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Abstract

New filters are derived for estimating the state of a lin-
ear dynamic system based on uncertain observations,
which suffer from two types of uncertainties simulta-
neously. The first uncertainty is a stochastic process
with given distribution. The second uncertainty is only
known to be bounded, the exact underlying distribu-
tion is unknown. The new estimators combine set the-
oretic and stochastic estimation in a rigorous manner
and provide a continuous transition between the two
classical estimation concepts. They converge to a set
theoretic estimator, when the stochastic error goes to
zero, and to a Kalman filter, when the bounded error
vanishes. In the mixed noise case, solution sets are
provided that are uncertain in a stochastic sense.

1 Introduction

Estimating the state of a dynamic system based on
uncertain observations is a topic of extraordinary im-
portance. In a wide variety of applications, where an
appropriate system model together with a stochastic
noise model is given, the Kalman filter [1] and its many
variations have proven to be useful.

In many cases, however, uncertainties arise, for exam-
ple, from unmodeled dynamics or unmodeled nonlin-
earities, which cannot satisfactorily be described as
stochastic signals with known distribution. In addi-
tion, correlated noise terms or systematic errors may
be present but neglected for the sake of simplicity. In
that case, Kalman filter estimates tend to be overopti-
mistic [12], i.e., the covariance is underestimated. Sev-
eral heuristics have been suggested for coping with
this problem, which of course do not provide optimal
estimators.

In some situations, however, bounds for these uncer-
tainties can be provided. In that case, set theoretic es-
timation can be applied [14], which often leads to good

results [4]. However, when additional uncorrelated
noise is present, the error bounds become unnecessarily
conservative.

In [5, 8], a concept for estimation in the presence of
both bounded and stochastic uncertainties has been
introduced. The proposed algorithm for the case of
a scalar state is exact, but computationally complex.
In [6, 7], an approximate solution for the case of a
scalar state has been derived, that is computationally
attractive. Furthermore, a generalization towards arbi-
trary dimensional states and observations of the same
dimension has been proposed in [9].

This paper is concerned with updating the estimate
of an arbitrary dimensional state based on scalar ob-
servations. For this very relevant case, a new, ap-
proximate solution is derived, that is computationally
attractive. Nevertheless, it combines both set theo-
retic and stochastic estimation in a rigorous manner.
It bridges the gap between both estimation schemes,
because a set theoretic estimator is obtained, when
the stochastic error goes to zero. A Kalman filter is
obtained, when the bounded error vanishes. When
both types of uncertainty are present, the new esti-
mator provides solution sets that are uncertain in a
stochastic sense. The propagation of estimates suffer-
ing from both uncertainties through a dynamic system
is discussed in [10].

In Section 2, the use of a mixed stochastic and set the-
oretic uncertainty model is motivated, and a rigorous
problem formulation is given. In Section 3, the estima-
tion concept is presented. In Section 4, the estimation
problem is solved on the basis of a sum approximation.
An exact second–order description is derived in Sec-
tion 5. In Section 6, the results are summarized and
border cases of the new estimator are discussed. In Sec-
tion 7, the proposed framework is applied to estimating
the state of a nonlinear system by first converting it
to a linear system with mixed stochastic and bounded
uncertainties.



2 Problem Formulation

The key point of this paper is the use of a generalized
uncertainty model unifying stochastic and set theoretic
modeling [2, 3]. This allows the treatment of systems
corrupted by both bounded and stochastic uncertain-
ties simultaneously. Hence, the model is well–suited
for, but not limited to, the combination of deterministic
/ systematic errors and random noise.

To be specific, we consider a linear measurement equa-
tion given by

y = HT x + ey + cy

with scalar observation y, state vector x, and additive
uncertainties ey, cy. Furthermore, there exists a prior
estimate xp of the state vector. xp also suffers from
additive uncertainties ep, cp according to

xp = x + ep + cp .

The corresponding additive uncertainties are of differ-
ent type:

1) ep, ey are uncertainties, where the only prior
knowledge is their boundedness, which is ex-
pressed by

eT
p E−1

p ep ≤ 1 , e2
y ≤ Ey .

2) cp, cy are Gaussian random variables

cp ∼ N(0, Cp) , cy ∼ N(0, σy) ,

which are assumed to be uncorrelated.

3 The Estimation Concept

For deriving an appropriate state estimator, we define

x̄p = xp − cp ,

ȳ = y − cy .

Since there is no prior information about the remain-
ing uncertainties ep, ey besides their boundedness, we
make the worst case assumption that ep, ey are fully
correlated. Hence, a set theoretic estimator is appro-
priate for fusing ȳ and x̄p. The fusion result is then
given by the set

Xs = {xs : (xs − x̄s)
T E−1

s (xs − x̄s) ≤ 1}

with

x̄s = x̄p + λ
EpH

Ey + λHT EpH
η , η = ȳ − HT x̄p (1)

and

Es = dPs , (2)

where d is given by

d = 1 + λ − λ
η2

Ey + λHT EpH

and Ps is given by

Ps = Ep − λ
EpH HT Ep

Ey + λHTEpH
.

The appropriate selection of the parameter λ ∈ [0, ∞]
will be discussed later. (1) can be rewritten as

x̄s = Wxx̄p + W yȳ , (3)

with

Wx = I − λ
EpH HT

Ey + λHT EpH
, W y =

λEpH

Ey + λHTEpH

and

Wx + W yHT = I .

To simplify the following derivations, we note the fol-
lowing: The set theoretic uncertainty Es given by (2)
depends on ȳ and x̄p. Setting η = 0 leads to d = 1 + λ
and is equivalent to bounding Es from above. The
resulting Es is then given by

Es = (1 + λ)Ep − (1 + λ)λ
EpH HTEp

Ey + λHTEpH
. (4)

Since the simplified Es in (4) does not depend on the
actual values, it is not a random variable. On the other
hand, xs according to

xs = Wxxp + W yy ,

is a random variable. We obtain xs = x̄s+cs, with cs =
Wxcp + W ycy. In this paper, we provide two different
solutions for estimating the unknown state vector x:

• An approximation of the density of xs by a sum
(Sec. 4), which in contrast to the exact density
can be used for recursive estimation.

• An exact second–order description, i.e., mean and
covariance (Sec. 5).

4 Calculating the Density

Since xs is defined only for

|y − HT xp| ≤ K with K =
√

Ey +
√

HT EpH ,



the density of xs is given by [13]

fxs
(xs) =

1
|Wx|

∞∫
−∞

fxpy

(
W−1

x (xs − W yy), y
)
dy (5)

with

fxpy(xp, y) =

{
fxp

(xp) fy(y) for |y − HT xp| ≤ K

0 elsewhere
,

where Wx is assumed to be regular. Calculating the
exact density fxs

(xs) directly from (5) gives a rather
complicated and not very useful expression. Hence, a
series expansion will be calculated instead. For that
purpose, we use

rect(x) =

{
1 for |x| ≤ 1
0 elsewhere

to interpret the constraint |y − HT xp| ≤ K as

rect
(

y−HT xp

K

)
, which is then approximated by a

weighted Gaussian sum

rect

(
y − HT xp

K

)
≈ (6)

L∑
i=−L

1√
2πc

exp

{
−1

2
(y − HT xp − mi

g)
2

Cg

}

with mi
g = i

K

L
, Cg = c

K

L
. Note that the integral from

−∞ to ∞ over the sum yields 2K independent of L.
The free parameter c ∈ (0, ∞) may be obtained by a
one-dimensional search to give the best approximation
of the rect–function according to a given norm.

Based on this approximation of the rect–function, the
exact density fxs

in (5) can be approximated by a sum
of simple densities. For that purpose, we first consider
one term of the sum (6) which gives

f i
xs

(xs) =
1

|Wx|

∞∫
−∞

exp
{
− 1

2

[
(xp − x̂p)

T C−1
p (xp − x̂p)

+
1

Cy
(y − ŷ)2 +

1
Cg

(y − HT xp − mi
g)

2

]}
dy

for i = −L, . . . , L and xp = W−1
x [xs − W yy]. A te-

dious calculation reveals that this approximation can
be simplified to

f i
xs

(xs) = gi exp
{
−1

2
(
xs − x̂i

s

)T
C−1

s

(
xs − x̂i

s

)}

with weighting factors

gi = exp

{
−1

2
(ŷ − HT x̂p − mi

g)
2

HT CpH + Cy + Cg

}

and individual means

x̂i
s = Wxx̂p + W y ŷ

+
WxCpH − W yCy

HTCpH + Cy + Cg

(
ŷ − HT x̂p − mi

g

)
.

for i = −L, . . . , L. The covariance matrices are the
same for each term in the sum and given by

Cs = WxCpWT
x + W yWT

y Cy

− (WxCpH − W yCy)(WxCpH − W yCy)T

HTCpH + Cy + Cg

.

The approximate solution for the density fxs
is then

given by

fxs
(xs) ≈

L∑
i=−L

f i
xs

(xs) , (7)

which is a weighted sum of Gaussian densities, where
the weighting factors gi are themselves values of a
Gausssian function.

Note: It can be proven that this approximation con-
verges to the exact density for L → ∞.

5 Exact Analytic Solutions
for Mean and Covariance

In the following, an exact second-order description for
xs, i.e., mean and covariance, will be derived.

5.1 Exact analytic solution for the mean
An approximate expression for the mean or expected
value x̂s = E[xs] of xs is given by

x̂s ≈

L∑
i=−L

gi x̂i
s

L∑
i=−L

gi

.

For L → ∞, this expression gives the exact mean of x̂s.
L → ∞ also implies Cg → 0, and the summation can
be replaced by integration. A lengthy calculation gives

x̂s = Wxx̂p + W y ŷ

− (WxCpH − W yCy) F1

(
ŷ − HT x̂p

)
, (8)

with F1

(
ŷ − HT x̂p

)
according to the appendix.



5.2 Exact Solution for the Covariance
For obtaining the exact covariance of xs, the first step is
to calculate the covariance of the (approximate) Gaus-
sian sum density fxs

(xs) in (7) based on the relation

Cs =

L∑
i=−L

gi

{
Ci

s + x̂i
s(x̂

i
s)

T
}

L∑
i=−L

gi

− x̂s x̂T
s ,

which gives the exact Cs for L → ∞ as

Cs = WxCpWT
x + W yWT

y Cy − F2

(
ŷ − HT x̂p

)
(9)(

WxCpH − W yCy

) (
WxCpH − W yCy

)T
,

with F2

(
ŷ − HT x̂p

)
according to the appendix.

6 The New Estimators

In Section 4, it has been shown, that the uncertainty
of the fusion result is given by a bounded uncertainty
and a sum of Gaussian densities. When the number
of terms included in the Gaussian sum tends towards
infinity, the exact density is approached. In addition,
mean and covariance of the exact density have been
given in closed form. These important results can now
be applied to derive two different estimators for solving
practical estimation problems.

The first estimator is obtained by keeping a finite num-
ber of, say M, terms in the Gaussian sum. Of course,
when using this estimator recursively, there will be M2

terms after the first recursion step. Hence, for recursive
application, the number of terms must be kept fixed by
selecting the M most important terms after each step.

The second estimator only keeps second order infor-
mation on both the set theoretic and the stochastic
uncertainty. Here, the stochastic uncertainty is given
by the exact mean and covariance derived in Sec. 5.

Both estimators unify Kalman filtering and set theo-
retic estimation: A Kalman filter is approached, when
the bounded error vanishes. On the other hand, a
set theoretic estimator is attained, when the stochas-
tic error goes to zero. When both types of uncertainty
are present simultaneously, the new estimator provides
solution sets that are uncertain in a stochastic sense.

7 Simulative Example

Consider two nonlinear measurement equations ac-
cording to

yk
1 = x1 + 2 sin(x1) + ck

1 ,

yk
2 = 2 x1 + x2 + 3 cos(x2) + ck

2 ,

with ck
1 , ck

2 samples from independent, zero mean white
Gaussian random processes with standard deviation
σ1 = 3, σ2 = 3, respectively. Prior knowledge is
given by a x0

s = [20, 20]T with covariance matrix
C0

s = diag(1002, 1002).

A standard approach for estimating the state x =
[x1, x2]T is the extended Kalman filter, which applies
the Kalman filter to the measurement equations lin-
earized about the best available estimate. The evolu-
tion of the resulting confidence set over time is depicted
in Figure 1. The confidence set has been calculated
based on 9 times the covariance matrix centered at x̂k

s .
The true state x = [17, 13]T is marked by a dot. Note:
The confidence set for k → ∞ does not contain the
true state.

For estimating the state x by using the above frame-
work, the original nonlinear measurement equations
are written as linear equations

yk
1 = HT

1 x + ek
1 + ck

1 ,

yk
2 = HT

2 x + ek
2 + ck

2 ,

with HT
1 = [1, 0]T , HT

2 = [2, 1]T . The neglected non-
linearities are captured by additional bounded uncer-
tainties ek

1 , ek
2 . The bounds of ek

1 , ek
2 are given by

E1 =
(

max
x∈R2

|2 sin(x1)|
)2

= 22 ,

E2 =
(

max
x∈R2

|3 cos(x2)|
)2

= 32 .

The proposed estimator is evaluated by recursively up-
dating the state estimate using the equation for x̂k

s in
(8), Ek

s in (4), and Ck
s in (9) for both measurement

equations at time k. The parameter λk is chosen such
that det(Ek

s) + 9 det(Ck
s ) is minimized. The initial set

theoretic uncertainty is set to E0
s = diag(ε, ε), with a

small ε > 0. Figure 2 depicts how the resulting es-
timate evolves over time. Here, the confidence set is
given by the Minkowski sum of Ek

s and 9Ck
s centered

at x̂k
s . The optimal estimate for an infinite number of

measurements would be given by the set resulting from
intersecting the two strips representing the neglected
nonlinearities. Note: The confidence set for k → ∞
bounds the exact set from above, and hence contains
the true state.

8 Conclusions

Many estimation problems can be converted to the
problem of estimating the state of a linear system from
uncertain observations, where the uncertainties are ad-
ditively composed of both 1) noise with known distri-
bution and 2) noise with known bounds. The new es-
timators then provide a rigorous framework for solving
these problems efficiently.
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Figure 1: Results of applying the extended Kalman filter.
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Figure 2: Results of applying the new estimator.

This paper focused on the measurement update, i.e., on
updating the estimate of an arbitrary dimensional state
based on given scalar observations. The time update,
i.e., propagating the state estimate through a system
model, is discussed in [10].

As an example, a nonlinear system has been converted
to a linear system by representing the neglected non-
linearities as bounded noise terms. The new estimator
then provided state estimates that account for both
uncertainties due to measurement noise and neglected
nonlinearities.
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F1

(
ŷ − HT x̂p

)
= G0
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ŷ − HT x̂p,

√
Ey +

√
HT EpH, Cy +

√
HTCpH

)
,

F2

(
ŷ − HT x̂p
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=
[
G0

(
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√
Ey +

√
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√
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√
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)
Cy + HTCpH
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σ2
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σ2
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σ
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Appendix

The nonlinear functions F1

(
ŷ − HT x̂p

)
,

F2

(
ŷ − HT x̂p

)
of the innovation ŷ − HT x̂p are

given by


