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Abstract— In state estimation theory, two directions are
mainly followed in order to model disturbances and errors.
Either uncertainties are modeled as stochastic quantities or
they are characterized by their membership to a set. Both
approaches have distinct advantages and disadvantages making
each one inherently better suited to model different sources of
estimation uncertainty. This paper is dedicated to the task of
combining stochastic and set-membership estimation methods.
A Kalman gain is derived that minimizes the mean squared
error in the presence of both stochastic and additional unknown
but bounded uncertainties, which are represented by Gaussian
random variables and ellipsoidal sets, respectively. As a result,
a generalization of the well-known Kalman filtering scheme
is attained that reduces to the standard Kalman filter in
the absence of set-membership uncertainty and that otherwise
becomes the intersection of sets in case of vanishing stochastic
uncertainty. The proposed concept also allows to prioritize
either the minimization of the stochastic uncertainty or the
minimization of the set-membership uncertainty.

I. INTRODUCTION
In general, neither an exact model of the system evolution

nor the precise properties of the measurement devices can
be identified. Also, external influences cannot be taken
into account in their entirety. A central challenge in state
estimation theory therefore consists in defining appropriate
models of uncertainty. Employing uncertainty models can
significantly contribute to ensuring robustness and reliability
in decision and control applications, but for this purpose, it is
necessary to propagate and update uncertainty descriptions
throughout the entire state estimation process. Essentially,
two different directions have been pursued in estimation
theory: Bayesian and set-membership uncertainty models.

Within the Bayesian framework, the Kalman filter [1] is
the most well-known example as it embodies an optimal
Bayesian solution to the state estimation problem when
system dynamics and observation models are linear and
perturbations are normally distributed. The estimate and the
corresponding mean squared error (MSE) matrix are then
directly related to the mean and covariance matrix of a
Gaussian random variable. Both parameters can be calculated
in closed form. The Kalman filtering scheme is also well-
accepted for nonlinear estimation problems. Although non-
linear Bayesian estimation generally requires approximate
solutions in order to propagate and update the non-Gaussian
conditional probability densities, the Kalman filter still pro-
vides a minimum MSE solution if the first two moments of
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the state and error distributions are known. It is a best linear
unbiased estimator (BLUE). In order to compute the first-
and second-order statistics at least approximately, nonlinear
system and observation models are usually linearized either
by a Taylor series expansion, as it is done within the extended
Kalman filter, or by a linear regression analysis, for which the
unscented Kalman filter [2] is a candidate. Stochastic error
characteristics are beneficial to model potentially unbounded
disturbances, such as outliers.

Except for a bounding set, set-membership state estimators
do not require the definition of a certain error character-
istic or a distribution, i.e., no knowledge about the error
behavior within the bounds is needed. A set-membership
error description can be employed for uncertainties that are
difficult to identify in terms of a probability distribution
or that even do not reveal a probabilistic nature. Common
implementations of set-membership estimation algorithms
employ interval-based bounds [3] or ellipsoidal sets [4]–
[7]. Both representations enable efficient computation of,
for instance, linear transformations, Minkowski sums, and
intersections. Estimation results constitute sets, which the
actual system state is considered to certainly belong to.
Filtering then involves the computation of the set of all
possible values of the system state that are consistent with
the sensor data, i.e., the computation of intersections. Set-
membership estimators therefore often encounter difficulties
in treating outliers that may even lead to non-intersecting
sets.

A simultaneous consideration of stochastic and set-
membership uncertainties may allow to flexibly model dif-
ferent sources of estimation uncertainty, to profit from the
individual advantages, and to increase the reliability of the
estimation results. Research towards combined stochastic and
set-membership estimation has been conducted into different
directions, which range from generalizations of classical
probability theory that clearly distinguish between stochastic
and set-membership uncertainties to concepts that subsume
both types of uncertainty under an alternative description,
such as constraints. Sec. II provides a brief overview of these
concepts.

A linear estimator for a simultaneous treatment of both
types of uncertainty is derived in this paper by minimiz-
ing the mean squared error of the filtered estimate. Set-
membership uncertainties essentially affect the mean of the
estimate and prevent it from being unbiased. Therefore, the
mean squared error yields the sum of the variances and the
squared bias. By employing ellipsoidal error bounds, the
mean squared error can simply be expressed in terms of



the traces of the covariance matrix and the shape matrix
of the ellipsoid. Sec. III briefly reviews the principles of
ellipsoidal calculus. Sec. IV is dedicated to the derivation of
an optimal Kalman gain in the presence of stochastic and
unknown but bounded uncertainties. In Sec. V, an additional
weighting parameter is introduced that allows to prioritize the
minimization of the stochastic uncertainty or, alternatively,
of the set-membership uncertainty. The presented approach
is evaluated in Sec. VI and an outlook to prospective work
is provided in Sec. VIII.

II. STATE OF THE ART

Several approaches have been proposed in order to make a
simultaneous consideration of stochastic and set-membership
uncertainties possible. For instance, the standard Kalman
filter algorithm can be generalized to a set-valued filter that
processes ellipsoids of estimated means. This concept has
been introduced in [8], where the mean of the prior Gaussian
density is unknown, but bounded by an ellipsoid. The ellip-
soid is then predicted and updated by the standard Kalman
filter formulas. In [9], this filter has been further developed
in order to also incorporate set-membership disturbances
affecting control inputs and measurements. Each uncertain
quantity is characterized by a set of probability densities,
which, more precisely, is a set of translated versions of
a Gaussian density. The set-valued Kalman filter directly
corresponds to the elementwise application of the Chapman-
Kolmogorov integral and of Bayes’ theorem to the sets of
densities for prediction and filtering, respectively. Also, it
is strongly related to Kalman filtering approaches based on
coherent lower and upper previsions [10], which also corre-
spond to convex sets of probability densities. As discussed
in Sec. V, the concept proposed in this paper includes the
set-valued Kalman filter as a special case.

Instead of employing sets of densities, an uncertain quan-
tity can also be characterized by a random set, as it is done
in [11]. Two random set observations become deterministic
sets when they are conditioned specific outcomes of the
underlying random parameter. This implies that the fusion of
two random sets yields a random set that encloses all random
intersections that are possible outcomes. The challenge is to
compute and parameterize the resulting random sets, which
may often require rough approximations. Bayesian and set-
membership estimators are special cases of this approach.

In [12], a linear estimator is derived that simultaneously
minimizes the stochastic and set-membership uncertainty.
The filter gain is therefore optimized by solving a linear
matrix inequality problem.

Other approaches utilize alternative models of uncertain-
ties, such as constraint-based descriptions [13], [14]. Irre-
spective of their actual nature, uncertainties can then be sub-
sumed under the considered model. In some cases, such as
quantized measurements, it is possible to stay in the Bayesian
framework [15]. The state estimate is then conditioned on
the entire set of possible measurements, which results in a
nonlinear estimation problem even if all models are linear
and the stochastic disturbances are Gaussian.

In this work, we derive a linear estimator that minimizes
the mean squared error in the presence of both stochastic and
set-membership disturbances. The optimization of the filter
gain is analogous to the derivation of the standard Kalman
gain.

III. ELLIPSOIDAL CALCULUS IN A NUTSHELL

In order to represent and bound set-membership uncertain-
ties, ellipsoidal sets

E(ĉ,X) =
{
x | (ĉ− x)TX−1(ĉ− x) ≤ 1

}
(1)

are employed, which are each parameterized by a midpoint
ĉ ∈ Rn and a symmetric nonnegative definite shape matrix
X ∈ Rn×n. Affine transformations can easily be computed
by means of the corresponding transformations of the pa-
rameters, i.e.,

AE(ĉ,X) + b = E(A ĉ+ b,AXAT) . (2)

The elementwise sum of two ellipsoids, i.e., the Minkowski
sum, does not yield an ellipsoid anymore, but an outer
approximation

E(ĉ1,X1)⊕ E(ĉ2,X2) ⊆ E(ĉ1 + ĉ2,X(p)) , (3)

with

X(p) = (1 + p−1)X1 + (1 + p)X2 (4)

can be computed. The inclusion (3) holds for every p > 0.
The trace of X(p) corresponds to the sum of squares of the
semixaxes and can be minimized by choosing

p = trace(X1)
1
2 · trace(X2)−

1
2 . (5)

In general, outer approximations require p to be determined
numerically. For any element e of (1), the Euclidean distance
to the midpoint is related to the trace of X via

‖ĉ− e‖2 = trace
(
(ĉ− e)2

)
≤ trace(X) , (6)

where we employ the notation (x)2 = (x) · (x)T ∈ Rn×n

for x ∈ Rn throughout this paper.

IV. KALMAN GAINS FOR STOCHASTIC AND
SET-MEMBERSHIP UNCERTAINTIES

For a simultaneous consideration and treatment of stochas-
tic and set-membership uncertainty, a linear discrete-time
estimator is derived in this section that minimizes the mean
squared error (MSE) of the estimate. Both types of uncer-
tainty additively affect control inputs and measurements and
are assumed to be independent of each other. x̂ek denotes
the estimate of the state conditioned on all measurements up
to the current discrete time instant k. The standard Kalman
filter provides an estimate that is related to the true state xk

by

x̂ek = xk + ∆stoc
k ,

where ∆stoc
k ∼ N (0,Ce

k) denotes the stochastic error on the
state estimate and xk is the true state. In this case, E[x̂ek] =
E[xk] holds. But, the additional presence of an additive



unknown but bounded disturbance causes the estimator to
possibly be biased, i.e., E[x̂e] 6= E[x] and

x̂ek = xk + ∆stoc
k + ∆set

k .

For such a biased estimator, the MSE matrix then yields

E
[
(x̂ek − xk)2

]
= E

[
(∆stoc

k )2
]

+
(
∆set

k

)2
, (7)

where Ce
k = E

[
(∆stoc

k )2
]

is the covariance matrix and the
unknown but bounded uncertainty ∆set

k is characterized by
its membership to the ellipsoid E(0,Xe

k). The MSE is related
to the traces of the matrices by

E
[
‖x̂ek − xk‖2

]
= E

[
‖∆stoc

k ‖2
]︸ ︷︷ ︸

= trace(Ce)

+
∥∥∆set

k

∥∥2︸ ︷︷ ︸
≤ trace(Xe)

, (8)

which is the quantity to be minimized by the estimator.
The inequality

∥∥∆set
k

∥∥2 ≤ trace(Xe) justifies the use of
ellipsoidal error bounds, since the Euclidean length of the
error is directly bounded by the sum of the squared lengths
of the semiaxes, i.e., the trace of Xe

k. Hence, the trace of the
covariance matrix characterizes the mean squared error of
the stochastic term and the trace of the shape matrix bounds
the maximum squared error of the set-membership term.

Of course, in several cases, non-stochastic and systematic
errors affecting the state estimate can be estimated and
canceled out, e.g., by following the direction of [16] and sub-
sequent approaches. However, by contenting ourselves with
error bounds, we bypass the need to specify a certain error
characteristic, such as constancy. For instance, the unknown
but bounded error term can even be a second stochastic
disturbance with a compactly supported probability density
and therefore, may not behave systematically.

Before we derive the Kalman gains for the considered
situation, we extend the notion of unbiasedness to set-
membership uncertainties in the following subsection.

A. On the Unbiased Condition

Set-membership perturbations may directly affect the
mean of a linear estimator, according to

E
[
K′x̂e1 + Kx̂e2

]
= K′(E[x] + ∆set

1 ) + K(E[x] + ∆set
2 )

= (K′ + K) E[x] + K′∆set
1 + K∆set

2 ,

where K′ and K are the gains that are used to fuse the two
estimates x̂e1 and x̂e2. For known deviations ∆set

1 and ∆set
2 , the

gains can be determined to eliminate the bias and to minimize
(8), i.e., (K′ + K) E[x] = E[x] −K′∆set

1 −K∆set
2 . Since

the deviations are unknown and are bounded by ellipsoids
centered at the origin, even −∆set

1 and −∆set
2 are possible.

The mean then yields

E
[
K′x̂e1 + Kx̂e2

]
= (K′ + K) E[x]− 2K′∆set

1 − 2K∆set
2 ,

which could significantly increase the actual MSE. There-
fore, K′ = I − K minimizes the risk of a high error. A
second argument is that the set-membership also includes
zero-mean stochastic perturbations, for which we expect an
unbiased estimation result.

B. Filtering

In the filtering step, a prior or predicted state estimate x̂pk
with the error covariance matrix Cp

k and the ellipsoidal error
matrix Xp

k is fused with observation data ẑk that are linearly
related to the system state via

ẑk = Hk xk + vk + ek ,

where vk ∼ N (0,Cz
k) is an additive zero-mean white noise

with covariance matrix Cz
k and ek denotes an unknown but

bounded error enclosed by the ellipsoid E(0,Xz
k). W.l.o.g.,

the set-membership error is assumed to be centered at 0.
Otherwise, we consider a shifted version ẑ′k = ẑk − ĉk of
the measurement, when ek ∈ E(ĉk,X

z
k). Furthermore, the

stochastic perturbation vk is independent of the outcome
of ek.

Based upon the measurement data and system dynamics up
to a time instance k, we are looking for the Kalman gain Kk

that combines the prior state estimate with the measurement
information according to

x̂ek = (I−KkHk)x̂pk + Kkẑk = x̂pk + Kk

(
ẑk −Hk x̂

p
k

)
,

and concurrently minimizes the trace of (7), i.e. eq. (8). As
discussed in Subsec. IV-A, we require the estimator to be
unbiased. With ∆p

k = ∆stoc
k +∆set

k denoting the errors within
the prior estimate x̂pk, the MSE matrix yields

E
[
(x̂ek − xk)2

]
= E

[(
x̂pk + Kk(ẑk −Hkx̂

p
k)− xk

)2]
= E

[(
∆p

k + Kk(Hkxk + vk + ek −Hkx̂
p
k))2

]
= E

[(
(I−KkHk)∆p

k + Kk(vk + ek))2
]

= (I−KkHk) E[(∆stoc
k )2](I−KkHk)T+ Kk E[(vk)2]KT

k

+ E
[(

(I−KkHk)∆set
k + Kkek)2

]
= (I−KkHk)Cp

k(I−KkHk)T+ KkCz
kKT

k

+
(
(I−KkHk)∆set

k + Kkek
)2
.

(9)
Due to the set-membership of ∆set

k and ek, the latter sum
can be considered as a Minkowki sum, i.e.,

(I−KkHk)∆set
k + Kkek

∈ (I−KkHk)E(0,Xp
k)⊕KkE(0,Xz

k)

(2)
= E(0, (I−KkHk)Xp

k(I−KkHk)T)

⊕ E(0,KkXz
kKT

k )

(3)
⊂ E(0,Xe

k(p)) ,
where

Xe
k(p) = (1 + p−1)(I−KkHk)Xp

k(I−KkHk)T

+ (1 + p)KkXz
kKT

k

(10)

denotes the shape matrix of the bounding ellipsoid, according
to (4). For this matrix, we have

trace
((

(I−KkHk)∆set
k + Kkek

)2) ≤ trace
(
Xe

k(p)
)



(a) Ellipsoids with the same
midpoint. The optimal and the
centered approximation of the
intersection are identical.

(b) Ellipsoids with different mid-
points. An optimal approximation
of the intersection is much smaller
than the centered approximation.

Fig. 1: Centered (green) and uncentered (red) ellipsoidal
approximations of intersections. Fusing the blue ellipsoids
with the gain (13) yields the green ellipsoids.

for all p > 0, due to the inequality (6). In view of (8) and
(9), the actual MSE can be bounded from above by

E
[
‖x̂ek − xk‖2

]
= trace

(
E
[
(x̂ek − xk)2

])
= trace

(
Ce

k

)
+ trace

((
(I−KkHk)∆set

k + Kkek
)2)

≤ trace
(
Ce

k

)
+ trace

(
Xe

k(p)
)

= trace
(
(I−KkHk)Cp

k(I−KkHk)T
)
+ trace

(
KkCz

kKT
k

)
+ (1 + p−1) trace

(
(I−KkHk)Xp

k(I−KkHk)T
)

+ (1 + p) trace
(
KkXz

kKT
k

)
.

(11)

Analogously to the derivation of the standard Kalman gain
and by utilizing the derivative rules for the trace, i.e.,

∂

∂Kk
trace

(
AKk

)
=

∂

∂Kk
trace

(
KkA

)
= AT and

∂

∂Kk
trace

(
KkAKk

)
= Kk(A + AT) ,

the optimal gain yields

Kk(p) =
(

(1 + p−1)Xp
kHT

k + Cp
kHT

k

)
·(

(1 + p−1)HkXp
kHT

k + (1 + p)Xz
k + HkCp

kHT + Cz
k

)−1
(12)

for an arbitrary but fixed p > 0. Unfortunately, a convex
optimization is needed to find that value p which minimizes
(11). The need for such an optimization is a usual issue of
ellipsoidal approximations of, inter alia, Minkowski sums or
intersections. With Kk = Kk(popt), the updated covariance
matrix is computed by

Ce
k = (I−KkHk)Cp

k(I−KkHk)T + KkCz
kKT

k

and the shape matrix Xe
k(popt) of the bounding ellipsoid

by means of (10). The following subsection considers two
important special cases of this estimator.

C. Special Cases

The proposed combined estimator reduces to well-known
estimation principles in special cases, namely, in the situa-
tion of vanishing set-membership or, respectively, vanishing
stochastic uncertainty. The
Kalman Filter appears in its standard formulation, if Xp

k =

Xz
k = 0. The gain simply becomes

Kk = Cp
kHT

k

(
HkCp

kHT + Cz
k

)−1
.

This result is expected, since we have strictly followed and
generalized the derivation of the standard Kalman gain. More
surprising is the special case of a
Centered Intersection, if Cp

k = Cz
k = 0. The gain (12) then

reduces to

Kk = (1 + p−1)Xp
kHT

k ·(
(1 + p−1)HkXp

kHT
k + (1 + p)Xz

k

)−1
. (13)

With this gain, the formula (10) for the shape matrix of the
bounding ellipsoid can be simplified to

Xe
k(ω) =

(
(1− ω)(Xp

k)−1 + ωHT
k (Xz

k)−1Hk

)−1
with ω = 1

1+p ∈ [0, 1]. By letting Hk = I in order
to simplify matters, this matrix characterizes the centered
intersection

E(0,Xp
k) ∩ E(0,Xz

k) ⊂ E(0,Xe
k(ω)) ,

which is analogous to the results of covariance intersection
[17]. More precisely, the fused bounding ellipsoid bounds
the maximally possible intersection, as illustrated in Fig. 1 .

D. Prediction

Approaches such as [9] and [11] come to the same
conclusion with regard to the prediction. We consider linear
system dynamics

xk+1 = Akxk + Bk(û+ wk + dk) ,

where wk ∼ N (0,Cu
k) and dk ∈ E(0,Xu

k). Predicting the
estimate by means of this model gives

x̂pk+1 = Akx̂
e
k + Bkûk .

For this predicted estimate, the error matrices can be calcu-
lated by means of (7). The predicted covariance matrix then
yields

Cp
k+1 = E

[
(Ak∆stoc

k + Bkwk)2
]

= AkCe
kAT

k + BkCu
kBT

k .

The predicted set-membership error is bounded by the
Minkowski sum

Ak∆set
k + Bkdk ∈ AkE(0,Xe

k)⊕BkE(0,Xu
k)

⊂ E
(
0,Xp

k+1(p)
)

with

Xp
k+1(p) = (1 + p−1)AkXe

kAT
k + (1 + p)BkXu

kBT
k

and p > 0. In this case, p can analytically be determined to
minimize the trace of the error matrix Xp

k+1(p) by means
of (5).
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(a) Simulated measurements. The highest and lowest value after discretization
are drawn in purple.
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(b) Result of covariance-optimized filter where trace(Ce
k) is minimized,

i.e., S → ∞ or α = 0.
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(c) Result of set-optimized filter where trace(Xe
k) is minimized, i.e., S = 0

or α = 1.
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(d) Result of combined filter from Sec. IV, i.e., S = 1 or α = 0.5.

Fig. 2: Simulated measurements and filtering results.

V. GENERALIZATION

This section provides a generalization of the proposed
estimation concept in order to enable the user to decide
whether the stochastic or the set-membership uncertainty
shall primarily be minimized. The idea behind it rests upon
the fact that for the standard Kalman gain, the same result
is attained when instead of

trace
(
Ce

k

)
=trace

(
(I−KkHk)C

p
k(I−KkHk)

T+KkCz
kKT

k

)
a scaled version trace

(
S · Ce

k

)
with S ≥ 0 is considered,

which corresponds to a scaled covariance ellipsoid around
the current state estimate x̂ek. By striving for

Kk(p) = arg min
{

trace
(
S ·Ce

k

)
+ trace

(
Xe

k(p)
)}

(14)

instead of minimizing (11) in Sec. IV-B, the gain

Kk(p) =
((

1 +
1

p

)
Xp

kHT
k + SCp

kHT
k

)
·((

1+
1

p

)
HkXp

kHT
k + (1 + p)Xz

k + SHkCp
kHT + SCz

k

)−1
(15)

is obtained. Alternatively to (14), the problem can also be
formulated as a convex combination

Kk(p) = arg min
{

(1− α) trace
(
Ce

k

)
+ α trace

(
Xe

k(p)
)}

with α ∈ [0, 1].
For S = 0 or, respectively, α = 1, we obtain the formulas

of the centralized intersection. For S → ∞ or, respectively,
α = 0, the gain (15) becomes the standard Kalman gain. This
case corresponds to the set-valued Kalman filter derived in
[8] and [9]. It only considers the covariance matrices when
computing the gains.

VI. SIMULATIONS

For evaluation purposes, we simulate a dynamic sys-
tem that suffers from both stochastic and set-membership
errors. The system model has been generated from time-
discretization and linearization of a differential equation. It
features a three-dimensional state vector and the following
transition matrix depending on the time-step h = ∆t:

A =

 1 h h
−h 1 h
−0.51h −0.51h 1

 .

The differential equation is approximated better the
smaller h is chosen. The ground truth is generated by setting
h as low as 0.0001s, for the system model the value is chosen
identical to the time-interval between two subsequent batches
of measurements: every h = 0.1s ten fully-dimensional
samples ẑk = xk + v are generated, altered by the random
noise v ∼ N (0,Cz). A set-membership error is added by
discretization according to f(z) = 2

⌊
z
2

⌋
+ 0.25, dividing

the measurement space into [0.5)3-cubes and mapping each
value to its respective centroid. The trace-minimal ellipsoids
containing such cubes are centered in the centroid of the
cube and their shape is described by Xz = 3

16I.
For the stochastic and set-membership system noise matri-

ces Cu and Xu, reasonable matrices are chosen that provide
a consistent approximation for the true system noise for each
time-step. The covariance matrices are

Cu = diag([0.2, 0.15, 0.1]), Cz = diag([0.25, 0.5, 0.75])

and the shape matrices of the bounding ellipsoids are

Xu = 0.1I , Xz =
3

16
I .

The system has been simulated for 10 seconds with the
initial estimate

[
0 1 1

]T
and the estimation results of the

first component are shown in Fig. 2. The dashed black line
represents the ground truth in all plots. Measurements altered
by stochastic noise are depicted in Fig. 2a as tiny red crosses
and - to give an impression of the applied discretization - the
highest and the lowest discretized values of each time-step
are drawn in purple. While the state estimate is drawn in
dark blue, the whole cyan area represents the set-membership
uncertainty at each point of time. The red area is the 2-sigma
boundary added upon the outermost elements of the set.

Results are as to be expected: usage of the covariance-
minimal estimator results in relatively large set-membership
uncertainty, while the set-optimal filter yields high stochastic



uncertainty and provides a noisy estimated signal. Whereas
not outperforming them in the individual criteria, the com-
bined filter surpasses them at having the smallest interval
of points that lie within any possible distributions 2-sigma
boundary. The cyan and red area together contain the actual
state with > 95% confidence. In this regard, the plot for the
combined filter shows the best result.

VII. COMPARISONS

As stated in Sec. II, the presented Kalman filter is not
the only concept enabling a simultaneous consideration of
stochastic and set-membership errors.

In [18], set measurements can be incorporated by com-
puting the likelihood for the entire set, which implies that
a uniform distribution of the set-membership error is as-
sumed. Without approximations, this procedure turns a linear
estimation problem into a nonlinear one. Set-membership
uncertainties affecting the state transition model are not taken
into account.

In [11], stochastic and set-membership uncertainties are
characterized by means of random sets. A comparison of the
proposed approach for S →∞ or α = 0 is carried out in [19]
and unveils that a different interpretation of set-membership
uncertainty is also reasonable.

[12] proposes a similar approach that minimizes a cost
function under linear matrix inequality (LMI) conditions. In
the special case that the set-membership is weighted with
0, i.e., S → ∞ or α = 0, the approach of [12] and the
approach in this paper coincide with [8], [9]. Prospective
work will compare both approaches in terms of performance
and estimation quality.

VIII. CONCLUSION AND OUTLOOK

The discrete-time Kalman filter has been generalized in
order to allow for a simultaneous treatment of stochastic
and set-membership uncertainties. In this work, an optimal
Kalman gain has been derived that additionally takes possible
set-membership uncertainties into account and minimizes the
maximum possible MSE. Set-membership uncertainties have
been circumscribed by enclosing ellipsoids. With regard to
the MSE, we consider ellipsoidal sets to be most appropri-
ate and the corresponding shape matrices imply a strong
analogy to covariance matrices. As an important feature,
the proposed concept not only includes the standard (purely
stochastic) Kalman filter as a special case, but also the outer
ellipsoidal approximation of intersecting sets in the absence
of stochastic uncertainty. We have further generalized the
estimator, such that the user can prioritize the minimization
of the stochastic uncertainty or the minimization of the set-
membership uncertainty.

Prospective research will focus on further extensions of
the proposed concept. By following the direction of [9], it
can be applied in nonlinear estimation problems where the
ellipsoidal bounds can be utilized to account for linearization
errors. It also appears promising to use two estimators in
parallel, for instance, the covariance-optimal (S → ∞) and
the set-optimal (S = 0) estimator. The prioritization of one

type of uncertainty can then be adapted afterward when
the corresponding estimation results are fused. Also, the
requirement of unbiasedness in IV-A can possibly be relaxed,
which might lead to further insights with respect to the set-
membership uncertainties.
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