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Universiẗat Karlsruhe
76128 Karlsruhe, Germany
Uwe.Hanebeck@ieee.org

Abstract— This paper is concerned with recursively estimat-
ing the internal state sequence of a discrete–time dynamic
system by processing a sequence of noisy measurements taken
from the system output. Recursive processing requires some
kind of sufficient statistic for representing the information
collected up to a certain time step. For this purpose, the
probability density functions of the state are especially well
suited. Once they are available, almost any type of point
estimate, e.g. mean, mode, or median, can be derived. In the
case of continuous states, however, the exact probability density
functions characterizing the state estimate are in general either
not feasible or not well suited for recursive processing. Hence,
approximations of the true densities are generally inevitable,
where Gaussian mixture approximations are convenient for a
number of reasons. However, calculating appropriate mixture
parameters that minimize a global measure of deviation from
the true density is a tough optimization task. Here, we propose a
new approximation method that minimizes the squared integral
deviation between the true density and its mixture approxi-
mation. Rather than trying to solve the original problem, it
is converted into a corresponding system of explicit ordinary
first–order differential equations. This system of differential
equations is then solved over a finite “time” interval, which is
an efficient way of calculating the desired optimal parameter
values. We focus on the measurement update in the important
case of vector states and scalar measurements. In addition,
approximation densities with separable kernels are assumed.
It will be shown, that if the measurement nonlinearities are
also separable, the required multidimensional integrals can be
reduced to the product of one–dimensional integrals. For several
important types of measurement functions including polynomial
measurement nonlinearities, closed–form analytic expressions
for the coefficients of the system of differential equations are
available.

I. I NTRODUCTION

Often, the internal state sequence of a dynamic system is
not directly available and has to be reconstructed from the
system input sequence and a measurement sequence supplied
by sensor devices. Here, we assume discrete–time systems
with continuous states, where the measurements and the
inputs are nonlinearly related to the states.

The goal is to make an estimate of the state sequence
available at every time step. Of course, this estimate should
incorporate the information contained in all the input and
measurement samples collected up to that time step. Instead
of storing all data and reprocessing them at every time step,
a recursive estimator is preferred, that uses some kind of
sufficient statistic as anexactcompressed representation of
the collected data. For that purpose, the probability density
functions of the state are well suited. Once they are available,

almost any type of point estimate, e.g. mean, mode, or
median, can be derived.

In the case of continuous states, however, the exact prob-
ability density functions characterizing the state estimate
are in general either not feasible or not well suited for
recursive processing. Hence, approximations of the true den-
sities are generally inevitable. Several different choices for
representing the density of the state estimate are possible. A
Gaussian mixture approximation is especially convenient as
its moments can be calculated analytically.

Early approaches to analytic nonlinear estimation used
Gaussian mixture approximations together with individual
updating of the mixture components [1], which yields subop-
timal results. On the other hand, systematically minimizing
a measure of distance between the true density and its
approximation by calculating appropriate density parameters
generally is a tough optimization task. Numerical algorithms
such as the Expectation–Maximation (EM) algorithm [8]
or gradient based schemes suffer from the local minima
problem, i.e., their results strongly depend upon the ini-
tialization. In addition, convergence may be slow. In the
context of density estimation, a deterministic annealing EM
algorithm has been proposed to overcome these problems
[11]. Beginning with an unimodal objective function at a high
temperature, the objective function gradually approaches the
original function as the temperature decreases. This method
increases the probability of converging to a global optimum.
Similar approaches based on moving from a tractable density
to the desired density via a sequence of intermediate densities
have been proposed in the context of particle filters, see chap-
ter 12 of [4] and [7]. An alternative approach to guarantee
convergence of the EM algorithm is based on modifying the
number of mixture components [12], [13].

In this paper, a new estimator is introduced, which mini-
mizes the squared integral deviation between the true density
and its Gaussian mixture approximation. It is based on a
general framework for estimator design presented in [6].
In order to minimize the given distance measure,both
parametric and structuraladaptations of the approximation
density are performed. For that purpose, a parameterized
true density is introduced, which starts from a tractable
density andcontinuouslyapproaches the exact density to be
approximated. Based on this type of progressive processing,
the original optimization problem is converted into a corre-
sponding system of explicit ordinary first–order differential
equations. The desired optimal density parameters are then



calculated by solving the differential equations over a finite
“time” interval. Structural adaptation of the approximation
density is performed during the progression in order to
modify the local approximation capabilities of the mixture
approximation by changing the number of components.

The paper is organized as follows. The next section gives a
formulation of the estimation problem. The set of differential
equations for parametric adaptation is derived in Section III.
Structural adaptation is discussed in Section IV.

II. PROBLEM FORMULATION

A discrete–time dynamic system is considered, where
scalar measurementŝzk at time tk = k Ts are related to
the statexk via themeasurement equation

ẑk = hk(xk) + vk .

vk is additive Gaussian noise with density

fv
k (v) =

1√
2 πσv

k

exp
{
−1

2
v2

k

(σv
k)2

}
.

In the context of this paper we focus on two–dimensional
statesxk = [x y]T ∈ IR2 without loss of generality to keep
the notation at an acceptable complexity.

Estimators will first be derived for general measurement
nonlinearitieshk(xk). In III-B.2, simplified estimators will
then be derived for the special case of a sum of separable
functions of the form

hk(xk) = hx,1
k (x) hy,1

k (y) + hx,2
k (x)hy,2

k (y) + . . .

Given a predicted densityfp
k (xk), a new measurement is

included by means of thefilter stepor measurement update
according to Bayes’ law [10]

f̃e
k(xk) = ck fp

k (xk) f̃L
k (xk) ,

wheref̃L
k (xk) is the so–calledlikelihood andck is a normal-

ization constant. Exact densities are denoted by a tilde, e.g.
f̃k. For the case of additive measurement noise considered
here, the exact likelihood is given by

f̃L
k (xk) = fv

k (ẑk − hk(xk)) . (1)

The goal is to approximate the exact densityf̃e
k(xk) by

means of a Gaussian mixture density. We assume separable
approximation densities

fe
k(xk, η

k
) =

Le
k∑

i=1

w
(e,i)
k f

(e,i)
k (xk, η(i)

k
)

=
Le
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w
(e,i)
k N

(
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(e,i)
k , ρ

(e,i)
k

)
N
(
yk − ŷ

(e,i)
k , σ

(e,i)
k

)
for that purpose, whereLe

k is the number of components.
N (x−m,σ) denotes a Gaussian density with meanm and
standard deviationσ. w

(e,i)
k are weighting coefficients with

w
(e,i)
k > 0 and

∑Le
k

i=1 w
(e,i)
k = 1.

For a compact description of the approximation density,
we introduce a parameter vector

η
k

=
[(

η
(1)
k

)T (
η
(2)
k

)T

· · ·
(
η
(L)
k

)T
]T

with

η(i)
k

=
[
w

(e,i)
k x̂

(e,i)
k ρ

(e,i)
k ŷ

(e,i)
k σ

(e,i)
k

]T
.

An optimal parameter vector is desired, that minimizes the
squared integral distance

Gk(η
k
) =

1
2

∫
IR2

(
f̃e

k(xk)− fe
k(xk, η

k
)
)2

dxk (2)

between the exact density and its approximation. Hence, the
estimation problem is reduced to an optimization problem,
which consists of calculating the smallest set of parameters
collected in a parameter vectorηopt

k
for which the distance

measure attains its minimum and is below a pre–specified
thresholdGmax

k , i.e., Gk(ηopt
k

) < Gmax
k .

The main difficulty in calculating the optimal vectorηopt
k

is the existence of local minima. Hence, application of
numerical minimization routines generally does not yield the
desired optimal parameter vector. In addition, the run time of
numerical minimization routines depends upon the specific
problem and, in general, is not known a priori.

The following two sections are concerned with a new
method for calculating the desired parameter vectorηopt

k
,

that does not rely on numerical search and optimization
techniques. For the sake of simplicity, the time indexk will
be omitted in the corresponding derivations.

III. PARAMETRIC ADAPTATION

The key idea of the new approach is to perform progressive
processing. Hence, instead of directly approximating the true
density, we start with a tractable density that continuously
approaches the true density via intermediate densities. This
is achieved by parameterizing the exact likelihood. For that
purpose, a progression parameterγ is introduced, which
varies between zero and one. Forγ = 0, the parameterized
likelihood f̃L(x, γ = 0) is initialized with some kind of
density, that is simple to approximate. Forγ = 1, the
parameterized likelihoodf̃L(x, γ = 1) attains the exact
likelihood f̃L(x).

A convenient type of progression schedule is obtained by
starting with large measurement noise, which is continuously
reduced until the desired standard deviationσv is obtained.
For that purpose, we define a parameterized noise density
fv(v, γ) with a standard deviation according to

σ̄v(γ) =
1 + ε

γ + ε
σv =

{
large forγ = 0
σv for γ = 1

,

whereε is a small constant andγ ∈ [0, 1].
Since Gaussian mixture densities can easily be normalized,

the following derivations will be conducted for an unnormal-
ized likelihood

f̃L(x, γ) = exp
{
−1

2
(ẑ − h(x))2

(σ̄v(γ))2

}



and an unnormalized true posterior

f̃e(x, γ) = fp(x) f̃L(x, γ) . (3)

The distance measure between the parameterized exact den-
sity f̃e(x, γ) and its approximationfe(x, η) now depends on
γ

G(η, γ) =
1
2

∫
IR2

(
f̃e(x, γ)− fe(x, η)

)2

dx .

We assume a nominal parameter vectorη̄ to be given and
consider only small deviations∆η(γ) according toη(γ) =
η̄ + ∆η(γ). Around the nominal parameter vectorη̄, the ap-
proximation density is replaced by a Taylor series expansion
up to first order

fe(x, η) ≈ fe(x, η̄) + FT (x, η̄) ∆η(γ)

with

F (x, η̄) =
∂ fe(x, η)

∂ η

∣∣∣∣
η=η̄

. (4)

The distance measureG(η, γ) can now be rewritten accord-
ingly

G(η, γ) ≈ 1
2

∫
IR2

(
f̃e(x, γ)− fe(x, η̄)

−FT (x, η̄) (η − η̄)
)2

dx .

Taking the partial derivative of the distance measureG(η, γ)
with respect to the parameter vectorη and setting the result

to zero, i.e.,∂ G/∂ η
!= 0, gives∫

IR2

(
f̃e(x, γ)− fe(x, η̄) + FT (x, η̄) η̄

)
F (x, η̄) dx

=
(∫

IR2
F (x, η̄) FT (x, η̄) dx

)
η(γ) .

The partial derivative with respect toγ gives the desired
system of explicit ordinary first–order differential equations∫

IR2

∂ f̃e(x, γ)
∂ γ

F (x, η̄) dx

=
(∫

IR2
F (x, η̄) FT (x, η̄) dx

)
∂ η

∂ γ
,

which upon replacinḡη by η can be written as

b(η, γ) = P(η) η̇

with

b(η, γ) =
∫

IR2

∂ f̃e(x, γ)
∂ γ

F (x, η) dx (5)

P(η) =
∫

IR2
F (x, η) FT (x, η) dx ,

and η̇ = ∂ η/∂ γ. We will now derive analytic expressions
for b(η, γ) andP(η).

A. Analytic Expression forP(η)
P(η) is composed of(Le)2 five–by–five block matrices

according to

P(η) =
∫

IR2
F (x, η)FT (x, η) dx

=


P(1,1) P(1,2) · · · P(1,Le)

P(2,1) P(2,2) · · · P(2,Le)

...
...

...
P(Le,1) P(Le,2) · · · P(Le,Le)

 .

The individual block matricesP(i,j) for i = 1, . . . , Le and
j = 1, . . . , Le with

P (i,j)
n,m =

∫
IR2

∂ fi(x, η
i
)

∂ η
i,n

∂ fj(x, η
j
)

∂ η
j,m

dx

andη
i,1

= we
i , η

i,2
= x̂e

i , η
i,3

= ρe
i , η

i,2
= ŷe

i , η
i,3

= σe
i for

n = 1, . . . , 5 andm = 1, . . . , 5 can be obtained analytically
according to the expression in Figure 1 with

Ri,j
n,m = P i,j

n,m(wi, wj , xi, xj , ri, rj) ,

Si,j
n,m = P i,j

n,m(wi, wj , yi, yj , si, sj) ,

andwi = we
i , wj = we

j , xi = x̂e
i , xj = x̂e

j , ri = ρe
i , rj = ρe

j ,
yi = ŷe

i , yj = ŷe
j , si = σe

i , sj = σe
j . The corresponding

elements are given in Figure 2.

B. Simplified Expressions forb(η, γ)
b(η, γ) from (5) can be decomposed into subvectors ac-

cording to

b(η, γ) =
[
bT
1 (η, γ) bT

2 (η, γ) · · · bT
L(η, γ)

]T
,

where a subvectorbi(η, γ) is obtained with (3) and (4) as

bi(η, γ) =
∫

IR2
fp(x)

∂ f̃L(x, γ)
∂ γ

∂ fe(x, η)
∂ η

i

dx .

For two–dimensional statesxk ∈ IR2 we have

∂ fe(x, η)
∂ η

i

= fe
i

(
x, η

i

)
Θx

i (x)�Θy
i (y)

with

Θx
i (x) =



1√
we

i

x−x̂e
i

(ρe
i )

2

1
(x−x̂e

i )2−(ρe
i )2

(ρe
i )

3

1


, Θy

i (y) =



1√
we

i

1
y−ŷe

i

(σe
i )

2

1
(y−ŷe

i )2−(σe
i )2

(σe
i )

3


,

where� denotes the element–by–element product, and

∂ f̃L(x, γ)
∂ γ

= cL (ẑ − h(x))2 f̃L(x, γ)

with

cL = − (ε + γ)
(1 + ε)2(σv)2

.



P(i,j) =
1√

2 π (r2
i + r2

j )
exp

(
−1

2
(xi − xj)2

r2
i + r2

j

)
1√

2 π (s2
i + s2

j )
exp

(
−1

2
(yi − yj)2

s2
i + s2

j

)
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
1 Ri,j

1,2 Ri,j
1,3

Ri,j
2,1 Ri,j

2,2 Ri,j
2,3

Ri,j
3,1 Ri,j

3,2 Ri,j
3,3




1

Ri,j
2,1

Ri,j
3,1

 · [Si,j
1,2 Si,j

1,3

]




1

Ri,j
2,1

Ri,j
3,1

 · [Si,j
1,2 Si,j

1,3

]
T [

Si,j
2,2 Si,j

2,3

Si,j
3,2 Si,j

3,3

]


Fig. 1. The matricesP(i,j) for i = 1, . . . , Le andj = 1, . . . , Le.

P i,j
1,2(wi, wj , xi, xj , ri, rj) = wj

xi − xj

r2
i + r2

j

,

P i,j
1,3(wi, wj , xi, xj , ri, rj) = wj rj

(xi − xj)2 − (r2
i + r2

j )
(r2

i + r2
j )2

,

P i,j
2,1(wi, wj , xi, xj , ri, rj) = wi

xj − xi

r2
i + r2

j

,

P i,j
2,2(wi, wj , xi, xj , ri, rj) = wi wj

r2
i + r2

j − (xi − xj)2

(r2
i + r2

j )2
,

P i,j
2,3(wi, wj , xi, xj , ri, rj) = wi wj rj

(xj − xi)((xi − xj)2 − 3(r2
i + r2

j ))
(r2

i + r2
j )3

,

P i,j
3,1(wi, wj , xi, xj , ri, rj) = wi ri

(xi − xj)2 − (r2
i + r2

j )
(r2

i + r2
j )2

,

P i,j
3,2(wi, wj , xi, xj , ri, rj) = wi wj ri

(xi − xj)((xi − xj)2 − 3(r2
i + r2

j ))
(r2

i + r2
j )3

,

P i,j
3,3(wi, wj , xi, xj , ri, rj) = wi wj ri rj

(xi − xj)4 + 3(r2
i + r2

j )(r2
i + r2

j − 2(xi − xj)2)
(r2

i + r2
j )4

.

Fig. 2. The elements of the matricesP(i,j) for i = 1, . . . , Le andj = 1, . . . , Le.

Hence, we obtain

bi(η, γ) = cL

∫
IR2

fp(x) (ẑ − h(x))2 f̃L(x, γ)

fe
i

(
x, η

i

)
Θx

i (x)�Θy
i (y) dx .

An alternative to numerical integration for solving this type
of integrals is given in [9].

1) First Simplification: True Density Replaced̃fe(x) by its
Approximationfe(x, η): For simplifying the expression, we
assume that our current approximationfe(x, η) of the true
posterior densitỹfe(x) is good enough for replacing̃fe(x) =
fp(x) f̃L(x, γ). The resulting expressionfe(x, η) fe

i

(
x, η

i

)
is converted to a Gaussian mixture given as a sum of

separable components

fs
i (x) =

Le∑
j=1

fs,x
i (x) fs,y

i (y)

=
Le∑
j=1

ws
i,j N (x− x̂s

i , ρ
s
i ) N (y − ŷs

i , σ
s
i ) ,

with weighting coefficientsws
i,j , mean vectorsx̂s

i,j , and
covariance matricesCs

i,j .
Finally, we obtain

bi(η, γ) = cL

∫
IR2

(ẑ − h(x))2fs,x
i (x) fs,y

i (y)

Θx
i (x)�Θy

i (y) dx .



2) Second Simplification: Separable Measurement Func-
tions: In addition to approximation densities given by a sum
of separable densities, we now assume that the measurement
functions are also sums of separable functions of the form

h(x) = hx,1(x) hy,1(y) + hx,2(x) hy,2(y) + . . . ,

where considering only one term according to

h(x) = hx(x)hy(y)

is sufficient for the following derivations. Hence,bi(η, γ) can
be rewritten as

bi(η, γ) = cL

∫
IR2

(ẑ − hx(x) hy(y))2

fs,x
i (x) fs,y

i (y) Θx
i (x)�Θy

i (y) dx ,

which gives

bi(η, γ) = cLẑ2

∫
IR

fs,x
i (x) Θx

i (x) dx

�
∫

IR

fs,y
i (y) Θy

i (y) dy

−2cLẑ

∫
IR

hx(x) fs,x
i (x)Θx

i (x) dx

�
∫

IR

hy(y) fs,y
i (y) Θy

i (y) dy

+cL

∫
IR

(hx(x))2 fs,x
i (x) Θx

i (x) dx

�
∫

IR

(hy(y))2 fs,y
i (y) Θy

i (y) dy .

Analytic solutions for these integrals are available for a wide
variety of interesting measurement nonlinearitieshx(x) and
hy(y). The corresponding formulae for polynomial measure-
ment nonlinearities are given in [5].

IV. STRUCTURAL ADAPTATION

During the progression fromγ = 0 to γ = 1, a continuous
validation of the deviation between the true density and its
approximation is performed. For that purpose anormalized
distance measure

GN (η, γ) =

∫
IR2

(
f̃e(x, γ)− fe(x, η)

)2

dx∫
IR2

(
f̃e(x, γ)

)2

dx +
∫

IR2

(
fe(x, η)

)2
dx

is used instead of the unnormalized distance measure in (2).
The normalized distance measure is more appropriate for
specifying deviation tolerances as it ranges between0 and1.
A perfect match is indicated byGN (η, γ) = 0, the maximum
deviation between the true density and its approximation is
indicated byGN (η, γ) = 1.

As long asGN (η, γ) is within a prespecified tolerance
band, i.e.,GL

N < GN (η, γ) < GU
N , the progression is

continued. Once the normalized distance measure is larger
than a pre–specified threshold, i.e.,GN (η, γ) > GN,max, the
most critical mixture component responsible for the deviation

is identified by evaluatingLe individual distance measures
according to

Gi(η, γ) =
∫

IR2

(
f̃e(x, γ)− fe(x, η)

)2

fe
i

(
x, η

i

)
dx

for i = 1, . . . , Le. The most critical component is then
replaced in each dimension by a mixture of two components
according to

w exp
{
−1

2
(x−m)2

σ2

}
!
≈ w1 exp

{
−1

2
(x−m1)2

σ2
1

}
+ w2 exp

{
−1

2
(x−m2)2

σ2
2

}
.

In order to minimize the deviation of the mixture from the
original component, the parameters are selected as

w1 = w2 =
w

2
,

m1 = m− ε , m2 = m + ε ,

σ1 = σ2 = σ ,

(6)

whereε is a “small” constant.
An alternative replacement method based on a precalcu-

lated library of Gaussian mixtures is described in [5].
When the number of mixture components becomes too

large, i.e., the normalized distance measure is smaller than
the prespecified threshold according toGN (η, γ) < GL

N ,
merging of mixture components is performed. For that pur-
pose, two Gaussian densities in one dimension are merged
into a single one according to

w1 exp
{
−1

2
(x−m1)2

σ2
1

}
+ w2 exp

{
−1

2
(x−m2)2

σ2
2

}
!
≈

w

{
−1

2
(x−m)2

σ2

}
with

w = w1 + w2 ,

m =
w1 m1 + w2 m2

w1 + w2
,

σ =
w1 σ1 + w2 σ2

w1 + w2
.

when the corresponding parameters are close.
In addition, components are removed from the mixture

once the corresponding weight becomes less than or equal
to zero.

The block diagram of the progressive Bayesian estimator
including the parametric adaptation discussed in Section III
and the structural adaptation discussed in this section is
shown in Figure 3.
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=
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Fig. 3. Block diagram of the progressive Bayesian estimator including the parametric adaptation discussed in Section III and the structural modification
discussed in Section IV.

V. CONCLUSIONS

A new type of stochastic state estimator for performing
the filter step for nonlinear dynamic systems in the case
of scalar measurements and multidimensional continuous–
valued states has been introduced, which is based on a gen-
eral framework for progressive Bayesian estimators given in
[6]. Without loss of generality, the case of two–dimensional
states has been assumed during the derivations. Generaliza-
tion to states of arbitrary dimensions is straightforward.

The key aspect of the proposed new class of estimators
is a new approach for obtaining optimal parameters of a
Gaussian mixture approximation, that minimize the squared
integral deviation from the true posterior density. Instead
of applying numerical search and optimization techniques,
which may suffer from local minima, bad convergence, and
unpredictable run time, the problem isexactlyconverted to a
system of explicit ordinary first–order differential equations.
The desired optimal density parameters are then calculated
by solving the ordinary differential equations over a finite
time interval.

For deriving concrete estimator equations, approximation
densities with separable kernels have been assumed. It has
been shown, that if the measurement nonlinearities are also
separable, the required multidimensional integrals can be
reduced to the product of one–dimensional integrals. For
the special case of polynomial measurement nonlinearities,
closed–form analytic expressions have been derived for the
coefficients of the system of explicit ordinary first–order
differential equations in [5].

An additional advantage of the new estimation framework
is the simplicity of altering the local approximation capa-
bilities of the mixture density by structural adaptations, i.e.,
by modifying the number of mixture components, during the
progression.

The resulting estimators provide an analytic representation
of the state densities and fill the gap between simple linear
estimators and complex numerical approaches like particle
filters [2] or grid–based estimators [3]. They are simple to
implement and provide a tradeoff between accuracy and com-
putational complexity, since the estimator performance can
be adjusted by specifying the maximum tolerable deviation
between the true density and its approximation.
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