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Abstract— This paper addresses the challenges of the fusion
of two random vectors with imprecisely known stochastic
dependency. This problem mainly occurs in decentralized esti-
mation, e.g. of a distributed phenomenon, where the stochastic
dependencies between the individual states are not stored. To
cope with such problems we propose to exploit parameterized
joint densities with both Gaussian marginals and Gaussian
mixture marginals. Under structural assumptions these pa-
rameterized joint densities contain all information about the
stochastic dependencies between their marginal densities in
terms of a generalized correlation parameter vector ξ. The
parameterized joint densities are applied to the prediction step
and the measurement step under imprecisely known correlation
leading to a whole family of possible estimation results. The
resulting density functions are characterized by the generalized
correlation parameter vector ξ. Once this structure and the
bounds of these parameters are known, it is possible to find
bounding densities containing all possible density functions, i.e.,
conservative estimation results.

I. INTRODUCTION

In technical systems the state estimation by fusing un-
certain information is a topic of extraordinary importance,
e.g., observation of a distributed phenomenon by means of a
sensor network [1], multiple target tracking [2], and robot
localization [3]. For such applications, usually the unob-
servable internal state has to be reconstructed on the basis
of an appropriate system model together with a stochastic
noise model. In most cases, the Kalman filter and its many
variations have proven to be useful [4].

Problems mainly occur when the stochastic dependencies
between the states and/or the sensor noises are not precisely
known, i.e., their joint statistics are simply not available.
In that case, classical filtering techniques like the Kalman
filter conveniently assume stochastic independence or known
correlation, which automatically leads to unjustified improve-
ment of estimation results. For understanding the source
of unknown stochastic dependency a typical application
is considered: Decentralized self-localization of a sensor-
actuator-network, see Fig. 1.

In this scenario there exists a cause for stochastic de-
pendency common to all distributed estimation processes,
namely sharing of information among decentralized estima-
tors. For example, the distance measurements ŷ

(i)
k and ŷ

(j)
k

are used to improve the position estimate of two sensor
nodes. In the linear case, using a centralized approach, the
position of the individual sensor nodes can be estimated
easily by applying a Kalman filter to the augmented state
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Fig. 1. Simple example scenario for the self-localization of a sensor-
actuator-network. The position estimates fp

k (x
(i)
k ) and fp

k (x
(j)
k ) of the in-

dividual sensor nodes are improved by means of the distance measurements
ŷ
(i)
k and ŷ

(j)
k .

vector containing the positions of all sensor nodes. In that
case, the estimator stores the associated stochastic depen-
dencies and uses them for the next estimation step. How-
ever, for practical applications, especially for large sensor-
actuator-networks, it is often desirable to reduce the heavy
computational burden and to reduce communication activities
between the individual nodes to a minimum. This leads to a
decentralized estimation approach implying that just parts
of the state vector are manipulated at each update step.
Unfortunately, applying the Kalman filter while ignoring the
existing dependencies between the individual states leads to
overoptimistic estimation results. Coping with such problems
is one of the main justificications for robust filter design
[3]. The comparison between a centralized and decentralized
estimator is visualized in Fig. 2 (a) and (b).

To tackle the previously mentioned problems two ro-
bust estimators have been introduced, namely Covariance
Intersection [5], [6] and Covariance Bounds [7]. Basically,
the resulting filters do not neglect the unknown stochastic
dependency, but consider them by producing conservative
estimates compatible with all correlations within an as-
sumed correlation structure. Besides, the generalization of
the Covariance Intersection based on a minimization of the
Chernoff information is worthwhile mentioning [8].

Robust filters based on Covariance Intersection and Co-
variance Bounds rely on the correlation coefficient r, which
is a sufficient measure for the stochastic dependency of
Gaussian densities. That means, although these filters are ef-
ficient for linear state-space models and linear measurement
models, they cannot be directly applied to nonlinear models,
e.g., of a distributed phenomenon or nonlinear measurement
equation. In addition, they are not able to work with more
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Fig. 2. (a) Centralized estimation: Since the estimation result is derived centrally the stochastic dependency between the estimate of sensor i and
sensor j, and thus the joint density fp

k (x
(i)
k , x

(j)
k ) is precisely known. (b) Decentralized estimation: Due to the imprecisely known stochastic dependency

between the estimate of Sensor i and Sensor j, the joint density fp
k (x

(i)
k , x

(j)
k ) is not precisely known, although the marginal densities fp

k (x
(i)
k ) and

fp
k (x

(j)
k ) are given.

complex density functions such as Gaussian mixtures, which
are known as universal approximators and thus, well-suited
for nonlinear estimation problems [9].

According to previous discussions, one of the main math-
ematical challenges of a robust decentralized estimation
based on more complex density functions, such as Gaussian
mixtures, is that for these functions the classical correlation
coefficient r is not a sufficient measure for the stochastic
dependency. This implies that for such density functions no
obvious correlation coefficient exists, which can be bounded
and thus, no bounding density can be found in the classical
sense.

In our previous research work [10] parameterized joint
densities were derived with both Gaussian marginals and
Gaussian mixture marginals. These parameterized joint den-
sities contain all information about the stochastic dependency
between their marginal density functions in terms of a
parameter vector ξ. This parameter vector can be regarded as
a kind of generalized correlation parameter for the assumed
structure of stochastic dependency.

In this paper, we are exploiting the parameterized joint
densities for the prediction step and the measurement step
under imprecisely known correlation. This leads to a whole
family of possible estimation results characterized by the
generalized correlation parameter vector ξ. Furthermore, it
is shown that the so-called parameterized estimation result
can be bounded possibly by means of bounding densities,
similar to [11]. Thus, when the structure and the bound of

these correlation parameter vectors ξ are known, bounding
densities which are compatible with all stochastic depen-
dency structures can be found.

The remainder of this paper is structured as follows. In
Section II, a rigorous formulation of the problem of state
estimation with imprecisely known correlations is given. Sec-
tion II then derives two special types of parameterized joint
densities both with Gaussian marginals and Gaussian mixture
marginals. In Section IV and section V, their potential use
for robust nonlinear estimation is presented, i.e., prediction
step and mesurement step. Furthermore, it will be shown that
bounding the parameters of these joint densities, it is possible
to find conservative estimation results even for nonlinear
problems and for more complex density functions, such as
Gaussian mixtures.

Throughout this paper, we use the notation N (z,C(r))
to represent a two-dimensional Gaussian density, which is
defined as

N (z,C(r)) =
1

2π
√|C(r)| exp

{
−1

2
zT C(r)−1z

}
,

where

z =
[
x − x̂
y − ŷ

]
, C(r) =

[
Cx r

√
CxCy

r
√

CyCx Cy

]
,

are state vector and covariance matrix, respectively. The
expected value of the states are denoted by x̂ and ŷ, and
r ∈ [−1, 1] denotes the classical correlation coefficient.

308



II. PROBLEM FORMULATION

As mentioned in the introduction, there are many sources
of stochastic dependencies. In this section, we take up
the previous mentioned example, the decentralized self-
localization of a sensor-actuator-network. By this means we
are able to clarify the main problem common to all sources
of imprecisely known stochastic dependency: imprecisely
known joint densities with given marginal densities.

It is assumed that the distance measurement ŷk is related
nonlinearly to the position of sensor node i and sensor node
j according to

ŷk = hk(xk) + vk ,

where the state vector xk = [x(i)
k , x

(j)
k ]T contains the

individual scalar sensor positions and vk represents the
measurement uncertainty or model parameter uncertainties.
The corresponding density functions of the sensor positions
are given by fp

k (x(i)
k ) and fp

k (x(j)
k ), respectively.

In the additive noise case, the posterior density fe
k can

be easily calculated based on the prediction result fp
k (prior

density) according to

fe
k(xk) = ce

k fL
k (ŷk − hk(xk)) fp

k (x(i)
k , x

(j)
k ) , (1)

where ce
k is a normalization constant and fL

k is the likelihood
function.

With the justification of the considered example sce-
nario we assume there exists an imprecisely known sto-
chastic dependency between the individual estimates xk =
[x(i)

k , x
(j)
k ]T . That means although the individual marginal

densities fp
k (x(i)

k ) and fp
k (x(j)

k ) are given, the joint density
fp

k (x(i)
k , x

(j)
k ) with all its information about the stochastic

dependency is not precisely known. However, as it can be
seen in (1), the knowledge of the joint density or at least
its parameterization in terms of a correlation parameter is
essential for the estimation process. Fig. 2 (b) illustrates the
decentralized estimation process and shows the necessity of
the joint density fp

k (x(i)
k , x

(j)
k ).

If the joint density, and thus, the correlation structure
would be known precisely, this correlation could be tracked
easily and be considered in the next processing step. How-
ever, when the correlation structure is not precisely known,
the joint densities need to be reconstructed somehow.

In the next section, the reconstruction of joint densities
f(x, y) based on known marginal densities fx(x) and fy(y)
is discussed in more detail. For all introduced types this leads
to a parameterized joint density depending on a generalized
correlation function ξ(r) or generalized correlation parameter
vector ξ, which contains the information about the stochastic
dependency between the considered random variables.

III. PARAMETERIZED JOINT DENSITIES

A. Mixtures of Correlated Jointly Gaussian Densities

In this section, we present a parameterized joint density
based on the integral of jointly Gaussian densities with
different classical correlation coefficients r. The weighting
factors of the individual joint densities need to be chosen in
such a way that the marginals are represented by the given

r1-1

(a)

(c)

r1-1

(b)

fx(x) fy(y)

fx(x) fy(y)

ξ(r)

ξ(r)

r1-1fx(x) fy(y)

ξ(r)

Fig. 3. Joint density consisting of the integral of correlated Gaussian
densities for different generalized correlation functions ξ(r), (a) ξ(r) = 0.5,
(b) ξ(r) = N (r − r̂, Cr), and (c) ξ(r) = δ(r − r̂).

Gaussian marginal densities. For a more detailed description
for this type of non-Gaussian joint density with Gaussian
marginals we refer to our previous research work [10].

For two given Gaussian marginal densities fx(x) =
N (x̂, Cx) and fy(y) = N (ŷ, Cy), a family of possible joint
densities, depending on the generalized correlation function
ξ(r), can be parameterized by

f(x, y) =
∫ 1

−1

ξ(r)N
([

x − x̂
y − ŷ

]
,C(r)

)
dr , (2)

where ξ(r) is defined on r ∈ [−1, 1]. The parameterized
continuous Gaussian mixture f(x, y) is a valid normalized
density function for

ξ(r) ≥ 0 ,

∫ 1

−1

ξ(r)dr = 1 .

Three examples for this type of parameterized joint density
are depicted in Fig. 3.

B. Gaussian Mixture Marginals

In this section, we generalize these ideas to the parameter-
ization of joint densities with Gaussian mixture marginals.
Since Gaussian mixtures consist of the convex sum of
Gaussian densities and are known as universal approxima-
tors, they are well-suited for nonlinear estimation problems.

Thus, finding a parameterization for the imprecisely
known joint density with Gaussian mixture marginals, it
is possible to develop a novel filtering technique which
is able to cope with both nonlinear system models and
nonlinear measurement models in a robust manner. As it
was mentioned in the introduction, the challenge of a robust
decentralized estimation based on Gaussian mixtures is that
the classical correlation coefficient r is not a sufficient
measure for the stochastic dependency of Gaussian mixtures.
Therefore we define in this section a generalized correlation
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parameter vector ξ for Gaussian mixtures. Finding bounding
densities, which are compatible with all stochastic depen-
dency structures in terms of ξ, it is possible to derive a robust
filtering technique for distributed nonlinear problems.

For the sake of simplicity consider two scalar Gaussian
mixture marginals according to

fx(x) =
m∑

i=1

wx,i N (x − x̂i, Cx,i) , (3)

fy(y) =
n∑

i=1

wy,i N (y − ŷi, Cy,i) , (4)

where x̂i and ŷi are the individual means, Cx,i and Cy,i are
the individual variances, and wx,i and wy,i are the individual
weighting factors, which must be positive and sum to one.

The weighting factors wx,i and wy,i of the marginals are
rearranged into vector form according to

wx =
[
wx,1 · · · wx,m

]T
,

wy =
[
wy,1 · · · wy,n

]T
.

Given two Gaussian mixture marginal densities fx(x) and
fy(y), a family of possible joint densities f(x, y) depending
on the weighting factors wij is defined by

f(x, y) =
m∑

i=1

n∑
j=1

wij N
([

x − x̂i

y − ŷj

]
,Cij(rij)

)
. (5)

To assure that the parameterized Gaussian mixture f(x, y)
is a valid normalized density function, the weighting factors
wij of the joint density must be positive and sum to one

wij ≥ 0 ,
m∑

i=1

n∑
j=1

wij = 1 . (6)

In addition, the weighting factors of the joint density must
satisfy

n∑
j=1

wij = wx,i ,
m∑

i=1

wij = wy,j , (7)

to ensure that the parameterized joint density f(x, y) is a
valid joint density for the given marginal density functions
fx(x) and fy(y).

It is more convenient to rearrange the weighting factors of
the joint Gaussian mixture density wij from matrix form to
vector form according to

w =
[
w11 · · · w1n, w21 · · · w2n, · · · wmn

]T

As it was shown in our previous work [10], under the
conditions (6) and (7) the weighting factors w of the joint
density f(x, y) can be derived according to

w = T†
e

⎡
⎣wx

wy

ξ

⎤
⎦ , (8)

where Te describes a unique transformation of weighting
factors for valid joint densities to weighting factors for given

(a)
x

y

(b)

(c) (d)

fx(x) fy(y)

fx(x) fy(y) fx(x) fy(y)

fx(x)

fy(y)

Fig. 4. (a) Gaussian mixture marginal densities with two individual
components (wx,i = wy,i = 0.5), fx(x) with x̂1 = −3, x̂2 = 2,
Cx,1 = 2, Cx,2 = 1.6, and fy(y) with ŷ = −1, ŷ = −4, Cy = 1.4,
Cy = 2.1. Parameterized joint density for various generalized correlation
parameter vectors ξ, (b) ξ = 0, (c) ξ = −1, (d) ξ = 1.

marginal density. The pseudo-inverse is denoted by T†
e. For

a more detailed description refer to [10].
Similar to the other types of parameterized joint densities

the free parameter vector ξ can be regarded as a kind
of generalized correlation parameter vector for Gaussian
mixtures. Furthermore, the classical correlation coefficients
rij of each Gaussian mixture component is a free parameter.
These free parameters need to be specified in order to define
the joint density f(x, y) uniquely. Possible joint densities
f(x, y) for two given Gaussian mixture marginals fx(x) and
fy(y) for various parameter vectors ξ are depicted in Fig.
4(b)–(d).

IV. PREDICTION STEP (TIME UPDATE)

For demonstrating how the parameterized joint densities
can be possibly used for a novel filtering technique, a typical
application is investigated: Propagation of a given state
through a system model. For the sake of simplicity, consider
a simple discrete-time dynamic model with the system state
xk ∈ IR, and the system input uk ∈ IR according to

xk+1 = a(xk, uk) , (9)

where xk and uk are random variables represented by the
density functions fx(xk) and fu(uk), respectively.

In the case of precisely known joint density fe
k(xk, uk),

the predicted density is given by fp
k+1(xk+1) =∫

IR2
δ(xk+1 − a(xk, uk))fe

k(xk, uk)dxkduk , (10)

where δ(.) denotes the Dirac delta distribution.
However, we assume that the state estimate xk and the

system input uk are stochastically dependent with a not
precisely known structure. That means, although the mar-
ginal density functions fe

x(xk) and fe
u(uk) are known, the

joint density fe
k(xk, uk) with all its information about the

stochastic dependency is unknown. As it can be seen in (10),
the knowledge of the joint density fe

k(xk, uk) or at least
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Fig. 5. Predicted density fp
k+1(xk+1) and its cumulative distribution func-

tion F p
k+1(xk+1) for variation of the generalized correlation parameters of

fe
k(xk, uk). (a) αij = −1, ξ = −1 . . . 1. (b) ξ = 1, αij = −1 . . . 1.

(c) Various members of the family of possible predicted densities and their
bounding densities, Fl(xk+1) and Fu(xk+1).

its parameterization in terms of a correlation parameter is
essential for deriving prediction results.

The goal is to find a bounding density for the prediction
result fp

k+1 of all possible joint densities fe
k(xk, uk). Thus,

based on structural assumptions concerning the stochastic
dependency the unknown prior density fe

k(xk, uk) can be
parameterized by

fe
k =

m∑
i=1

n∑
j=1

wij

∫ 1

−1

ξij(r)N
([

xk − x̂e
k,i

uk − ûe
k,j

]
,Ce

ij(r)
)

dr,

where ξij(r) and ξ (affecting the calculation of wij) are
the generalized correlation function and the generalized cor-
relation parameter vector, respectively. The individual joint
covariance matrix between the i-th component of fe

x(xk) and
j-th component of fe

u(uk) is given by

Ce
ij(r) =

[
Cx,i r

√
Cx,iCu,j

r
√

Cx,iCu,j Cu,j

]
,

where r denotes the classical correlation parameter.
By means of the parameterized prior joint density

fe
k(xk, uk) the resulting predicted density fp

k+1(xk+1) can
be described in terms of a generalized correlation parameter
vector ξ and a generalized correlation function ξ(r). This pa-
rameterized density function fp

k+1(xk+1) describes a whole
family of possible prediction results. The following example
clarifies these results.

EXAMPLE 1 For the sake of simplicity and brevity we
consider a linear state space model according to

xk+1 = Akxk + Bkuk ,

where the two random variables xk and uk are represented
by Gaussian mixtures with two components, visualized in
Fig. 4 (a), i.e., fe

k(xk) ≡ fx(x) and fe
k(uk) ≡ fy(y).

Although more complex correlation functions ξij(r) for
the parameterization of the prior density fe

k can be chosen,
for simplicity this function is given by

ξij(r) = δ(r − αij) , (11)

where αij denotes a specific classical correlation coefficient.
The predicted density fp

k+1 for various generalized corre-
lation parameter vectors ξ and αij is depicted in Fig. 5(a)–
(c). These figures clearly show that the prediction result fp

k+1
strongly depends on the stochastic dependency, however can
be described by a generalized correlation parameter.

It is obvious that the parameterized predicted distribu-
tion function F p

k can be bounded by bounding distribution
functions Fu(xk+1) (upper bound) and Fl(xk+1) (lower
bound), depicted in Fig. 5(c). Furthermore, it can be said
that once a representation of such bounding densities is
found, a filtering technique can be derived, which can cope
with nonlinear models and is robust against imprecisely
known stochastic dependencies. The actual calculation of the
bounding densities is left for future research work.

V. FILTER STEP (MEASUREMENT UPDATE)

In this section we take up the example mentioned in
the introduction: Decentralized self-localization of a sensor-
actuator-network. For illustration purposes, we consider just
two sensor nodes and assume that the relative distance
measurement ŷk is related nonlinearly to their positions.
Thus, the measurement equation is given by

ŷk = hk(xk) + vk ,

where xk = [x(1)
k , x

(2)
k ]T are the estimated sensor positions

and vk represents the measurement uncertainty.
In the case of precisely known joint density fp

k (x(1)
k , x

(2)
k ),

the posterior density fe
k can be easily calculated by

fe
k(xk) = ce

k fL(ŷk − hk(xk)) fp
k (x(1)

k , x
(2)
k ) , (12)

where ce
k is a normalization constant.

However, we assume an imprecisely known stochastic
dependency between the individual estimated positions. That
means, although the marginal density functions fp

k (x(1)
k )

and fp
k (x(2)

k ) are known, the joint density fp
k (x(1)

k , x
(2)
k )

with its information about the stochastic dependency is
unknown. Unfortunately, the knowledge of the joint density
fp

k (x(1)
k , x

(2)
k ) or at least its parameterization in terms of

a correlation parameter is essential for deriving estimated
densities fe

k by means of (12).
Thus, similar to the time update, the imprecisely known

joint density fp
k (x(1)

k , x
(2)
k ) can be parameterized by a joint

density according to

fp
k =

m∑
i=1

n∑
j=1

wij

1∫
−1

ξij(r)N
([

x
(1)
k − x̂

e,(1)
k,i

x
(2)
k − x̂

e,(2)
k,j

]
,Cp

ij(r)

)
dr,

311



(a)

(b)

(c)

xk−10 10

xk−10 10

xk−10 10 xk−10 10

xk−10 10

xk−10 10

1

1

1

f e
k(x

(1)
k )

f e
k(x

(1)
k )

f e
k(x

(1)
k )

F e
k (x

(1)
k )

F e
k (x

(1)
k )

Fu(x
(1)
k )

Fl (x
(1)
k )

Fig. 6. Estimated density fe
k(x

(1)
k ) and its cumulative distribution

function F e
k (x

(1)
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where ξij(r) and ξ (affecting the calculation of wij) are the
generalized correlation function and the generalized corre-
lation vector, respectively. The following example illustrates
the results.

EXAMPLE 2 For the sake of simplicity we consider a linear
measurement equation given by

ŷ = x
(1)
k + x

(2)
k + vk ,

where the two random variables x
(1)
k and x

(2)
k are represented

by Gaussian mixtures with two components, visualized in
Fig. 4 (a), i.e., fp

k (x(1)
k ) ≡ fx(x) and fp

k (x(2)
k ) ≡ fy(y).

The estimated density fe
k(x(1)) for various generalized

correlation parameter vectors ξ and αij is depicted in Fig. 6
(a)–(b). These figures clearly show that the estimation result
strongly depends on the stochastic dependency, however
can be parameterized in terms of a generalized correlation
parameter ξ and a generalized correlation function ξ(r).

It is ovious that the parameterized estimated distribution
function F e

k (x(1)) can be bounded by means of bounding
distribution functions Fu(x(1)

k ) (upper bound) and Fl(x
(1)
k )

(lower bound), depicted in Fig. 6 (c).

VI. CONCLUSIONS AND FUTURE WORK

This paper focuses on the parameterization of different
types of joint densities with both Gaussian marginals and
Gaussian mixture marginals. It is shown that by assuming a
specific stochastic dependency structure these joint densities
contain all information about this dependency in terms of
a generalized correlation parameter ξ and/or a generalized

correlation function ξ(r). Unlike the classical correlation
coefficient r the generalized correlation parameter ξ and

function ξ(r) is a sufficient measure for the stochastic
dependency between two random variables represented by
Gaussian mixtures.

Depending on these correlation parameters, detailed pre-
diction results and measurement results are presented. Fur-
thermore, it is shown that there could exist bounding den-
sities containing all possible joint densities characterized
by the generalized correlation parameter vector ξ and the
generalized correlation function ξ(r).

To find such bounding densities fulfilling the stochastic
dependency constraints is left for future research. A possible
direction for finding bounding densities can be found in
[11]. Once such a bounding density is found, the derivation
of a filtering technique, which can cope with nonlinear
models and is robust against imprecisely known stochastic
dependencies is possible.
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