned GPs closely approximate the underlying mag-
netic field. The histogram of the residual between the cross-
validation measurements and the GP for sensor 1 evaluated at
the respective inputs is shown in Fig. 8. The residual for the
different sensor axis is approximately Gaussian distributed
and has a standard deviation slightly larger than the value
σD obtained from hyperparameter optimization. This seems
to be the case also for the magnitude. The magnitude mea-
surements follow theoretically a non-central chi distribution.
Fortunately, when the magnitude is large compared to the
measurement noise variance the chi distribution approaches
the shape of a Gaussian with a variance equal to the measure-
ment noise and a mean close to the true mean.

For a perfect approximation the residual would contain
only sensor noise with a standard deviation of σn ≈ 0.23 µT.
We suspect that the additional “noise” is partially caused by
inaccuracies in the ground truth. An position error of only
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FIGURE 7. Length scale (top) and dynamic range (bottom) over the ten
different sensor heights. Both parameters show a clear dependency on the
height.

−1.5 −1 −0.5 0 0.5 1 1.50
0.5

1

B̃x − Bx

pd
f σ = 0.35 µT

−1.5 −1 −0.5 0 0.5 1 1.50
0.5

1

B̃y − By

pd
f σ = 0.34 µT

−1.5 −1 −0.5 0 0.5 1 1.50
0.5

1

B̃z − Bz

pd
f σ = 0.36 µT

−1.5 −1 −0.5 0 0.5 1 1.50
0.5

1

B̃abs − Babs

pd
f σ = 0.32 µT

FIGURE 8. Histogram of the cross-validation residual for sensor 1. The redline
shows a Gaussian pdf with the mean and standard deviation of the residuals.

5mm and an magnetic field gradient of 35 µT/m already
causes errors of 0.175 µT. In addition, small attitude errors
in the range of 0.2◦ and a magnetic field magnitude of 35 µT
could lead to deviations of 0.12 µT in the measurements of
the different sensor axis. From this we conclude that the
residuals are close to what is to be expected and hence the GP
seems to capture the underlying magnetic field with a high
accuracy.

C. PARAMETERS FOR MONTE CARLO SIMULATION
The numerical approximation of the exceptions in (42) is
performed over sample trajectories obtained from the motion
model in (44). The quality of the approximation increases
with the number NMC of trajectories but using many tra-
jectories also increases the computation time required to
obtain the bound. To find a compromise between accu-
racy and computation time, the BCRLB for different values
of NMC was computed. In the computation the parame-
ters for the process noise are σwx = σwy = 0.01m and
σwφ = 0.025◦. The initial state distribution is Gaussian
with mean x0 =

[
−7m 0.5m 0◦

]
and covariance P0 =

diag(
[
(0.1m)2 (0.1m)2 (2◦)2

]
). The input values are

constant vk = 0.7m/s and ωk = 2.5 ◦/s. Under the Gaus-
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FIGURE 9. Magnitude of the magnetic field of sensor 1 and 100 trajectories
generated from the motion model with the parameters set to the values
described in section IV-C.
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FIGURE 10. BCRLB for sensor 1 when using only the magnitude calculated
over different values of NMC. The first two plots (from bottom to top) show the
square root of the bound on the x and y position and the third plot shows the
bound on the heading φ.

sian assumption for the initial state distribution the BIM that
starts the recursion in (39) is J0 = P−1

0 . The measurement
noise is set to the measured average value σn = 0.23 µT
of the KMX sensors. The duration of the simulation is 100
steps with a step size of T = 0.1 s. In Fig. 9, 100 example
trajectories created with these parameters are plotted on top
of the magnitude of the magnetic field of sensor 1.

The bound for different values of NMC are shown in
Fig. 10. The results indicate that even for 100 trajectories the
bound is already close to the bound for NMC = 5000. To gain
a little bit more accuracy in the calculation for the remainder
of the paper NMC = 750 was selected.

V. RESULTS AND DISCUSSION
In this section, the achievable accuracy of magnetic local-
ization is evaluated with the GP based BCRLB and system
model (44). In the evaluation, the BCRLB is calculated for
two cases. In the first case, only the magnetic magnitude
is considered and in the second case, the whole vector is
accounted for. For both cases, the bound for three sensor
heights is calculated. Furthermore, the BCRLB is compared
to the empirical root mean squared error (RMSE) of a sam-
pling importance resampling particle filter. This comparison
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FIGURE 11. BCRLB over different sensor heights when only the magnitude
of the magnetic field is considered. The first two plots (from bottom to top)
show the square root of the bound on the x and y position and the third plot
shows the bound on the heading φ.
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FIGURE 12. BCRLB over different sensor heights when the whole magnetic
vector field is considered. The heading part is zoomed in to better show the
difference between the different bounds. The first two plots (from bottom to
top) show the square root of the bound on the x and y position and the third
plot shows the bound on the heading φ.

shows how well the filter performs and is at the same time a
plausibility check for the bound.

A. BCRLB FOR MAGNETIC LOCALIZATION
In Fig. 11 and Fig. 12 the square root of the BCRLB diagonal
elements for sensor 1, 6 and 10 are shown. Overall the
achievable position accuracy is well below 10 cm. For the
heading one can expect accuracies of a few degrees for the
magnitude and below one degree for the vector case. Overall
using the whole magnetic vector field results in a bound
that is always below the one of the magnitude only case. In
particular the heading is improved by using the whole vector,
this is not only reflected in a higher accuracy but also in
an significantly improved convergence time. This behavior
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was to be expected, because for the magnitude only case the
measurements are independent from the heading and hence
the entries of the FIM associated with the heading become
zero. That the heading is still observable, in the sense that the
BCRLB gets reduced over time, is due to the motion model.
Over the motion the heading is related to the position which
is related to the measurements. The observability therefore
is not direct. It should be mentioned, that in this particular
example it is assumed that the magnetometer is mounted in
the center of rotation. If the sensor would be mounted with
a lever arm w.r.t. the center of rotation a rotation would
lead to a change in the measured magnitude and the FIM
for the heading would contain non-zero entries improving
the observability. How well this works will likely depend on
the length of the lever arm, is the length small compared
to the length scale heading changes would only lead to
small changes in the magnitude which can vanish in the
sensor noise. In the vector case if the position is known the
heading can be obtained from only one measurement. This
is the principle on which compasses are based. This direct
observability of the heading results in a fast convergence of
the vector bound and heading errors below one degree after
the first measurement. For the magnitude case the one degree
threshold is only reached after almost 6 s.

The comparison between the different sensors show, that
overall sensor 1 close to the floor achieves most of the time
the lowest values. Considering the definition of the FIM in
(53) and the hyperparameters in Table 1 this is not surprising.
Sensor 1 has the highest dynamic range and smallest length
scale leading to more areas in the magnetic field with strong
gradients that give rise to higher values in the FIM. Between
Sensor 6 and Sensor 10 the differences are not that obvious
anymore, e.g., the heading BCRLB of the vector case for
Sensor 6 is smaller than for sensor 10 for most of the time. A
similar behavior is observed for the x position between 4 s–
8 s for the vector and the magnitude only case.

In summary the results show that in the given environment
a sensor close to the floor is able to achieve localization
accuracies below 1 cm. For sensors higher above the floor
the performance degrades due to a reduced spatial variability
in the magnetic field. Nevertheless even for Sensor 6 which
has the largest distance from the floor and the ceiling the
position accuracy was below 10 cm. If one can chose between
the magnitude and the vector case clearly using the whole
vector field is the better option from an accuracy point of
few. This is not surprising, taking the magnitude of the vector
field reduces the information and makes the magnetic field
at different position less distinct. From a practical point of
view the magnitude case is still interesting because it largely
simplifies the mapping in which it is sufficient to know the
sensor position in space but not its attitude.

B. PARTICLE FILTER PERFORMANCE
The BCRLB is a lower bound for the MSE of any filter.
This means the bound can be used as optimality measure
during filter development. In this section its shown how well
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FIGURE 13. Comparison between the particle filter and the bound. The
comparison shows the RMSE for magnitude only and vector measurements.

the particle filter performs when applied to magnetic local-
ization and if there is room for improvement. In particular
the sampling importance resampling filter [24] is evaluated.
The MSE is obtained from running the particle filter over
the 750 state trajectories and 25 realization of the sensor
noise along these trajectories. This means in total the filter is
evaluated 18750 times. From the result the MSE if obtained
by averaging. This approach is needed due the definition of
the MSE in (1) as the expected value of the estimation error
w.r.t. the joint pdf of the states and measurements.

The used implementation of the particle filter is mostly
a standard sampling importance resampling filter. In each
time step first a prediction based on the motion model and
the inputs is performed and then the weights are updated. If
the effective sampling size is below 0.8 · Np resampling is
performed. During the implementation of the filter it quickly
became apparent that evaluating the GP for every particle
slows down the filter significantly. Due to the large number
of required filter evaluations this becomes quickly unfeasible.
The complexity of the filter is also a problem in practice
where for most applications a real time position solution
is desired. Therefore, we decided to modify the filter by
not evaluating the GP variance as one might do in practice.
The variance evaluation is the bottleneck as it requires a
matrix vector multiplication while the mean only requires the
calculation of the scalar product between two vectors. This
can be easily seen from (14). The variance contains the term
KxkDS

−1KDxk
that requires the left and right multiplica-

tion of a vector that depends on the current state xk and the
square matrix S−1 with a dimension equal to the amount of
training data. For the mean only KxkDS

−1(zD −m(XD))
has to be evaluated where S−1(zD −m(XD)) is a vector
that depends solely on the training data and hence can be
calculated once offline. Neglecting the variance of the GP
speeds up the particle filter significantly but also removes the
information about the GP uncertainty. Therefore, to account
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for the variance of the GP in the weight update the standard
deviation of the likelihood was set to 1.2 · σn. To increase
the stability of the filter also the process noise was increased
by 20% compared to the noise set in the Monte Carlo
simulation. For this settings, Fig. 13 shows the RMSE of the
particle filter in comparison to the square root of the BCRLB.

The result in the figure shows that in principle the filter
RMSE follows the shape of the bound but cannot reach it.
For the vector case, the filter RMSE of the 2D position is
quite close to the bound with an difference in the order
of millimeters after the filter has converged at around 1 s.
When only the magnitude is considered, this gap is larger
and more in the range of 1 cm. For position estimation it
seems that including the whole magnetic vector improves the
result significantly also for the filter. This seems reasonable,
considering the whole magnetic vector field makes the field
at a certain position more “unique” which helps the filter to
converge toward the correct position. For the heading one can
observe that overall the filter result for the vector field is well
below the result and the bound for the magnitude only case.
As before this was to be expected. Observing the full vector
with each measurement enables the filter to directly observe
the heading instead of having to wait until the sensor moves
through the changing magnetic field as it the case for the
magnitude only case. As already for the bound, this results in
a faster decay in the heading uncertainty after initialization.

VI. CONCLUSIONS
In this paper, the BCRLB with deterministic inputs and GP-
based likelihoods was adapted to the problem of magnetic
field-based localization. For magnetic localization, two spe-
cial cases were considered. In the first case, only the magnetic
magnitude was assumed to be available to the estimator and
in the second case, the whole magnetic vector field was con-
sidered. The bound for both cases was then evaluated based
on measurements of an indoor environment with multiple
sensors mounted in different heights above the floor. To the
best of our knowledge this was never done before.

The first step of the evaluation was to optimize the GP
hyperparameters individually for all sensors. The resulting
hyperparameters show a clear height dependence. With an in-
creasing distance to the floor and the ceiling, the length scale
of the squared exponential kernel increases and the overall
dynamic range of the magnetic field decreases. In the second
step, the BCRLBs for three selected sensors were calculated.
The bounds show that for the three sensor heights position
accuracies below 10 cm are attainable, for the heading values
below 1◦ are possible. The results clearly indicate that using
the magnetic vector instead of its magnitude improves the
position and heading accuracy. This comes with no surprise
since taking the magnitude reduces the information contained
in the magnetic field. The magnitude case is still quite impor-
tant in practice since it allows to reduce the effort required
for creating the magnetic map by avoiding the need for an
attitude reference system. In the final step of the evaluation
the BCRLB was compared to the RMSE of a particle filter.

The position RMSE of the filter is close to the bound for
the vector case but never attains it. For the magnitude case a
larger difference is observed. Hence, in both cases the results
show that the used particle filter is not optimal w.r.t. the
RMSE.
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