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Abstract— Correlated uncertain angular quantities can be
modeled using the bivariate wrapped normal distribution.
In this paper, we focus on the problem of estimating the
distribution’s parameters from a given set of samples. For
this purpose, we propose several new parameter estimation
methods and compare them to estimation techniques found in
literature. All methods are thoroughly evaluated in simulations.
One of the novel methods is shown to combine the advantages
of maximum likelihood estimation and moment-based methods,
thus outperforming current state-of-the-art techniques.

I. INTRODUCTION

Uncertain angular quantities appear in a variety of fields,
such as robotics, control systems, meteorology, biology,
geology, and signal processing. Typical examples include
the direction a robot is facing, the wind direction, or the
phase of a signal. Quantities of this type can be treated using
directional statistics [1], a subfield of statistics that deals
with nonlinear manifolds. However, many applications are
not limited to a single uncertain angle, but consider multiple
uncertain angles that may not be stochastically independent.
In these cases, the circular–circular correlation between those
angles, an adaptation of the concept of correlation to periodic
quantities, has to be taken into account [2].

A single angle can be understood as a point on the unit
circle. To be able to handle two angles, we have to consider
the Cartesian product of two circles, i.e., the torus as the
underlying manifold. This can be generalized to the n-torus
for a larger number of angles. One of the most important
probability distributions on the torus (and the n-torus) is the
bivariate (or toroidal) wrapped normal (BWN) distribution. In
this paper, we focus on the problem of parameter estimation
for this distribution. The parameter estimation method could
then be used in a variety of applications, for example in the
context of a recursive filtering scheme [3]. In the following,
we will restrict ourselves to the 2-torus parameterized by
[0, 2π)2.

Formally, the problem considered in this paper can be
stated as follows. Given a set of n independent and identically
distributed (i.i.d.) sample vectors x(1), . . . , x(n) ∈ [0, 2π)2,
we seek to estimate the parameters µ ∈ R2 and symmetric
positive definite C ∈ R2×2 of a BWN distribution. This
problem is visualized in Fig. 1.

A few approaches to parameter estimation for the BWN
distribution have been proposed in literature. Jammalamadaka
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Fig. 1: A bivariate wrapped normal distribution and the
corresponding samples. The goal is to estimate its parameters
based on a given sample set. Note that both x and y are
2π-periodic, i.e., the left and right side of the plot as well
as the front and back side of the plot are connected, thus
creating the topology of a torus.

proposed a moment-based approach [2] that unfortunately
fails in many practically relevant cases by returning a matrix
C that is not positive definite. Recently, we proposed an
improved approach based on moment matching that works in
most practically relevant cases, but still does not guarantee
positive definiteness [3]. The reason for these failures is
not numerical inaccuracy but rather the fact that no BWN
distribution with certain predefined moments may exist.

Some authors have also considered approaches based on
maximum likelihood estimation [4]. However, no closed-form
solution for the true maximum likelihood estimate is known.
To obtain a closed-form solution, a bound based on Jensen’s
inequality has to be used, which introduces a certain amount
of suboptimality.

Finally, there have been some approaches based on un-
wrapping, i.e., reversing the wrapping from R2 to the torus,
and then fitting a regular normal distribution. Some authors
also use the term data augmentation [5]. An unwrapping
method based on expectation maximization was proposed by
Fisher et al. [6], but it is not very efficient. To reduce the
computational burden, other authors have considered Markov
Chain Monte-Carlo (MCMC) unwrapping methods [7], [8],
[9]. However, these techniques are still computationally quite
intensive and have a number of tuning parameters that are
difficult to choose.

The contribution of this paper can be summarized as
follows. First, we introduce a number of approaches from
literature and describe them in a unified manner. Second, we



propose several new parameter estimation algorithms, namely
an algorithm based on Jupp’s correlation coefficient [10], an
algorithm based directly on certain entries of the covariance
matrix, and an algorithm that tries to combine the benefits of
maximum likelihood and moment-based approaches. Third,
we perform a thorough evaluation of all these approaches
with respect to accuracy, computation time, and chance of
failure.

II. TOROIDAL STATISTICS

Before we address the problem of parameter estimation, we
give a brief introduction to the topic of toroidal statistics. Con-
sider a real-valued two-dimensional random vector z ∈ R2,
which is normally distributed according to z ∼ N (x;µ,C)
where µ ∈ R2 and C ∈ R2×2. If we take x = z mod 2π,
where the modulo operation is performed componentwise, we
obtain a random variable on [0, 2π) that follows the bivariate
wrapped normal distribution.

Definition 1 (Bivariate Wrapped Normal Distribution). The
bivariate (or toroidal) wrapped normal distribution is given
by the probability density function

BWN (x;µ,C) =

∞∑
j=−∞

∞∑
k=−∞

N (x+ [2πj, 2πk]T ;µ,C) ,

where x, µ ∈ [0, 2π)2 and C ∈ R2×2 is symmetric positive
definite.

The BWN distribution can be seen as a bivariate general-
ization to the wrapped normal distribution. This distribution
has previously been discussed by a number of authors, e.g.,
[2, Sec. 3.1], [11, Example 7.3], [7]. It has five degrees of
freedom, two for the location µ, two for the uncertainty of
each dimension encoded in c1,1 and c2,2, and one for the
correlation encoded in c1,2. Consequently, at least three two-
dimensional samples (which have six degrees of freedom) are
required to estimate the parameters of a BWN distribution1.
The BWN distribution is a special case of the partially
wrapped normal distribution discussed in [12]. For the
partially wrapped normal distribution, some dimensions can
be periodic whereas others can be linear.

A. Moments

In the following, we consider a toroidal analogon to
the concept of (power) moments in the linear case. The
moments discussed in this paper are a special case of the
hybrid moments defined in [12]. Consider a random vector
x following a Gaussian distribution. It is well known that
this distribution is uniquely defined by its mean, i.e., the
first moment E (x), and covariance, i.e., the second central
moment E

(
(x− E (x)) · (x− E (x))T

)
. These two moments

directly coincide with the parameters µ and C of the Gaussian
distribution.

In the toroidal case, we consider a random vector x ∈
[0, 2π)2. Because of the periodicity involved, the moments of

1Three samples are not always sufficient as there are certain special cases,
e.g., multiple identical samples, collinear samples, etc. where not all degrees
of freedom are covered.

x = [x1, x2]T are not particularly useful. Instead, we consider
the transformed random variable

x̃ =


Re exp(ix1)
Im exp(ix1)
Re exp(ix2)
Im exp(ix2)

 =


cos(x1)
sin(x1)
cos(x2)
sin(x2)

 , (1)

i.e., we apply both the sine and the cosine to each component
of x. The first moment of the transformed random vector x̃ is
given by µ̃ = E (x̃) and the second central moment is given
by C̃ = E

(
(x̃− µ̃)(x̃− µ̃)T

)
. The entries of C̃ are shown

in Fig. 2. By applying the identity

Cov[x, y] = E (xy)− E (x)E (y) ,

we can decompose C̃ into C̃ = Ã−B̃, where Ã = E
(
x̃x̃T

)
and B̃ = E (x̃)E (x̃)

T . The first moment coincides with a
vector representation of the first toroidal moment discussed
in [3].

The moments µ̃ and C̃ of a BWN distribution can
be calculated in closed form. We only consider the case
µ = [0, 0]T because we can shift any BWN distribution
accordingly.

Theorem 1 (Moments of the BWN Distribution). The
moments of a BWN distribution with parameters µ = [0, 0]T

and C are given by

µ̃ =


exp(−c1,1/2)

0
exp(−c2,2/2)

0

 , C̃ =


c̃1,1 0 c̃1,3 0
0 c̃2,2 0 c̃2,4
c̃1,3 0 c̃3,3 0
0 c̃2,4 0 c̃4,4

 ,

where

c̃1,1 =
1

2
(1− exp(−c1,1))2 ,

c̃2,2 =
1

2
(1− exp(−2c1,1)) ,

c̃3,3 =
1

2
(1− exp(−c2,2))2 ,

c̃4,4 =
1

2
(1− exp(−2c2,2)) ,

c̃1,3 = exp(−c1,1/2− c2,2/2)(cosh(c1,2)− 1) ,

c̃2,4 = exp(−c1,1/2− c2,2/2)(sinh(c1,2)) .

Proof. The moments can be derived using the characteristic
function of the bivariate normal distribution (see [11, Exam-
ple 7.3]). A detailed derivation including the case of µ 6= 0
can be found in [12, Sec. 2.3.3, Theorem 1].

The empirical sample moments for x(1), . . . , x(n) ∈
[0, 2π)2 are given by

µ̄=
1

n

n∑
j=1

ξ(x(j)), C̄=
1

n

n∑
j=1

ξ(x(j)−µ̄)ξ(x(j)−µ̄)T , (2)

where ξ(x) = [cos(x1), sin(x1), cos(x2), sin(x2)]T .



C̃ =

 Cov[cos(x1), cos(x1)] Cov[cos(x1), sin(x1)] Cov[cos(x1), cos(x2)] Cov[cos(x1), sin(x2)]
Cov[sin(x1), cos(x1)] Cov[sin(x1), sin(x1)] Cov[sin(x1), cos(x2)] Cov[sin(x1), sin(x2)]
Cov[cos(x2), cos(x1)] Cov[cos(x2), sin(x1)] Cov[cos(x2), cos(x2)] Cov[cos(x2), sin(x2)]
Cov[sin(x2), cos(x1)] Cov[sin(x2), sin(x1)] Cov[sin(x2), cos(x2)] Cov[sin(x2), sin(x2)]



=

 E (cos(x1)cos(x1)) E (cos(x1)sin(x1)) E (cos(x1)cos(x2)) E (cos(x1)sin(x2))
E (sin(x1)cos(x1)) E (sin(x1)sin(x1)) E (sin(x1)cos(x2)) E (sin(x1)sin(x2))
E (cos(x2)cos(x1)) E (cos(x2)sin(x1)) E (cos(x2)cos(x2)) E (cos(x2)sin(x2))
E (sin(x2)cos(x1)) E (sin(x2)sin(x1)) E (sin(x2)cos(x2)) E (sin(x2)sin(x2))


︸ ︷︷ ︸

=:Ã

−


E (cos(x1))2 E (cos(x1))E (sin(x1)) E (cos(x1))E (cos(x2)) E (cos(x1))E (sin(x2))

E (sin(x1))E (cos(x1)) E (sin(x1))2 E (sin(x1))E (cos(x2)) E (sin(x1))E (sin(x2))
E (cos(x2))E (cos(x1)) E (cos(x2))E (sin(x1)) E (cos(x2))2 E (cos(x2))E (sin(x2))
E (sin(x2))E (cos(x1)) E (sin(x2))E (sin(x1)) E (sin(x2))E (cos(x2)) E (sin(x2))2


︸ ︷︷ ︸

=:B̃

Fig. 2: Covariance matrix of the vector x̃ as defined in (1).

B. Measures of Correlation

Several measures of correlation between two circular
random variables x1 and x2 have been proposed. There does
not seem to be any clear consensus which of those measures
is to be preferred. Several authors [10], [11], [13], [14]
have proposed correlation coefficients based on the matrix
D := C̃−11:2,1:2 · C̃1:2,3:4 · C̃−13:4,3:4 · C̃3:4,1:2. The notation
C̃a:b,c:d refers to the submatrix of C̃ with rows a to b and
columns c to d. In the case of a zero-mean BWN distribution,
we obtain

D =

[
c̃21,3/(c̃1,1c̃3,3) 0

0 c̃22,4/(c̃2,2c̃4,4)

]
.

For example, Jupp [10] defines ρ2 = traceD, and John-
son [11] defines ρ2 as the largest eigenvalue of D. In both
cases, the sign of ρ is lost, but can be reconstructed by using
the sign of det C̃1:2,3:4. Other closely related correlation
coefficients can be found in the papers by Mardia et al. [13]
and Rivest [14]. In 1988, Jammalamadaka and Sarma [2]
proposed the correlation coefficient

ρc =
E (sin(x1 − µ1) sin(x2 − µ2))√

E
(
sin2(x1 − µ1)

)
· E
(
sin2(x2 − µ2)

) , (3)

where µ1 and µ2 are the circular means of x1 and x2,
respectively. This coefficient was, for example, used in [3].
In the case of µ = [µ1, µ2]T = [0, 0]T , ρc simplifies to

ρc =
E (sin(x1) sin(x2))√

E
(
sin2(x1)

)
· E
(
sin2(x2)

) =
ã2,4√
b̃2,2 · b̃4,4

.

For a BWN distribution, ρc is given by

ρc = sinh(c1,2)/
√

sinh(c1,1) sinh(c2,2) .

III. MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation (MLE) is a common
parameter estimation technique based on finding the pa-
rameters that maximize the likelihood of obtaining the
samples x(1), . . . , x(n) given those parameters. For a BWN

distribution with parameters µ and C, and i.i.d. samples, the
likelihood is given by L =

∏n
l=1 BWN (x(l);µ,C). Because

the logarithm is a strictly increasing function and L > 0, it
is equivalent to maximizing the log-likelihood instead. The
resulting optimization problem

arg max
µ,C

(log(L))

can be solved using numerical methods such as the Nelder-
Mead simplex algorithm [15]. This is quite computationally
intensive, however. Also, as this problem is not convex, the
results may depend on the chosen initial value and there is
no guarantee that the global optimum will be found.

For some probability distributions, it is possible to analyt-
ically calculate the parameters that maximize the likelihood,
e.g., for the Gaussian distribution. This does not seem to be
the case for the BWN distribution, as not even the wrapped
normal distribution on the circle allows maximum likelihood
estimation in closed form. Thus, some authors have proposed
approximations based on Jensen’s inequality. This method has
been applied to both the circular [16] and the toroidal cases
[4]. Jensen’s inequality states that for a concave function
φ(·), values xj , and coefficients αj > 0 with

∑
j αj = 1,

φ
(∑

j
αjxj

)
≥
∑

j
αjφ(xj)

holds. Particularly, for φ(·) = log(·), we can bound the
log-likelihood function from below according to

log(L)=

n∑
l=1

log
(
BWN (x(l);µ,C)

)

=

n∑
l=1

log

 ∞∑
j,k=−∞

N (x(l) + 2π[j, k]T ;µ,C)


=

n∑
l=1

log

 ∞∑
j,k=−∞

αlj,k
N (x(l) + 2π[j, k]T ;µ,C)

αlj,k


≥

n∑
l=1

∞∑
j,k=−∞

αlj,k log

(
N (x(l) + 2π[j, k]T ;µ,C)

αlj,k

)



=: Q

for suitable αlj,k > 0 with
∑∞
j,k=−∞ αlj,k = 1 for all

l = 1, . . . , n. Now, we can find the parameters µ and C
by analytically determining

arg max
µ,C

(Q)

as follows. We compute the partial derivatives of Q with
respect to µ and C, and obtain the solution

µ =
1

n

n∑
l=1

∞∑
j,k=−∞

(x(l) − 2π[j, k]T )αlj,k ,

C =
1

n

n∑
l=1

∞∑
j,k=−∞

(x(l)−µ−2π[j, k]T )

· (x(l)−µ−2π[j, k]T )Tαlj,k .

For a practical implementation, the infinite sums can be
truncated to a small number of terms, which is reasonable
if αlj,k falls off quickly2. It is, however, quite obvious that
the parameters µ and C maximizing the function Q are,
in general, not identical to the parameters maximizing the
likelihood L. For this reason, the solution based on Jensen’s
inequality constitutes an approximation and this estimator
is usually not even asymptotically unbiased. It can be seen
that the resulting parameters depend on the choice of the
constants αlj,k. Even though Jensen’s inequality holds for
any αlj,k satisfying the aforementioned conditions, the bound
is not equally tight for any choice of αlj,k and the location
of the maximum of Q and the maximum of L may differ
significantly. This difference depends on the choice of αlj,k.
A possible choice of αlj,k is

αlj,k =
N (x(l) + 2π[j, k]T ;µα,Cα)∑∞

p,q=−∞N (x(l) + 2π[p, q]T ;µα,Cα)
, (4)

where µα and Cα are parameters of another BWN distribu-
tion, possibly a (rough) estimate of the true parameters that
are to be obtained.

IV. MOMENT-BASED ESTIMATION

An alternative to the MLE method for parameter estimation
are moment-based solutions. There, the moments of the
given sample set x(1), . . . , x(n) are calculated, and then, the
parameters of the distribution are chosen such that it has the
same moments. For certain distributions, the MLE method
and the moment-based estimation yield the same results3,
e.g., for the Gaussian distribution (when matching mean and
covariance) or the von Mises distribution (when matching
the first trigonometric moment).

In the remainder of this section, we assume that the sample
moments µ̄ and C̄ are given as in (2). We assume that µ̄2

1 +
µ̄2
2 > 0 (i.e., not both are zero) and µ̄2

3 + µ̄2
4 > 0 because

2For the choice of αl
j,k proposed in (4), the convergence is similar to

that discussed in [17].
3This only holds if the moment-based method uses the sample variance

without Bessel’s correction for unbiasedness.

the circular mean is undefined otherwise. Furthermore, we
consider a BWN distribution with parameters µ and C, whose
moments are given by µ̃ and C̃. The moment matrix C̃ is
decomposed into Ã with entries ãi,j and B̃ with entries b̃i,j
as illustrated in Fig. 2.

By solving the equation µ̄ = µ̃, we obtain the solution
for µ and c1,1 and c2,2 (analogous to [18, Lemma 2], [19,
Sec. III-A2])

µ1 = atan2(µ̄
2
, µ̄

1
) , µ2 = atan2(µ̄

4
, µ̄

3
) ,

c1,1 = − log(µ̄2
1

+ µ̄2
2
) , c2,2 = − log(µ̄2

3
+ µ̄2

4
) .

This leaves the question of how to obtain the remaining
parameter c1,2. Because it is not obvious how to calculate
this parameter, we present several alternative solutions. It
should be noted that the parameter matrix C has to be positive
definite to obtain a well-defined BWN distribution. This is
the case if and only if c1,1c2,2 > c21,2.

All purely moment-based estimators discussed in this paper
can be shown to be consistent, i.e., the estimate converges in
probability to the true parameters as the number of samples
n approaches infinity. The proof is based on the fact that the
sample covariance C̄ converges in probability towards the
true covariance C̃ and the proposed estimators are continuous
functions that yield the correct parameters for C̄ = C̃.

A. Jammalamadaka’s Method

In 1988, Jammalamadaka and Sarma [2, Sec. 3.1] pro-
posed a method based on matching the expectation value
E (exp(ix1) exp(ix2)). This can be rewritten as

E (exp(ix1) exp(ix2))

= E (cos(x1 + x2)) + iE (sin(x1 + x2))

= E (cos(x1) cos(x2))− E (sin(x1) sin(x2))

+ i(E (sin(x1) cos(x2)) + E (cos(x1) sin(x2)))

= ã1,3 − ã2,4 + i(ã1,4 + ã2,3) .

For a BWN distribution with zero mean, we have ã1,4 =
ã2,3 = 0. For this reason, we only match the real part. Solving
the equation ã1,3 − ã2,4 = ā1,3 − ā2,4 yields

c1,2 = − log(exp(c1,1/2 + c2,2/2) · (ā1,3 − ā2,4))

= −c1,1/2− c2,2/2− log(ā1,3 − ā2,4) .

However, this solution does not guarantee that C is positive
definite. Even worse, it even causes C to lack positive
definiteness in many common and practically relevant cases.

B. Jammalamadaka’s Correlation Coefficient

In the same paper [2], the authors proposed a circular-
circular correlation coefficient (3). We proposed a parameter
estimation technique based on this correlation coefficient
in [3]. Matching the correlation coefficient according to

ã2,4 · (b̃2,2 · b̃4,4)−1/2 = ā2,4 · (b̄2,2 · b̄4,4)−1/2



yields

c1,2 = arcsinh

√sinh(c1,1) sinh(c2,2) · ā2,4√
b̄2,2 · b̄4,4

 .

Experimental results have shown that this method produces
a positive definite matrix in most practically relevant cases,
but it does not guarantee positive definiteness, particularly in
cases with very strong correlation. This can happen because
no BWN with the given correlation coefficient may exist (see
also [3, Fig. 2b]).

C. Jupp’s Correlation Coefficient

A similar technique can be derived based on Jupp’s corre-
lation coefficient [10] as follows. Matching this correlation
coefficient according to

trace(C̃−11:2,1:2 · C̃1:2,3:4 · C̃−13:4,3:4 · C̃3:4,1:2)

= trace(C̄−11:2,1:2 · C̄1:2,3:4 · C̄−13:4,3:4 · C̄3:4,1:2) ,

sign(det C̃1:2,3:4) = sign(det C̄1:2,3:4)

yields after a lengthy calculation

c1,2 = sign(det C̄1:2,3:4) arccosh(τ) ,

where

τ =
ω2 +

√
ω2
2 − (ω2 + ω1)(ω2 − ω1 − ρ2ω1ω2/η2)

ω1 + ω2
,

η = exp(−c1,1/2− c2,2/2) ,

ρ2 = trace(C̄−11:2,1:2 · C̄1:2,3:4 · C̄−13:4,3:4 · C̄3:4,1:2) ,

ω1 = c̃1,1c̃3,3 ,

ω2 = c̃2,2c̃4,4 .

The terms for ω1 and ω2 can be calculated according to
Theorem 1. Once again C may not be positive definite in all
cases, but experiments have shown that this yields a positive
definite C in most practically relevant cases.

D. Covariance Matrix

The previous approaches (except Jupp’s correlation coeffi-
cient) suffer from the fact that they only consider somewhat
arbitrarily chosen entries of the covariance matrix C̃ or its
decomposition (see Fig. 2). For this reason, we consider a
new approach, which is based on directly matching the entire
upper right submatrix

C̃1:2,3:4 =

[
c̃1,3 c̃1,4
c̃2,3 c̃2,4

]
related to correlation. Now we seek to minimize the squared
Frobenius norm of C̃1:2,3:4 − C̄1:2,3:4. In other words, we
seek to solve the overdetermined system of four equations

c̃1,3 = c̄1,3 , c̃1,4 = c̄1,4 , c̃2,3 = c̄2,3 , c̃2,4 = c̄2,4

in a least-squares sense. Because c̃1,4 = c̃2,3 = 0 for a zero-
mean BWN distribution, we can neglect these equations and
obtain c1,2 by solving the optimization problem

arg min
c1,2

(
(c̃1,3 − c̄1,3)2 + (c̃2,4 − c̄2,4)2

)
. (5)

Name Uses Guarantees Numerical New in
pdf pos. def. this paper

MLE yes yes yes no
MLE (Jensen) [4] yes yes no no

Jammalamadaka [2] no no no no
Jamm.’s coeff. [3] no no no no
Jupp’s coefficient no no no yes
Covariance no no no yes
Mixed MLE yes yes yes yes

Unwrapping EM [6] no yes yes no

TABLE I: Parameter estimation approaches.

Note that c̃1,3 and c̃2,4 depend on c1,2 as shown in Theorem 1.
A lengthy calculation yields the result c1,2 = log(z), where
z is one of the roots of the polynomial

ηX4 + (−c̄1,3 − c̄2,4 − η)X3 + (c̄1,3 − c̄2,4 + η)X − η

with η = exp(−c1,1/2−c2,2/2). As this is a 4th degree poly-
nomial, a closed-form solution exists and can be implemented
[20]. The optimal solution can be obtained by plugging all
possible roots into (5). Unfortunately, this method does not
guarantee that C is positive definite either, even though it
seems to work for most practically relevant scenarios.

E. Mixed MLE

As none of the approaches above can guarantee that C is
positive definite, we propose a novel method that is based
on a combination of moment-based parameter estimation
and MLE. We use moment-based estimation to obtain µ
and c1,1, c1,2 as above and subsequently consider the log-
likelihood as a function of c1,2. To be precise, we seek a
solution to the optimization problem

arg max
c1,2

(
n∑
l=1

logBWN
(
x(l);µ,

[
c1,1 c1,2
c1,2 c2,2

]))
.

This optimization problem can be solved using numerical
methods similar to the optimization problem in the general
MLE method. However, as this is a one-dimensional opti-
mization problem rather than a five-dimensional optimization
problem, it can be solved much more efficiently.

V. UNWRAPPING-BASED ESTIMATION

Another approach for parameter estimation of wrapped
distributions is based on the concept of data augmentation [5].
The idea is to introduce latent variables that describe how
many times each sample was wrapped. For toroidal variables
x(1), . . . , x(n) ∈ [0, 2π)2, we introduce 2n wrapping numbers
[k

(1)
1 , k

(1)
2 ]T . . . , [k

(n)
1 , k

(n)
2 ]T ∈ Z2 such that

x(l) + 2π[k
(l)
1 , k

(l)
2 ]T = y(l), l = 1, . . . , n

where y(1), . . . , y(n) ∈ R2 represent the random variables
before wrapping occurred. If the wrapping numbers were
known, the parameters of a bivariate normal distribution could
be easily estimated from the unwrapped random variables
y(1), . . . , y(n) ∈ R2. Fisher et al. [6] proposed an expectation
maximization (EM) algorithm that tries to estimate the



parameters of the PWN distribution by alternating between
calculating the probability

P (k
(l)
1 =K1, k

(l)
2 =K2|µ,C) ∝ N (x(l)+2π[K1,K2]T ;µ,C)

l = 1, . . . , n

of the wrapping numbers given the parameters and estimation
of the parameters according to

µ =
1

n

∑
K1,K2

n∑
l=1

P (k
(l)
1 =K1, k

(l)
2 =K2|µ,C)

· (x(l)+2π[K1,K2]T ) ,

C =
1

n

∑
K1,K2

n∑
l=1

P (k
(l)
1 =K1, k

(l)
2 =K2|µ,C)

· (x(l)+2π[K1,K2]T )(x(l) + 2π[K1,K2]T )T .

For a practical implementation, suitable maximum values of
K1 and K2 have to be chosen. The procedure is repeated
until convergence.

Because of the high computational cost, some authors have
investigated the use of Markov Chain Monte-Carlo (MCMC)
methods for unwrapping. Coles [7] proposed a scheme to
obtain samples for the wrapping coefficients as well as the
parameters µ and C using the Metropolis–Hastings [21]
algorithm. However, implementation of this method involves
many choices (e.g., prior densities, a proposal density, a
conditional density for cycling though different variables,
the burn-in duration, a stopping criterion). As Coles does
not give clear recommendations regarding these choices, we
decided not to implement his algorithm. A similar method
based on Gibbs sampling [22] was proposed by Ravindran
[9], but his derivations are limited to scalar distributions.
Further work in this area was done by Jona-Lasinio et al. [8]
for the univariate case and for wrapped Gaussian processes.

VI. EVALUATION

To compare all presented parameter estimation methods
(see Table I), we consider the BWN distributions

BWN
(
x;µ

a
=

[
0
0

]
,Ca =

[
1 0.5

0.5 2

])
,

BWN
(
x;µ

b
=

[
0
0

]
,Cb =

[
1 1.2

1.2 2

])
,

which represent cases with weak (ρa ≈ 0.35) and with strong
(ρb ≈ 0.84) correlation. From each distribution, we randomly
draw a predefined number of samples and then apply all
parameter estimation methods to fit a BWN distribution to
the samples. Finally, we compare the reconstructed BWN
distribution to the original BWN distribution. Because the
main difficulty consists in the estimation of the correlation
parameter ρ =

c1,2√
c11c2,2

, we evaluate its bias and variance.
For each BWN distribution and every number of sam-

ples, we performed 100 Monte-Carlo runs. The results are
depicted in Fig. 3 and the results for 300 samples and
BWN (x;µ

b
,Cb) are also given in Table II. Beyond the

bias and variance of ρ, we also give the computation time

Name bias variance time failures

MLE -0.001201 0.000196 0.459018s 0
MLE (Jensen) 0.336868 0.002501 0.583134s 0

Jammalamadaka [2] 0.159217 0.028777 0.000446s 29
Jamm.’s coeff. [3] 0.003026 0.000670 0.000658s 0
Jupp’s coefficient -0.002165 0.000324 0.001553s 0
Covariance 0.001294 0.000399 0.001273s 0
Mixed MLE 0.000126 0.000221 0.039276s 0

Unwrapping EM [6] -0.001246 0.000195 0.677304s 0

TABLE II: Results for 300 samples of BWN (x;µ
b
,Cb).

and the number of times the parameter estimation failed as
a result of a non-positive-definite C matrix. All algorithms
were implemented in MATLAB and the computation times
were obtained on a Core i7-2640M with 8 GB RAM. Note,
however, that the implementations were not optimized for
performance and it might be possible to significantly improve
the computation time of some approaches.

The results indicate that the method by Jammalamadaka and
the MLE approach based on Jensen’s inequality yield fairly
inaccurate results. The latter appears to be strongly biased
even as the number of samples approaches infinity, which can
be explained by the approximation of the likelihood function.
All other methods are fairly similar for BWN (x;µ

b
,Cb), but

for BWN (x;µ
a
,Ca), the method based on Jupp’s correlation

coefficient is also quite inaccurate. Furthermore, it can be seen
that Jammalamadaka’s method fails very frequently even for
many samples, particularly in the case of BWN (x;µ

b
,Cb).

The other moment-based methods also fail in a few cases, but
only when there are too few samples. The remaining methods
are always successful. As far as the runtime is concerned,
all moment-based methods are very fast. The mixed MLE
approach is somewhat slower, but still fast enough for many
applications. The numerical MLE, the MLE based on Jensen’s
inequality and the unwrapping method are very slow and seem
impractical for most real-time applications.

All in all, the moment-based methods based on Jammala-
madaka’s correlation coefficient and the covariance matrix
performed very well and resulted in high accuracy at a small
computational cost. However, in certain cases these methods
can fail. Thus, it might be a good option to fall back to the
mixed MLE method in the case that C is not positive definite
(or very close to singular). This method is somewhat slower,
but it is the fastest method that works in all cases, and it is
also highly accurate.

VII. CONCLUSION

This paper summarized a number of methods for parameter
estimation of the bivariate wrapped normal distribution found
in literature and proposed several new methods as well. All
methods were compared in a thorough evaluation and the new
method based on matching a submatrix of the covariance as
well as the new method based on a combination of maximum
likelihood and moment matching were shown to outperform
state-of-the-art approaches.

Even though we did not consider weighted samples in this
paper for reasons of clarity, all discussed methods can easily
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Fig. 3: Evaluation results based on 100 runs.

be applied to weighted samples as well. Most approaches
can, in principle, be generalized to the n-torus, but parameter
estimation on the n-torus is still an open problem because
some methods have exponential computational complexity
with respect to the dimension, whereas others may have an
increased difficulty of obtaining a positive definite parameter
matrix C.

Furthermore, the approaches discussed in this paper may be
applied to the problem of fitting mixtures, for example using
the EM algorithm (see e.g., [4]). Also, an application to the
problem of recursive toroidal filtering is highly interesting [3].
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