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Abstract

In distributed and decentralized state estimation systems, fusion methods are employed to systematically combine multiple
estimates of the state into a single, more accurate estimate. An often encountered problem in the fusion process relates to
unknown common information that is shared by the estimates to be fused and is responsible for correlations. If the correlation
structure is unknown to the fusion method, conservative strategies are typically pursued. As such, the parameterization
introduced by the ellipsoidal intersection method has been a novel approach to describe unknown correlations, though suitable
values for these parameters with proven consistency have not been identified yet. In this article, an extension of ellipsoidal
intersection is proposed that guarantees consistent fusion results in the presence of unknown common information. The bound
used by the novel approach corresponds to computing an outer ellipsoidal bound on the intersection of inverse covariance
ellipsoids. As a major advantage of this inverse covariance intersection method, fusion results prove to be more accurate than
those provided by the well-known covariance intersection method.
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1 Introduction

In typical network-based sensor systems (Hall et al.,
2013), it is often not a single instance that computes an
estimate but a multiplicity of nodes, each of which is
equipped with its own state estimation system. In order
to improve the estimation quality, the locally computed
estimates are fused into a single estimate. The problem
of fusing estimates has received particularly strong at-
tention in the context of distributed target-tracking ap-
plications (Bar-Shalom and Li, 1995), where the treat-
ment of cross-correlations between estimates continues
to pose a challenging problem. An optimal fusion method
typically requires a full-rate communication to the data
sink or an augmented state representation as studied in
Chong et al. (2014). Alternatives to fusion methods are
consensus and diffusion schemes—see, for instance, Bat-
tistelli et al. (2015), and Cattivelli and Sayed (2010), re-
spectively. In these cases, the nodes reach a consent on
a global estimate by employing specific averaging tech-
niques, which typically also require frequent communi-
cation and are not designed to minimize the fused error
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covariance matrix.

In particular for fully decentralized sensor networks, fu-
sion rules for arbitrary estimates have been proposed
that provide suboptimal but consistent fusion results ir-
respective of the underlying correlation structure. The
requirement of consistency guarantees that the actual
error covariance matrix is not underestimated but con-
servatively bounded. A well-known conservative fusion
rule is covariance intersection (CI), which has been in-
troduced by Julier and Uhlmann (1997) and has given
rise to many further developments and applications such
as in Deng et al. (2012) or in Hu et al. (2012). Rein-
hardt et al. (2015) have shown that CI tightly bounds
the entirety of possible error covariance matrices. More
precisely, if the correlations between two estimates to be
fused are entirely unknown, CI encompasses the optimal
fusion method in terms of a minimum mean-squared er-
ror and also other optimality criteria. However, CI often
provides too conservative fusion results as typical esti-
mation tasks and communication networks, in general,
prevent extremal correlation terms to occur.

A recent advancement is ellipsoidal intersection (EI)
(Sijs and Lazar, 2012) that employs a common error
term to model unknown correlations and reports a far
less conservative result as compared to CI. The EI algo-
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rithm is based on a special decomposition of the fusion
problem, which is revisited in this article. Although con-
sistency has not been shown yet for EI, it proves to be
effective in numerous applications. Therefore, this arti-
cle is concerned with the question under which condi-
tions EI guarantees to be a consistent fusion method.
For this purpose, a detailed study on the structure of the
fusion problem and its solutions is presented. It turns
out that EI guarantees consistent estimates only under
rather restrictive conditions. By identifying the miss-
ing pieces, a consistent extension is derived that opens
up EI to a wide variety of fusion tasks. The novel ap-
proach achieves a conservative fusion result by comput-
ing a bound on the intersection of inverse covariance el-
lipsoids, which gives reason to name it inverse covari-
ance intersection (ICI).

2 Conventions and Preliminaries

Underlined variables x ∈ Rn denote real-valued vec-
tors, and lowercase boldface letters x are used for ran-
dom quantities. Matrices are written in uppercase bold-
face letters C ∈ Rn×n, and C−1 and CT are the in-
verse and transpose, respectively. (C)ij is the entry in
the i-th row and j-th column of matrix C. The inequal-
ity C ≥ C′ means that the difference C − C′ is posi-
tive semi-definite. By the tuple (x̂,C), we denote an es-
timate with mean x̂ and error covariance matrix C =
E
[
x̃x̃T

]
, where x̃ = x̂ − x is the error with respect

to the state x to be estimated. The matrix I denotes
the identity matrix of appropriate dimension. An ellip-
soid with center ĉ and shape matrix X is denoted by
E(ĉ,X) =

{
x ∈ Rn | (ĉ− x)TX−1(ĉ− x) ≤ 1

}
.

3 Analysis of the Fusion Problem

The challenge of fusing multiple estimates is typically
addressed from the perspective of a two-sensor fusion
problem. As such, we consider two unbiased estimates
(x̂A,CA) and (x̂B,CB) provided by the sensor nodes
A and B. In order to compute the fused estimate
(x̂fus,Cfus), the linear combination

x̂fus = Kfus x̂A + Lfus x̂B (1)

with the fusion gains Kfus and Lfus is considered. The
corresponding error covariance matrix yields

Cfus = KfusCAKT
fus + KfusCABLT

fus

+ LfusCBAKT
fus + LfusCBLT

fus ,
(2)

which also depends on the cross-covariance term CAB =
CT

BA = E
[
x̃A x̃T

B

]
The gains are typically designed to

minimize the trace of the error matrix (2), which cor-
responds to minimizing the mean squared error. How-
ever, in decentralized estimation networks, the cross-
covariance matrix CAB is often unknown to the fusion

method, and only an approximation of Cfus is attainable.
In order to not underestimate the actual error matrix,
the fusion result (x̂fus,Cfus) is required to be consistent.

Definition 1 (Consistency). An estimate (x̂,C) is con-
sistent if the actual error covariance matrix is bounded
by the reported covariance matrix C, i.e., C ≥ E

[
x̃ x̃T

]
with x̃ = (x̂− x).

3.1 Common Information

For the derivation of EI, Sijs and Lazar (2012) have pro-
posed to utilize a special parameterization and decom-
position of the estimates to be fused. The means and co-
variance matrices of the estimates are decomposed into

x̂A = CA

(
(CI

A)−1x̂I
A + Γ−1γ̂

)
, (3a)

x̂B = CB

(
(CI

B)−1x̂I
B + Γ−1γ̂

)
(3b)

and

C−1A = (CI
A)−1 + Γ−1 , (4a)

C−1B = (CI
B)−1 + Γ−1 , (4b)

respectively. This parameterization is based on a com-
mon estimate (γ̂,Γ) that is shared by the sensor nodes A
and B. Exclusive information is represented by the par-
tial estimate (x̂I

A,C
I
A) at sensor node A and by (x̂I

B,C
I
B)

at sensor node B. In particular, (3a) and (4a) corre-

spond to the fusion of (x̂I
A,C

I
A) and (γ̂,Γ) with the gains

Kfus = CA(CI
A)−1 and Lfus = CAΓ−1 and zero cross-

covariance matrix. The same applies to (3b) and (4b)
with Kfus = CB(CI

B)−1 and Lfus = CBΓ−1. In the above

decompositions, the errors x̃I
A, x̃I

B, and γ̃ related to the

partial estimates x̂I
A, x̂I

B, and γ̂ each have zero mean and
are assumed to be mutually uncorrelated, i.e.,

E[x̃I
A(x̃I

B)T] = E[x̃I
A γ̃T] = E[x̃I

B γ̃
T] = 0 . (5)

By considering (3), it can be seen that the estimation
errors x̃A and x̃B obey the same decompositions

x̃A = x̂A − x = CA

(
(CI

A)−1x̂I
A + Γ−1γ̂

)
− x

= CA

(
(CI

A)−1(x̂I
A − x) + Γ−1(γ̂ − x)

)
= CA

(
(CI

A)−1x̃I
A + Γ−1γ̃

)
,

(6a)

x̃B = CB

(
(CI

B)−1x̃I
B + Γ−1γ̃

)
. (6b)

Due to (5), it is only the common partial estimate (γ̂,Γ),
which is responsible for correlations between the estima-
tion errors (6a) and (6b), while the partial errors x̃I

A and

x̃I
B are uncorrelated. The cross-covariance matrix yields

CAB = CAΓ−1 E
[
γ̃ γ̃T

]
Γ−1CT

B = CAΓ−1CB . (7)
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This result has a strong implication for the design of fu-
sion methods. The set of possible error covariance ma-
trices (2) is consequently parameterized by Γ, and only
those Γ come into consideration that are admissible.

Definition 2 (Admissibility). Given two estimates
(x̂A,CA) and (x̂B,CB), the positive definite matrix Γ is
admissible if there are decompositions (3) and (4).

3.2 Optimal Fusion with Common Information

In the presence of a common component (γ̂,Γ), the op-
timal and consistent combination of the local estimates
from nodes A and B corresponds to the optimal fusion
of the three independent estimates x̂I

A, x̂I
B, γ̂ according

to (1). The result can be simplified to

x̂Γ = Kfus x̂I
A + Lfus x̂I

B + Mfus γ̂

= CΓ

(
(CI

A)−1x̂I
A + (CI

B)−1x̂I
B + Γ−1γ̂

)
= CΓ

(
C−1A x̂A + C−1B x̂B − Γ−1γ̂

) (8a)

with the error covariance matrix

C−1Γ = (CI
A)−1 + (CI

B)−1 + Γ−1

= C−1A + C−1B − Γ−1 ,
(8b)

were the optimal fusion gains Kfus = CΓ(CI
A)−1, Lfus =

CΓ(CI
B)−1, and Mfus = CΓΓ−1 have been employed.

In the special case CA = CI
A, CB = CI

B, and an ab-
sent (γ̂,Γ), the estimates have independent errors, i.e.,
CAB = 0. The fused estimate x̂in and its error covari-

ance matrix Cin = E[x̃T
in x̃in] are then given by

x̂in = Kinx̂A + Linx̂B , (9a)

and

Cin = KinCAKT
in + LinCBLT

in = (C−1A + C−1B )−1. (9b)

The gains Kin = CinC−1A and Lin = CinC−1B are de-
signed to minimize the mean squared error, which cor-
responds to minimizing the trace of (9b).

A naive fusion rule that ignores common information
(γ̂,Γ) and erroneously assumes CAB = 0 in (7) com-
putes the result in (9). However, by inserting (3) and (4)
into (9), we can easily accept that (γ̂,Γ) will be incor-
porated twice, which is known as the problem of double-
counting. For instance, (9b) becomes Cin =

(
(CI

A)−1 +

(CI
B)−1 + 2Γ−1

)
. Such a naive fusion result is then in-

consistent, i.e. Cin < E[x̃inx̃T
in].

The lower part in each equation of (8) unveils that both
estimates can be fused by (9) as if they are indepen-
dent, and the common part can then be subtracted to

prevent double-counting. This technique is, for instance,
employed by Grime and Durrant-Whyte (1994) for the
channel filter, which separately keeps track of common
information between sensor nodes.

3.3 Consistent and Tight Fusion

The optimal fusion result (x̂Γ,CΓ) in (8) can only
be computed when the common information (γ̂,Γ) is
known and can be exploited to minimize the mean
squared error E[x̃T

Γx̃Γ] = trace(CΓ). In particular, de-
centralized estimation schemes may render it difficult
or even impossible to keep track of common informa-
tion. Therefore, the primary objective of our study is
to derive a fusion method that yields consistent results
without knowing (γ̂,Γ). We additionally strive for fu-
sion results that are not related to an unnecessarily
large error covariance matrix and enclose the entirety
of possible optimal fusion results as tight as possible.

Definition 3 (Tightness). Let Λ ≥ 0 be an upper bound
for every possible CΓ, i.e., CΓ ≤ Λ for all admissible Γ.
A fusion result (x̂fus,Cfus) is tight if the implication
CΓ ≤ Λ ≤ Cfus =⇒ Λ = Cfus holds for all admissible Γ.

With this definition, we arrive at the problem statement:

Problem 4. Given consistent estimates (x̂A,CA) and
(x̂B,CB) of x according to (3) and (4), we seek to com-
pute a consistent and tight fusion result (x̂fus,Cfus) ir-
respective of the actual values of γ̂ and Γ.

4 Review of Conservative Fusion Rules

For the purpose of solving Problem 4, conservative fusion
methods have to be employed that provide consistent
and tight results without having access to (γ̂,Γ). In the
following, we provide a review of covariance intersection
and ellipsoidal intersection, which are both important
concepts in decentralized data fusion. By identifying the
missing pieces, a basis for the novel fusion method in
Sec. 5 is established.

The most prominent option to achieve a consistent fu-
sion result is the covariance intersection (CI) algorithm
proposed by Julier and Uhlmann (1997). It uses the gains
KCI = ωCCIC

−1
A and LCI = (1− ω)CCIC

−1
B to obtain

x̂CI = KCI x̂A + LCI x̂B (10a)

and reports the conservative covariance matrix

CCI =
(
ωC−1A + (1− ω)C−1B

)−1
, (10b)

with CCI ≥ E[x̃CIx̃
T
CI]. ω has to be chosen in the inter-

val [0, 1]. CI was designed as a universal fusion rule and,
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Fig. 1. A maximum inner ellipsoid E(0,CEI) is obtained by
modeling ΓEI as a tight upper bound E(0,ΓEI) on E(0,CA)
and E(0,CB). The common estimate related to E(0,Γ′) and
the corresponding fusion result E(0,C′fus) represent the coun-
terexample in Sec. 4.1.

as such, it is not restricted to a specific cross-covariance
structure like (7). CI even constitutes a tight fusion rule
as shown by Reinhardt et al. (2015) if arbitrary cross-
covariance structures are possible and need to be consid-
ered. However, CI often—and in particular for the con-
sidered setup in Problem 4—proves to be too conserva-
tive. In this case, CI is not tight as illustrated in Sec. 4.1,
which motivates the study of alternative concepts.

As an alternative to CI, ellipsoidal intersection (EI) has
been derived in Sijs and Lazar (2012) from the obser-
vation that (4) implies that every admissible matrix Γ
obeys the inequalities

CA ≤ Γ and CB ≤ Γ . (11)

In order to account for unknown common information,
EI computes a common estimate (γ̂

EI
,ΓEI) that has a

maximum possible Γ−1EI and can be subtracted in (8). For
the corresponding covariance ellipsoids, this implies that
ΓEI is designed to be the shape matrix of the smallest
ellipsoid E(0,ΓEI) that encloses the covariance ellipsoids
E(0,CA) and E(0,CB) related to CA and CB. As eluci-
dated in Sijs and Lazar (2012), the covering ellipsoid can
be computed by means of a joint transformation

DA = TCATT and DB = TCBTT (12)

such that DA and DB are diagonal. The transforma-
tion T can be computed with the aid of an eigen-
value decomposition as in Sijs and Lazar (2012, see
eq. (12) therein). The component-wise maximum
(D̄)ii = max{(DA)ii, (DB)ii} then provides us with
ΓEI := T−1D̄T−T. In compliance with (8b), this matrix
is removed from the standard fusion result according to

C−1EI = C−1A + C−1B − Γ−1EI . (13)

Fig. 1 illustrates the derivation of ΓEI as a covering el-
lipsoid, and the result (13) is far smaller than (10b). The
computation of the common vector γ̂

EI
and the fused

estimate x̂EI is described in Sijs and Lazar (2012).
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E(0,C−1
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E(0,Γ−1
EI )

E(0,Γ−1)

E(0, Γ̄−1)

Fig. 2. Ellipsoids correspond to the inverse covariance
matrices of Fig. 1. Different ellipsoids E(0,Γ−1) for ad-
missible Γ−1 are shown. The ellipsoid E(0, Γ̄−1) with
Γ̄ = ωCA + (1− ω)CB, ω = 0.5 bounds the intersection.

4.1 Comparison of CI and EI

In order to compare CI and EI, it is worth pointing out
that the problem statement in Sec. 3 itself constitutes a
reason why the EI fusion method differs from CI. The
derivations of EI exploit the decompositions (3) and (4),
while CI is not tailored to a specific correlation structure.

As it has been observed by Julier (2008), CI prevents
double-counting of the common estimate, and (γ̂,Γ) is
only incorporated once. By applying CI to the decompo-
sitions (3) and (4), the covariance matrix (10b) becomes

CCI =
(
ω(CI

A)−1 + (1− ω)(CI
B)−1 + Γ−1

)−1
.

By comparing (8b) with CCI, we observe from

C−1Γ −C−1CI = (1− ω)(CI
A)−1 + ω(CI

B)−1 ≥ 0

that the difference is, in general, strictly positive defi-
nite. For the estimates depicted in Fig. 1, any convex
combination of (CI

A)−1 and (CI
B)−1 is positive definite,

irrespective of Γ and ω ∈ [0, 1]. Hence, CI is not tight.

Fig. 1 already reveals an example where EI is inconsis-
tent. The depicted ellipsoid E(0,Γ′) also covers both co-
variance ellipsoids; hence, the matrix Γ′ satisfies the in-
equalities (11) and is admissible. If the estimates share
the common information (0,Γ′) and are fused by means
of EI, the actual error covariance matrix of the fusion
result becomes C′fus = E

[
x̃EIx̃

T
EI

]
which is also shown

in Fig. 1 in form of a covariance ellipsoid. The magni-
fied section in the plot points out that EI underestimates
this error matrix. Hence, EI is not consistent.

In consequence, the question of how an optimal solution
to Problem 4 should look like remains to be discussed.

4.2 The Missing Piece

The preceding considerations have revealed that CI is
too conservative and EI is not conservative enough—
the solution obviously lies between those two. We reap-
proach the problem by considering the ellipsoids related
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to the inverse covariance matrices. Fig. 2 shows that Γ−1EI
refers to a maximum inner ellipsoid within the intersec-
tion E(0,C−1A ) ∩ E(0,C−1B ). Furthermore, a number of
100 arbitrarily chosen admissible Γ−1 have been drawn
in Fig. 2, which results in the shaded area. We can easily
observe that the intersection tightly bounds the covari-
ance ellipsoids of all admissible Γ−1. This leads to the
conclusion that Γ−1EI is chosen too small to account for
all admissible Γ−1. Instead, the intersection of the ellip-
soids related to the inverse covariance matrices C−1A and

C−1B has to be considered.

5 Inverse Covariance Intersection

This section presents a novel fusion rule that solves Prob-
lem 4. It commences with a brief excursion to ellipsoidal
calculus, which confirms our observation in the previ-
ous section with respect to the intersection of inverse co-
variance ellipsoids. Based on these considerations, con-
sistency and tightness of the proposed concept are then
proven. A comparison with CI unveils that the novel ap-
proach reports a lower mean squared error and, hence, is
less conservative. An important result is that the method
can be applied successively to multiple estimates with-
out impairing consistency or tightness.

5.1 Derivation of the Fusion Rule

As expected and already indicated in our previous
discussions, relationship (11) is strongly linked to the
intersection of ellipsoids. In particular, the inclusion
E(0,Ω) ⊆ E(0,A) ∩ E(0,B) is equivalent to Ω ≤ A and
Ω ≤ B for positive definite matrices Ω, A, and B. Ad-
ditionally, for every x ∈ E(0,A) ∩ E(0,B), there exists
an Ω ≤ A,B such that x ∈ E(0,Ω)—see Kahan (1968).
Hence, the union of all ellipsoids E(0,Ω) with Ω ≤ A,B
completely fills out the intersection E(0,A) ∩ E(0,B).

The intersection of two ellipsoids generally does not yield
an ellipsoid. As stated, for instance, by Kahan (1968),
each ellipsoid E(0,Λ) that tightly encloses the intersec-
tion, i.e.,

E(0,A) ∩ E(0,B) ⊆ E(0,D) ⊆ E(0,Λ) =⇒ D = Λ ,

has the parameterization Λ[ω]=(ωA−1 +(1−ω)B−1)−1

with ω ∈ [0, 1]. Together with Ω ≤ A,B, it follows that
the inequality

Ω ≤ (ωA−1 + (1− ω)B−1)−1 (14)

holds for all admissible Ω and is tight.

By setting A := C−1A , B := C−1B , and Ω := Γ−1 and
considering (14), the excursion to ellipsoidal calculus re-
veals that the right-hand side in

Γ−1 ≤
(
ωCA + (1− ω)CB

)−1
(15)

is a tight outer bound for all admissible Γ−1 from Def. 2.
In particular, this bound is related to the intersection of
inverse covariance ellipsoids, which verifies the observa-
tion in Fig. 2.

Remark 5. Except for trivial cases E(0,A) ⊆ E(0,B),
E(0,B) ⊆ E(0,A), or scalar x, E(0,Λ[ω]) is a tight
bound for each ω ∈ [0, 1]. By considering a cost function
J that satisfies M ≤ N =⇒ J(M) ≤ J(N) for positive
definite M and N, the parameter ω∗ = arg min J(Λ[ω])
always provides a tight bound. As for the CI method,
typical cost functions are the trace or determinant.

Lemma 6. Every fusion result
(
x̂fus,Cfus

)
that solves

Problem 4 reports a tight covariance matrix in the form

C−1fus = C−1A + C−1B −
(
ωCA + (1− ω)CB

)−1
. (16)

Proof. Since (15) is tight for any ω ∈ [0, 1], also

−Γ−1 ≥ −
(
ωCA + (1− ω)CB

)−1
holds and hence,

C−1A +C−1B −Γ−1 ≥ C−1A +C−1B −
(
ωCA+(1−ω)CB

)−1
is tight for all admissible Γ. Consequently, this also holds
for (

C−1A + C−1B − Γ−1
)−1 ≤ Cfus ,

where the left-hand side corresponds to the covariance
matrix of the optimal fusion result (8) for known Γ.

Lemma 6 confirms the observation in Sec. 4.2. The fol-
lowing theorem presents a fusion method that actually
attains (16) as a bound on the error covariance matrix
and thereby constitutes a solution to Problem 4.

Theorem 7 (Inverse Covariance Intersection). Given
Problem 4, a consistent combination of the estimates
(x̂A,CA) and (x̂B,CB) is provided by (x̂ICI,CICI) with

x̂ICI = KICI x̂A + LICI x̂B (17a)

and

C−1ICI = C−1A + C−1B −
(
ωCA + (1− ω)CB

)−1
(17b)

for any ω ∈ [0, 1]. The gains in (17a) are given by

KICI = CICI ·
(
C−1A − ω(ωCA + (1− ω)CB)−1

)
, (18a)

LICI = CICI ·
(
C−1B − (1− ω)(ωCA + (1− ω)CB)−1

)
.

(18b)
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Remark 8. The fusion result (17) is also tight if the
parameter ω is determined according to Rem. 5. In par-
ticular, ω can be chosen to minimize an optimality cri-
terion such as the trace or determinant of the bounding
error covariance matrix (17b). Like CI, the proposed fu-
sion rule offers a family of estimates that is parameter-
ized by ω ∈ [0, 1]. A simple Matlab implementation can
be downloaded from www.bennoack.net/ICI.

Proof of Theorem 7. We consider an arbitrary linear
combination K x̂A +L x̂B of the estimates (3) with gains
K,L ∈ Rn×n. The gains that minimize the MSE after
combining unbiased estimates have to fulfill I = K + L,
and the error covariance matrix becomes

E
[(

K x̂A + L x̂B − x
)
·
(
K x̂A + L x̂B − x

)T]
= E

[(
K x̃A + L x̃B

)
·
(
K x̃A + L x̃B

)T]
= KCAKT + LCBLT

+ KCAΓ−1CBLT + LCBΓ−1CAKT ,

(19)

where the estimation errors x̃A and x̃B are given by (6),
and the cross-covariance matrix in (7) has been used.
We derive a bound on (19) with the help of the auxiliary
random vector

ṽ :=
1√
λ

K CAC−1B x̃B −
√
λL CBC−1A x̃A

for an arbitrary λ > 0. The corresponding error covari-
ance matrix yields

E
[
ṽṽT

]
=

1

λ
KCAC−1B CAKT + λLCBC−1A CBLT

−KCAΓ−1CBLT − LCBΓ−1CAKT .

Since E
[
ṽṽT

]
> 0, we obtain the inequality

1

λ
KCAC−1B CAKT + λLCBC−1A CBLT

≥ KCAΓ−1CBLT + LCBΓ−1CAKT .

This inequality can now be utilized to derive a bound
on (19), i.e.,

E
[(

K x̃A + L x̃B

)
·
(
K x̃A + L x̃B

)T]
≤ KCAKT + LCBLT

+
1

λ
KCAC−1B CAKT + λLCBC−1A CBLT

= K
(
CA +

1

λ
CAC−1B CA

)
KT

+ L
(
CB + λCBC−1A CB

)
LT

which holds for every possible (γ̂,Γ) and each choice
of K and L. Since the bound is independent of Γ, the

trace of the bound becomes minimal when the gains are
chosen as in (9). This leads us to the fused covariance
matrix

C−1fus

(9b)
=
(
CA +

1

λ
CAC−1B CA

)−1
+
(
CB + λCBC−1A CB

)−1
= C−1A −

(
λCB + CA

)−1
+ C−1B −

( 1

λ
CA + CB

)−1
= C−1A + C−1B − (1 + λ)

(
λCB + CA

)−1
= C−1A + C−1B −

( λ

(1 + λ)
CB +

1

(1 + λ)
CA

)−1
,

where the Woodbury identity has been applied. We set
ω = 1

(1+λ) and arrive at

C−1fus = C−1A + C−1B −
(
ωCA + (1− ω)CB

)−1
,

which proves (17b). The formulas (18) for the gains KICI

and LICI follow from (9).

5.2 Comparison with Covariance Intersection

The ICI fusion method only renders a viable alterna-
tive to CI if it provides us with less conservative fusion
results. In essence, we have to compare the covariance
matrices (10b) and (17b), both of which are dependent
upon a scalar parameter. The result of the comparison
is summarized in the following lemma.

Lemma 9. For each ω∗ ∈ [0, 1], there is a parameter
ω+ ∈ [0, 1] with CICI[ω

+] ≤ CCI[ω
∗].

Proof. By setting ω+ = 1− ω∗, we obtain

C−1ICI[1− ω
∗]−C−1CI [ω∗] (20)

= C−1A + C−1B −
(
(1− ω∗)CA + ω∗CB

)−1
−
(
ω∗C−1A + (1− ω∗)C−1B

)
= (1− ω∗)C−1A + ω∗C−1B −

(
(1− ω∗)CA + ω∗CB

)−1
,

The joint transformation (12) applied to (20) yields

D̄ := T
(
C−1ICI[1− ω

∗]−C−1CI [ω∗]
)
TT

= (1− ω∗)D−1A + ω∗D−1B −
(
(1− ω∗)DA + ω∗DB

)−1
.

With diA := (DA)ii and diB := (DB)ii, the diagonal en-
tries are

(D̄)ii = (1− ω∗) 1

diA
+ ω∗

1

diB
− 1

(1− ω∗)diA + ω∗diB
≥ 0 .

By multiplying with (1−ω∗)diA+ω∗diB, which is a positive
value, we obtain

(1− ω∗)2 + (ω∗)2 + ω∗(1− ω∗)
(diB
diA

+
diA
diB

)
− 1 ≥ 0 .

6
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From the inequality (a2 + b2) ≥ 2|ab|, it follows(diB
diA

+
diA
diB

)
=

(diA)2 + (diB)2

diA · diB
≥ 2

and hence

(1− ω∗)2 + (ω∗)2 + ω∗(1− ω∗)
(diB
diA

+
diA
diB

)
− 1

≥ (1− ω∗)2 + (ω∗)2 + 2ω∗(1− ω∗)− 1 = 0 .

The last inequality finally implies that each diagonal
component (D̄)ii is positive, and therefore also the dif-
ference (20) is positive definite. This leads to the in-
equality C−1ICI[1 − ω∗] ≥ C−1CI [ω∗] and, in particular, to
CICI[1− ω∗] ≤ CCI[ω

∗].

Consequently, the ICI approach provides more accurate
fusion results than CI. In particular, for any ωCI that
minimizes the trace or determinant of CCI[ωCI], the ma-
trix CICI[1− ωCI] is attributed to an even smaller trace
or determinant, respectively. However, the parameter
ωICI that minimizes the same criterion for CICI[ωICI]
can be different to 1 − ωCI. In this case, the difference
CCI[ωCI]−CICI[ωICI] may be indefinite.

5.3 Transitivity of Common Information

From an application-oriented point of view, a fusion
method is supposed to be applied iteratively to multi-
ple estimates without impairing consistency. Given the
situation that the estimates (x̂A,CA) and (x̂B,CB) both
share the common estimate (γ̂,Γ), we study the question
of how the common information is affected after applying
ICI to (x̂A,CA) and (x̂B,CB). With the gains (18) and
the decompositions (3), the common estimate is trans-
formed according to

x̂ICI

(17a)
= KICIx̂A + LICIx̂B

= KICICA(CI
A)−1x̂I

A + LICICB(CI
B)−1x̂I

B

+ KICICAΓ−1γ̂ + LICICBΓ−1γ̂

(21)

The last sum can be rewritten as

(KICICA + LICICB) Γ−1γ̂ = CICI

(
K̄CA + L̄CB

)
Γ−1γ̂

(22)
with

K̄ := C−1A − ω(ωCA + (1− ω)CB)−1 ,

L̄ := C−1B − (1− ω)(ωCA + (1− ω)CB)−1 .

With the identity

K̄CA + L̄CB = 2 · I− ω(ωCA + (1− ω)CB)−1CA

− (1− ω)(ωCA + (1− ω)CB)−1CB

= I ,

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

Fig. 3. Communication scheme.

the vector (22) reduces to CICIΓ
−1γ̂. For this reason,

the fused estimate (21) has the decomposition

x̂ICI = CICI

(
(CI

ICI)
−1x̂I

ICI + Γ−1γ̂
)
,

which resembles (3). Analogously, the covariance ma-
trix (17b) can be decomposed in the same fashion. The
independent parts in (21) have been summarized in

(x̂I
ICI,C

I
ICI). In conclusion, the ICI fusion method pre-

serves the common estimate and the problem structure
in Sec. 3.

6 Discussion and Example

The full potential of the ICI fusion methodology can be
exploited in sensor networks where double-counting of
data poses a severe problem. The communication paths
shown in Fig. 3 display several examples of critical nodes
that have to take care of common information. As such,
node S8 obtains estimates from S5 and S6 that share the
information received from S2. Of course, in order to pre-
vent double-counting, simple strategies can be pursued.
For instance, each node can forward the received data
to the subsequent node on the path instead of comput-
ing a fusion result, which may lead to an unacceptably
high data volume. Another possibility is to keep track of
common information, but this requires bookkeeping and
cannot account for changing network topologies. There-
fore, an on-site fusion of received data renders the most
flexible solution as neither a specific topology nor any
additional bookkeeping is required. Concepts like split
covariance intersection that rely on an explicit separa-
tion of dependent and independent parts are difficult to
employ as independent parts cannot be identified.

In order to compare the performance of the different fu-
sion methods, Fig. 4 shows the result of a Monte-Carlo
simulation over 50 000 runs, where the communication
path in Fig. 3 is used. In each run, each node is initialized
with (x̂SX,CSX) = ([ 00 ] , [ 2 0

0 2 ]) , which also corresponds
to the uncertainty of the true state. Each node has a local
Kalman filter and measures the state with measurement
matrix HSX = [sin(π2 ·

X
10 ), cos(π2 ·

X
10 )]T and zero-mean

noise vSX with variance Cv = 0.2. Each initial estimate
is locally updated with a measurement, before it is sent
along the path shown in Fig. 3 and fused with other es-
timates. For node S10, Fig. 4 compares the covariance
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(e) EI fusion.

Fig. 4. Fusion results at node S10 in Fig. 3. Comparison of covariance matrices C ( ) reported by fusion methods and actual
error covariance matrices C̃ ( ) depicted as ellipsoids. C̃ is computed as sample covariance matrix of the estimation errors
x̃S10 = x̂S10−x after 50 000 runs, where x̂S10 has been computed by the different fusion methods. A fusion method is consistent
if the actual error is bounded by the reported error ellipsoid, i.e., C ≥ C̃.

matrices C that are reported by the fusion methods with

the actual error matrices C̃ = E[(x̂ − x)(x̂ − x)T]. The
latter matrices have been computed based on the Monte-
Carlo simulation. As expected, for known (γ̂,Γ) shared
by the estimates, CΓ in (8) equals C̃Γ. With naive fu-
sion, Cin severely underestimates the actual C̃in because
of double-counting. Both CI and ICI report consistent
estimates while ICI is far tighter, and also the actual er-
ror of ICI is smaller. EI is not consistent as the difference
CEI − C̃EI is not positive semi-definite.

The example underpins the optimality of ICI in problem
setups, where information is double counted and which
lie in the scope of Problem 4. ICI provides results with
proven consistency when cycles in the network cause de-
pendencies and, in general, other sources of dependen-
cies are absent or negligible. Further studies will particu-
larly focus on the effect of common process noise, which
may lead to a parameterization different from (7).

7 Conclusions

A novel concept for decentralized data fusion has been
derived by studying the problem of combining estimates
that share unknown common information. It employs a
decomposition of each estimate into a common and an
independent part, which has first been introduced for
the ellipsoidal intersection method. For the considered
fusion problem, covariance intersection and ellipsoidal
intersection are possible candidates. However, a detailed
analysis of both concepts has revealed that covariance
intersection is too conservative and ellipsoidal intersec-
tion may lead to inconsistent fusion results. By identify-
ing the missing pieces, a conservative and tight bound on
unknown common information has been derived. This
bound is closely related to the intersection of inverse co-
variance ellipsoids.

The main contribution of this work is the inverse covari-
ance intersection method that represents an optimal—
consistent and tight—solution to the problem of fusing
estimates that share unknown common information. Im-
portant results are that inverse covariance intersection
is less conservative than covariance intersection and can
recursively be applied to fuse estimates.
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