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Abstract. This paper is concerned with the absolute localization of mobile robots,
which are equipped with an onboard device performing angular measurements on
the location of known but mutually indistinguishable landmarks. Novel algorithms
are proposed, 1. for efficient posture initialization based on a simple linear solution
scheme, and 2. for purposes of recursive posture estimation. Derived within a set—
theoretic framework, the algorithms cope with nonwhite, non—-Gaussian noise and
deterministic errors. A typical application, localizing a floor-inspection robot on a
long-range inspection mission, is used to demonstrate the implementation and per-
formance of the proposed posture estimator.
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1. INTRODUCTION

This paper introduces a new approach to estimat-
ing the absolute posture, i.e., position z, y, ori-
entation v, of a fast mobile robot on a planar
surface. The estimation is based upon onboard
measurements of angular locations of known land-
marks. Both initialization of the robot posture
and recursive in-motion posture estimation are
considered.

For initialization purposes, a set of angles mea-
sured with respect to the robot’s coordinate sys-
tem needs to be paired with a subset of the mu-
tually indistinguishable landmarks that are ex-
tracted from a map. In (Wiklund, et al., 1988), an
enumerative scheme has been reported for pairing
the first three angles with landmarks. The remain-
ing angles are used for plausibility tests. Several
solutions for calculating the posture, given the as-
sociation of measured angles with landmarks have
been reported: Wiklund, et al. (1988), Sutherland
and Thompson (1994), and Tsumura, et al. (1993)
consider only triples of landmarks. For the case
of more than three landmarks some authors av-
erage triple solutions, while others use iterative
techniques. Betke and Gurvits (1994) supply a
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closed—form solution for N angles without consid-
ering uncertainties. In this paper, an efficient as-
sociation algorithm is developed. The algorithm
discards false measurements, it is fast, and it is
further accelerated by incorporating prior know!-
edge. In addition, the algorithm takes advantage
of a simple closed—form solution, which consists
of a set of N — 1 linear equations for the vehi-
cle position, see Section 3. An error—propagation
analysis considers uncertainties in both landmark
positions and angle measurement.

Posture estimates are sequentially updated by
newly incoming angle measurements, if the ve-
hicle’s velocity is high compared to the angle
measurement rate. The updates are usually per-
formed within the Kalman filtering framework.
White Gaussian zero-mean random processes are
then used as uncertainty models. In (Wiklund,
et al., 1988), a Kalman filtering scheme is intro-
duced for this purpose, based on a kinematic vehi-
cle model; fusion of dead-reckoning information is
not considered. Nishizawa, et al. (1995) use a Kal-
man filter to fuse sensor data with dead-reckoning
data. Real-world uncertainties, however, also in-
clude non—-Gaussian, nonwhite noise and system-
atic errors. These uncertainties may easily be con-
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sidered in a set—theoretic setting. For example,
Atiya and Hager (1993) describe a set—theoretic
approach to stereo—vision based robot localization
without dead-reckoning. In this paper, a solution
is given to the problem of locating a mobile robot
based on dead-reckoning and onboard angle mea-
surements in a set—theoretic framework (see Sec-
tion 4). Basic concepts for prediction, measure-
ment, data validation, and combination of infor-
mation are developed from a set—theoretic view-
point in Sections 4.1 to 4.4. Section 4.4 then dis-
cusses two new approaches, for tailoring set—the-
oretic estimators to specific applications, and for
achieving robustness against modeling errors. The
individual components are tied together in Sec-
tion 4.5 to construct a recursive set—theoretic esti-
mator with real-time capabilities. Combining set—
theoretic and Bayesian estimation is discussed in
(Hanebeck, et al., 1996).

The proposed localization scheme may be ap-
plied to any mobile robot which is equipped with
an onboard angle measurement device. Angle—
measurement devices are common in mobile robot
applications, since they are readily available, sim-
ple, and inexpensive. For validating the proposed
localization scheme, a mobile robot equipped with
a laser-based angle-measurement system is used.
The angle—measurement system is employed for
high—accuracy navigation and serves as a refer-
ence sensor for the development of other sen-
sors. In this paper, a specific application for high—
accuracy navigation is studied: localizing a floor—
inspection robot on long-range inspection mis-
sions. Experimental results are presented in de-
tail in Section 5 to assess the performance of the
proposed posture—estimation scheme.

2. PROBLEM FORMULATION

Consider a pool of M landmarks in a two—dimen-
sional world or map. The positions of the land-
marks g™ = [zIM IMT = 0,1,..., M -
1 in a reference coordinate system are assumed
to be known with additive bias errors AIM =
[AzIM AyEMIT - which are of course unknown.
True values of * are denoted as %, nominal values
as #. The true landmark position Z-M is assumed
to be somewhere within the set

AP = (o g = g+ AT, A € )

i 3

1)
where the errors in the position of landmark i are
confined to an ellipsoidal set Q2 given by

A2 = (AP (APT(CIM) AT < 1)
(2)
The robot has the capability to determine the an-

gular locations of these landmarks with respect
to its coordinate system. Individual landmarks do

not necessarily have to be distinguished from one
another. The angle measurements are corrupted
by additive noise, i.e., &; = &; + Aa;, where Aq;
is assumed to be bounded in amplitude (b.i.a.)
according to |Ae;| < 6. To account for possible
occlusion of landmarks in nonconvex rooms, par-
titioning walls are added to the map. The land-
marks are ordered in the map in such a way that
the robot always detects the subset of unoccluded
landmarks in that order when scanning counter—
clockwise.

3. POSTURE INITIALIZATION

This section is concerned with (re-)initializing
the robot posture z = [z,y,%]7 in nonconvex
rooms, when only very little prior knowledge of
the robot posture is available. A priori informa-
tion is specified by confining the posture to an
ellipsoidal set €, priori- M landmarks are avail-
able and N > 3 angles a;, 7 = 0,1,..., N —1
have been measured. The association, i.e., the list
of pairings of measured angles to landmarks, is
initially unknown. Inspired by the interpretation—
tree (IT) method in (Drumbheller, 1987), the asso-
ciation search is kept from becoming intractable
by approaching it in two steps: in the first step,
for every measured angle «; the set of visible land-
marks from € priori is determined. In the second
step, these visibility constraints are exploited for
pruning the IT. Thus, only a small portion of all
associations needs to be generated and tested.

Step 1: The projection of £, priori onto the z/y-
plane is examined at polar grid points z(r,8),
y(r,8) for some r, 6. A visibility matrix V is de-
fined, with dimensions N by M. The elements V;;
are Boolean variables which are TRUE, if the sin-
gle measured angle a; may be caused by land-
mark j. A visibility test is performed for every
grid point z(r,8), y(r, ). If the landmark j is vis-
ible, i.e., when the straight line from the grid point
z(r,8), y(r,8) to w;‘M, y}M does not intersect any
partitioning walls, a hypothetical angle o™P is
calculated. The minimum and maximum angles
at z(r,8), y(r,0) within Q priori are denoted as
YLow, YHigH respectively. a; may then be caused
by landmark j, if a; +9YLow < o!¥P < a;+uigH-
If row ¢ of V does not contain any TRUE value, «;
has been identified as a false measurement. Row i
is then removed from V, and the number of mea-
surements [V is decremented.

Step 2: Only those candidate associations are
generated that do not violate the visibility con-
straints represented by V, and that also fol-
low the ordering assumption. Erroneous measure-
ments are handled efficiently by adopting the
“least bad data” constraint proposed in (Grimson
and Lozano-Pérez, 1985). For a specific associa-
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tion, a tentative position is calculated and checked
for compatibility with the error bounds, the pos-
ture constraint Q, priori, and the requirements for
joint visibility of all landmarks involved.

Tentative postures are quickly calculated by the
use of a closed—form solution. The corresponding
set of N —1 linear equations for the position is de-
rived next. The measurement equation for a single
angle measurement «; is given by

o = atan2(z£‘M - l‘,yzLM -y-v%, @)

i=0,1,..., N — 1. Define ; as the difference
between two consecutive angle measurements a;
and a1, Vi = @it — 0. It follows that

LM LM
yi’;kl_y _ yi- —y
TP T M-z

tan(vy;) = e ) (4)

M _
1+yii1 vy oy —
M g gIM_g
i+1 1

which may be rewritten as

LM, LM
Yig1¥:

LM, LM LM, LM _ LM, LM
+zppiE ™M+ cot(vi ey — vt )
T
cot (v ) {yr™ —yi} + o] + o™ [m]
COt(’Yi){zHﬁ “Z%M}+y}‘+1 +y1LM Y

k]

for i = 0,..., N — 1. Index operations are
performed modulo N, ie, i+ 1 = 0 for i =
N — 1. After some manipulations (Hanebeck and
Schmidt, 1996), a system of N — 1 equations that
are linear in x and y is obtained as

z=Hlz,y" +e (6)
with
z=|20,21,-.- Zn—2)T
H = [ho, by, - - >b'-N—2]T (7
h; = [nf, b}
and error e = [eg,€1,..- ,en_2)T. The corre-
sponding elements are given by
2 = cos(yi) sin(vip ) {ziti o™ — yitier™}
+sin(y;) sin(yi1) {zi o™ — 2igheid
+ytur™ — vy

: LM, LM LM LM
— sin(;) COS(’YHI){%%%H —Yitra2Tit1

he = cos(v:) sin(yi+1){yr™ — yid
+ sin(yi) sin(yin ) {z™ — 2i3% ®)

— sin(y;) cos(yir1 ){Uits — Vits

hY = cos(vi) sin(yip1){zph — =™}
+ sin(y;) sin(yi41) {oe™ — vi

— sin(y;) cos(Yi+1){Ths — Tp1}
fori =0, ..., N — 2. An error—-propagation anal-

ysis is performed, which provides: 1. the optimal
weighting matrix for the LS-solution of (6) and
2. the initial set of postures that are compatible
with the a priori error bounds. This analysis is

found elsewhere. Once z and y are known, 1 can
be obtained as the (weighted) LS-solution of (3)
fori=0,1,..., N—1.

4. RECURSIVE IN-MOTION LOCALIZATION

Once the robot posture is initialized using the
method developed in the last section, the robot
starts moving. During motion, the robot posture
estimate is updated with the information obtained
from every additional angle measurement. Dead-
reckoning data is used to smooth the estimate by
predicting the posture change between two mea-
surements.

Usually, problems of this type are solved within
the Kalman filter framework. Measurement noise
and dead-reckoning errors are assumed to be
zero-mean, white, mutually independent random
processes. For these assumptions, the Kalman pre-
diction step (time update) provides first— and
second—-order moments of the predicted state,
given any noise distribution. The Kalman estima-
tion step (measurement update), however, yields
precise values of first— and second—-order moments
of the estimated state only for Gaussian noise den-
sities. For other noise densities, the Kalman esti-
mation step just provides the best linear estima-
tor.

In realistic applications, however, a state esti-
mator must cope with 1. non-Gaussian noise, 2.
nonwhite noise, 3. systematic errors, and 4. mu-
tally dependent noise sources. For the localization
problem at hand, at least two error sources may be
identified that violate the Kalman filter assump-
tions:

1. landmark positions are only known with a
deterministic offset, and

2. a robot’s dead-reckoning system — espe-
cially for the omnidirectional robot consid-
ered in Section 5 — suffers from nonwhite
noise and deterministic errors.

A nonlinear filter, which copes with the above
mentioned uncertainties, is developed by set-the-
oretic considerations below. The proposed filter is
first—order for the sake of simplicity, i.e, strictly
optimal for white b.i.a. noise processes. However,
the output represents an upper bound for non-
white noise or deterministic errors, which is in
sharp contrast to first-order Kalman filters. Fur-
thermore, the noise processes may stem from any
distribution that is compatible with the ampli-
tude bounds.! Ellipsoidal bounding sets (EBS)
are used to approximate the sets of feasible solu-
tions. These sets may be manipulated by matrix
operations only, and thus result in efficient algo-
rithms with real-time capabilities.

1 Not only uniform densities !
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Section 4.1 develops a simple method for set—the-
oretic posture prediction. Measured angles are as-
sociated with landmarks in Section 4.2. The deter-
mination of the set of feasible postures defined by
a single angle measurement is discussed in Section
4.3. An efficient algorithm for approximating the
intersection of the prediction and measurement
sets is introduced in Section 4.4. The filtering com-
ponents are put together in Section 4.5 to form a
nonlinear recursive set—theoretic estimator.

4.1 Set-theoretic Posture Prediction

When moving from one measurement at time k—1
to the next, the estimate of the vehicle’s posture
suffers from accumulating uncertainties. The rela-
tive uncertainty may be estimated and must then
be “added” to the absolute uncertainty prevalent
at time k — 1. Usually, the relative uncertainty is
assumed to be independent from the absolute un-
certainty at time k — 1, which leads to the well
known Kalman covariance propagation formula.
For nonwhite noise and deterministic errors, how-
ever, this propagation formula is too optimistic. In
the following, a simple set-theoretic propagation
formula is developed, that provides a guaranteed
upper bound for the posture error, even in the
case of nonwhite and deterministic errors.

The result of the fusion process at time k — 1 is
denoted as QF | and given by

QF | ={zF . 9)
(xk 1—% 1) (C )_I(EE _zk 1) <1}

The dead-reckoning system supplies the set of rel-
ative postures with respect to 0 |, henceforth
denoted as

~ -1 ~
Qp ={zp: (@f -2)7(CR)™ (@f —2p) <1} .

(10)

The calculation of 24 depends on the vehicle kine-
matic. For the omnidirectional vehicle considered
in Section 5, determination of £ is rather com-
plex and outside the scope of this paper.

The exact set of absolute postures is given by
transforming the set 2 to the inertial coordinate
system for all feasible posture estimates contained
in QF |. This is written as
QF = {zf : ot =1zi, +Bizi'} ,
(11)

with zZ | € QF |, z& € Qf, I the identity ma-
trix, and

cos(pf_y) —sin(yf ;) 0
sin(pf |) cos(yf ) 0
0 0 1

B, =
(12)

Unfortunately, 2 is not in general an ellipsoid.
Linearizing (11) around the nominal values yields

N ; ~A
= &) + Bilzp — 2)

(13)
with the Jacobian given by

10 —(g§ 1? 1)
01 (xkp -zE ) . (14)
00 1

JE =

Qf may then be approximated as the EBS for the
Minkowski sum of the two ellipsoids in (13)

Of = {zy : (af —&;)" (CP)

(15)
with center
&y =18, +Bely (16)
and
Cf:O.;in+0.;:n’ (17
with E = JECE (IE)T, I't = ByCPBT, for

-05< k< 0 5. ¢ % may be selected such that a
measure of the “size” of f is minimized.

4.2 Association of Angles with Landmarks

The set of predicted postures Qf is used to extract
potentially visible landmarks from the map and
to calculate validation bounds for the angles to
each of these landmarks. The subset of potentially
visible landmarks is given by those L landmarks

that are not occluded by a priori known objects.

The hypothetical angles to these landmarks with
respect to the vehicle coordinate system are given
by

i) hyp _ LM _ P LM
D = atan2(zi™ — 2§,y

_/(»blf )

(18)
fori =0, ..., L—1. An angle oy measured at time
k is associated with the landmark that produces
the smallest deviation between hypothesized and
measured angles. If this deviation is larger than
a prespecified bound, the measured angle is dis-
carded.

-yf)

4.3 Posture Set Defined by Measurements

The measurement equation for a single oy, at time
k and an associated landmark at z™™ is given by
(3). It may be rewritten to yield the exact set of

2 _0.5 < k < 0.5 leads to symmetric solution formulae for

& in contrast to the formulation in (Schweppe, 1973), that
assumes 0 < « < 1.
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all vehicle postures compatible with the measured
angle. The set is given by

oM = {_z_'kM :sin(og + Y {z™™ — =M}

= cos(ax + R ){y"™ — i’}
la — G| < 6%, 2M € QLM}(IQ)

Linearizing around the predicted posture @kP , the
measured angle &y, and the nominal landmark po-
sition 2“M yields an approximation of the set of
all vehicle postures defined by the measurement

OM ~ {zM 2 = Hiz +ex, e§ < Ex} -
(20)

zx, Hy, and Ej are given in (Hanebeck and
Schmidt, 1996).

4.4 Combination of Data

After measurement k, the vehicle posture simulta-
neously belongs to two sets: 1. the prediction set
QF, which carries all past information from dead-
reckoning and previous measurements, and 2. the
measurement set 2, which accounts for the last
angle measurement. Consequently, fusion consists
of calculating the intersection of the two sets ar,
QM. However, the intersection of QF and Q¥ is,
again, not in general an ellipsoid. Thus, an ellip-
soid circumscribing the intersection is required to
arrive at a recursive scheme. A bounding ellipsoid
is given by (Sabater and Thomas, 1991)

OF = {2 : (aF - £F) (CP) ™ (af - 2)" <1}
CE = 4y Dy
CPH,H{Cf
E + A\ Gy
iF = 28 + M DR H B e

Dy =CF - M\

TP (21)
€x = 2k — ﬂk:ﬁk

Gy = H{ C{ H,
dp =1+ X — )\kei/(Ek + Aka)

for all A > 0. The set QF possesses the interesting
property that it both contains the intersection of
the measurement and the prediction set and is
itself contained in their union, i.e.,

QM nal) c 0F c (M uap) .
(22)

Furthermore, the set QF is valid for any noise dis-
tribution complying with the amplitude bounds.
But more importantly, no independence assump-
tion is used in the derivation. As a result, the es-
timator provides a reliable uncertainty quantifica-
tion, even in the case of nonwhite and determin-
istic measurement errors.

plane intersecting ellipsoid

plane outside
the ellipsoid

AN A
@ @ tangential planes

Fig. 1. 1: Configurations for measurement strip
QM (20) and prediction ellipsoid € (two-
dimensional visualization). 2: Definitions for
assessing consistency of the sets QM, QF.

Although very similar in appearance to the Kal-
man filter equations®, (21) defines a nonlinear es-
timator which inherits a selective update mecha-
nism. The nonlinear estimator comprises the fol-
lowing cases:

e Consistency: Prediction set Qf and mea-
surement set QQ’I possess common points.
e Full consistency:
No uncertainty reduction: The ac-
tual measurement is of no help in re-
ducing the uncertainty, Fig 1.1 a).
Uncertainty reduction: Both planes
defining the measurement set intersect
the ellipsoidal prediction set, Fig. 1.1 b).
¢ Partial consistency: Only one plane in-
tersects the prediction set, Fig. 1.1 c).
e Inconsistency: Prediction set Qf and mea-
surement set QM do not share a common
point, Fig. 1.1 d).

Inconsistency is detected by checking the con-
dition

dy Amin <0, with )\"'in =,/ == .
k k G
k (23)

No update is then performed. For the case of con-
sistency of ellipsoid and strip, the volume of the
bounding ellipsoid in (21) may be minimized by
selecting the weight AJFT as the most positive root
of the quadratic equation given by (Sabater and
Thomas, 1991)

M(N —1)G: + Me{el + 2N — 1)Ey, — G }Gr
+{N(Ex - €) —Ge}Ex =0, (24)

where N is the dimension; here N = 3. The case
of no uncertainty reduction is characterized by
APT < 0.

Ellipsoidal Bounding Set with Minimum Volume
Projection Onto Subspace. For the application
considered here, it is more natural to minimize
the volume of the projection of the EBS onto the
z, y subspace. The EBS with a minimum-volume

3 In fact, for Ay = 1 and di = 1, (21) yields the Kalman
filter equations, when CkE, Cf , and Ej are interpreted as
covariance matrices.
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projection onto an arbitrary subspace is obtained
with AT as the positive real root of

M (Gy ~ Ki)GEL
+A2{L(3Gx — 2K}) — K1} ExGy
+Ak{ex (L(Kx — Gx) + Kx) (25)
+E,(L(3Gy — Ky) — Ki) — G K} Ey,
+H{L(Bx - €§) — Kk }E} =0,
with L the subspace dimension and

Ky = Hi (CE)T[proj(CE)]*CF H,. 26)
26

C? is obtained from C¥ by eliminating the rows
not associated with the subspace being consid-
ered. The proof is patterned after the one in
(Deller and Luk, 1989) and is given in (Hanebeck
and Schmidt, 1996). Application to the localiza-
tion problem leads to a tailored bounding opera-
tion. The inherently high precision of the orienta-
tion estimate z,/),lf compared to the position esti-
mate z7, yF is considered by minimizing the pro-
jection of the EBS onto the z, y subspace. The re-
sulting EBS is more conservative in £, but tight
for the more critical position estimate zZ, yP.

Robust Fusion. Using the “smallest” EBS is suc-
cessful as long as the model is sufficiently precise.
However, modeling errors may lead to an unrealis-
tically small estimation set QkE. Enhanced robust-
ness is achieved by imposing a higher priority on
the set of predicted states Qf since it contains all
past information. This priority should depend on
the degree of consistency of the two sets f and
QM. Roughly speaking, the idea is to select the set
Q% such that it exhibits a growing tendency to-
wards the prediction set QkP with a falling degree
of consistency of the sets Qf and Q. Referring
to Fig. 1.2, a reasonable consistency measure is
given by the intersection width W,CE divided by
the geometric mean of the strip width WM and
the ellipsoid width W,f , l.e.,

WE'
—k __  0<CM<1.
VWEwM (27)
Ax in (21) is selected from [0, A{FT] as an appropri-
ate function of the consistency measure. For this
purpose, a shifted logistic function

Ak = ALFT/[1 + exp(—S(CM — M))],

CM(Q, ) =

(28)

is used with S = 10, M = 0.5. The influence
of this extension to the fusion result is demon-
strated in Fig. 2 by comparison with the com-
mon approach for four cases. For the common
approach, the volume of the resulting EBS QkE
experiences large changes when the measurement
set just changes slightly. Single (unmodeled) mea-
surement outliers may lead to an extremely small

common
approach

new
approach

Fig. 2. EBSs for the intersection of ellipsoid and
strip. Top: Common scheme. Bottom: Exten-
sion employing consistency measures.

T

CM—_\
volume CM
of | Z>\
estimation | YO'Ume new
set approach

common — .

approach <> \

Fig. 3. Volume of the EBS in Fig. 2.

EBS. On the other hand, the new approach calcu-
lates QF by modifying 2 depending on its consis-
tency with QkM . Thus, single erroneous measure-
ments have a reduced impact on the fusion result.
The volume of the EBS as a function of d, where d
is the distance of the ellipsoid center from the strip
center axis, is shown for this example in Fig. 3.

Remark: The smallest possible EBS is obtained
from (21) when both hyperplanes defining QM
intersect F. Overbounding occurs when one of
the hyperplanes falls outside Qf. The minimum-
volume bounding ellipsoid would then be obtained
by parallel repositioning of the outside plane to
be tangential to f (Cheung, et al., 1993). This
is not exploited here, since overbounding is inten-
tionally performed in the case of partial consis-
tency by using consistency measures.

4.5 Set-theoretic Recursive Estimator

The proposed recursive estimation scheme for lo-
calization during fast motion is depicted in Fig. 4.
Based on the set of estimated postures QF | at
time & — 1, the visible landmarks are determined,
and validation bounds for a measured angle are
predicted. If the actual measured angle falls out-
side these bounds, it is discarded. Otherwise, it is
associated with the best matching landmark and
the measurement strip Q) is calculated. O is
then fused with the set of predicted postures QF
to produce QkE . The feedback of if to the pro-
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!
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Task 2 Landmarks
| from map

Fig. 4. Scheme of the set-theoretic recursive esti-
mator.

cess for determination of O} deserves some at-
tention. ikE replaces @kp for iterative refinement
of the linearization of (19). For implementation
purposes, the scheme has been parallelized into
three tasks: the fusion loop, the determination of
landmarks not occluded by partitioning walls, and
dead-reckoning.

5. EXPERIMENTAL VALIDATION

The performance of the new posture estimator
is demonstrated by localizing a floor-inspection
robot on a non-stop long-range mission. The in-
spection mission takes about 46 minutes and con-
sists of covering a winding course of more than
1 km length. The nominal speed is about 1000
mm/sec. The floor-inspection robot is emulated
by the general-purpose service robot ROMAN
(Hanebeck and Schmidt, 1995) shown in Fig. 5.
ROMAN is a full-scale mobile robot adapted to
indoor requirements: width 0.63 m x depth 0.64
m x height 1.8 m. Three independently steerable
wheel systems provide excellent maneuverability.
Wheel diameters of 0.2 m allow travel across rough
surfaces like carpeted floor. For absolute local-
ization of ROMAN, an onboard laser-based go-
niometer is used. An eye—safe laser beam scans
the environment in a horizontal plane and deter-
mines the azimuth angles to known artificial land-
marks, i.e., retro-reflecting tape strips attached to
the walls. The landmarks are not coded and the
system does not provide distance information. 20
horizontal 360° scans per second are performed;
absolute measurement accuracy is about 0.02°.
A map contains nominal positions of 11 identi-
cal landmarks. Landmark positions have been ac-
quired by the robot itself during an exploration
trip. The dead-reckoning system comprises the
robot’s odometer and a gyroscope. The odometer
is based on the drive wheels’ encoders, and suf-
fers from error sources like imperfect wheel coor-
dination and uncertain wheel/floor contact points.
The gyroscope suffers from a slowly time-varying
unknown offset. During the inspection mission,
the robot has to follow the path shown in Fig. 6.
This is automatically generated according to an
approach described in (Hofner and Schmidt, 1995)
and yields a floor coverage of about 83 %. The ac-

Laser-based

Mounting plate
for inspection device §

Fig. 5. Omnidirectional mobile service robot.

tual path driven by the vehicle is shown in Fig. 7,
together with the area covered by the vehicle out-
line. The planned path and the actual path are
in good accordance. To underline the long-term
stability of the proposed localization scheme, the
robot’s posture is initialized only once, using the
techniques described in Section 3. After initializa-
tion, the robot repetitively travels along the path,
without stopping. After 12 loops, the total dis-
tance travelled is about 1056 m; the total time is
46 min. The number of sharp 180° turns is 132
and the number of 90° turns is 72. The nominal
speed is 1000 mm/sec, and the average speed is
411 mm/sec. The localization estimate based on
the fusion of goniometer data and dead-reckoning
is compared with data from dead-reckoning only.
For visualization purposes, the incremental pos-
ture changes given by odometer and gyroscope
are integrated for every loop and plotted, 1. with
respect to the starting position of the respective
loop in Fig. 9, and 2. with respect to the initial
posture in Fig. 10. The highly correlated nature
of the accumulating dead-reckoning errors is ob-
vious. On the other hand, the vehicle is kept ac-
curately on track by means of the localization es-
timate as shown in Fig. 8. The maximum abso-
lute deviation was found to be in the order of £5
cm and £1°. The actual translational and angu-
lar velocities of the vehicle are plotted over time in
Figs 11 and 12 respectively. The robot slows down
to about 150 mm/sec during the sharp turning
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Fig. 7. Floor inspection mission: Actual path together with the area covered by the vehicle.

maneuvers and accelerates to a nominal speed of
about 1000 mm/sec along the straight path seg-
ments. Of course, for the short path segments the
robot slows down before arriving at the nominal
speed. The angle measurements collected during
the 46—minute mission are processed, with the re-
sults shown below.

QL"’ and Qf fully
or partially consistent
(Fig. 1.1 b, Fig. 1.1 ¢).
no angle available, no
landmark associated

update of robot

posture estimate 734%

7.85 %

no update of robot

R QM and QF inconsis-
posture estimate k k

tent (Fig. 1.1 d).

redundant  informa-
tion (Fig. 1.1 a).

4.75 %

14.00 %

In contrast to linear filters, the nonlinear filter de-
fined by (21) does not incorporate redundant in-
formation. Furthermore, the ability to discard in-
consistent information is inherent in the nonlinear
filter. No additional consistency check is required.
As a by—product, the selective update mechanism
saves some computations.

The localization system has been in operation for
more than one year, and serves as the basis for re-
search on mobile manipulation tasks. It has been
extensively tested by covering a distance of more
than a hundred kilometers. Experiments include
long-range navigation as discussed above, door
opening/passing maneuvers, and high-speed runs
with maximum velocities of up to 2 m/sec. Set—
theoretic estimation proved to be an appropriate
alternative to the common statistical approaches
when dealing with strongly correlated or deter-
ministic uncertainties.

6. CONCLUSION

Set—theoretic concepts have been applied to esti-
mating the posture of fast-moving mobile robots
which perform angular measurements on the loca-
tion of known landmarks. The landmarks do not
need to be distinguished by the robot. Four main
results have been presented:
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Fig. 9. Incremental posture changes given by dead-reckoning and gyroscope integrated with respect to
the starting posture of the respective loop (total of 12 loops).

1. An efficient algorithm for posture initialization
in nonconvex rooms,

2. asimple closed—form solution for the robot’s po-
sition, given angular locations of N known land-
marks, which consists of N — 1 equations linear in
the position,

3. an extension of the common minimum-
volume EBS algorithms to obtain the EBS with
minimum-volume projection onto an arbitrary
subspace, and

4. a new design approach for set-theoretic esti-
mators which employs consistency measures to
achieve robustness against modeling errors.

The effectiveness of the proposed set—theoretic es-
timator has been demonstrated by experiments
with a fast omnidirectional service robot. The
full-scale robot is equipped with a laser—based go-
niometer which performs angular measurements
on the location of tape strips attached to the wall
and used as artificial landmarks. Localizing the
robot on a long-range floor-inspection mission re-
veals a maximum deviation of about £5 cm and
+19 between true and estimated robot locations.
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