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Abstract—This paper provides an efficient method for approx-
imating a given continuous probability density function (pdf) by
a Dirac mixture density. Optimal parameters are determined
by systematically minimizing a distance measure. As standard
distance measures are typically not well defined for discrete
densities on continuous domains, we focus on shifting the mass
distribution of the approximating density as close to the true
density as possible. Instead of globally comparing the masses as
in a previous paper, the key idea is to characterize individual
Dirac components by kernel functions representing the spread
of probability mass that is appropriate at a given location. A
distance measure is then obtained by comparing the deviation
between the true density and the induced kernel density. This
new method for Dirac mixture approximation provides high-
quality approximation results, can handle arbitrary pdfs, allows
considering constraints for, e.g., maintaining certain moments,
and is fast enough for online processing.

Keywords—Dirac mixture approximation, sampling, statistical
distance measure, moment problem, progressive processing, homo-
topy continuation.

I. INTRODUCTION

This paper provides an efficient method for approximating
a given continuous probability density function (pdf) by a
deterministic Dirac mixture density. The resulting Dirac mixture
density is then used to simplify the typical operations in system
identification, state estimation, filtering, data fusion, and control
such as transforming random variables with nonlinear mappings
or performing numerical integration for calculating nonlinear
moments. State-of-the-art Dirac mixture approximations are
currently used in diverse nonlinear filters such as Gaussian
filters, e.g., the S2KF [1] and PGF42 [2], or in particle-based
model-predictive control.

The problem is to find appropriate parameters of the
approximating discrete density (the weights and locations of the
Dirac components) so that it is in some way close to the true
density. Various options for measuring closeness are available
such as comparing certain moments. Direct measures for shape
differences, however, are usually not applicable as they are not
well-defined for discrete densities on continuous domains. In
this paper, we focus on comparing probability masses between
the two densities with the goal of shifting the mass distribution
of the approximating density as close to the true density as
possible.

The key idea is to characterize individual Dirac components
by kernel functions representing the spread of probability
mass that is appropriate at a given location. For reducing
computational complexity, only the true densities at the Dirac
locations themselves are considered for calculating the kernel
function parameters leading to a heteroscedastic but isotropic
induced kernel density. A distance measure is then obtained
by comparing the deviation between the true density and the
induced kernel density. Here, a squared integral measure is

used for that purpose. Finally, the weights and locations are
optimized in such a way as to minimize this distance.

The required integrals can be solved in closed form for
certain true densities such as Gaussian densities, Gaussian
mixture densities, or rectangular densities in combination
with adequate kernels, e.g., Gaussian or rectangular kernels.
However, for arbitrary true densities, an analytic solution is
not possible. To be able to come up with efficient solutions
for arbitrary densities and Gaussian kernels, two integration
schemes are used that are themselves based on Dirac mixture
approximations. Discretization is either achieved by replacing
the true density or the individual Gaussian kernel functions by
Dirac mixture approximations that have been calculated using
the closed-form approach.

This new method for Dirac mixture approximation provides
high-quality approximation results, can handle arbitrary pdfs,
which also includes the important case of products of densities,
allows considering constraints for, e.g., maintaining certain
moments, and is fast enough for online processing. In this paper,
we will focus on generating Dirac mixture approximations for
Gaussian densities.

II. PROBLEM FORMULATION

We consider a random vector x = [x1,x2, . . . ,xN ]
T with

realizations x ∈ IRN characterized by a given continuous pdf
f̃(x). Our goal is to approximate f̃(x) by a discrete pdf f(x)
on the continuous domain IRN . Here, we use a so called Dirac
mixture density f(x) with L Dirac components given by

f(x) =

L∑
i=1

wi · δ(x− x̂i) , (1)

with positive weights, i.e., wi > 0 for i = 1, . . . , L, that sum up
to one, i.e.,

∑L
i=1 wi = 1, and locations x̂i with components

x̂ki for dimension k with k = 1, . . . , N . The locations are
collected in a matrix X̂ = [x̂1, x̂2, . . . , x̂L] ∈ IRN×L.

Our goal is to systematically find a Dirac mixture density
f(x) in (1) that is in some sense as close as possible to the
given density f̃(x) by adjusting its parameters, i.e., its weights
wi and its locations x̂i for i = 1, . . . , L. In this paper, we
assume solution existence and focus on adjusting the locations
only. We define a parameter vector η ∈ S = IRLN containing
the parameters as

η =
[
x̂T1 , x̂

T
2 , . . . , x̂

T
L

]T
(2)

and write f(x) = f(x, η). Of course, η can be obtained as
η = X̂(:).



For assuring closeness in a stochastic sense, the given
density f̃(x) and its Dirac mixture approximation f(x, η)
should have certain moments in common, e.g., have the same
mean and first central moments. This results in a special type
of truncated moment problem: Given certain moments of the
given density f̃(x), these moments are to be matched by the
corresponding moments of its Dirac mixture approximation
f(x, η) by selecting a suitable parameter vector η.

When the parameters of f(x, η) are redundant in the sense
that the length LN of the parameter vector η is larger than
the number of moment constraints, a regularizer for f(x, η)
is required. Regularization could be performed by selecting
the least informative Dirac mixture, e.g., the one having
maximum entropy. In this paper, we go one step further and use
redundancy to minimize a distance measure between the given
density f̃(x) and its Dirac mixture approximation f(x, η). This
results in a constrained optimization problem, where the most
regular Dirac mixture approximation f(x, η) is desired that
fulfills the moment constraints.

III. STATE OF THE ART

Random sampling is the simplest and fastest method to
discretize a given probability density function. However, as
samples are produced independently, the convergence of its
statistics, such as the moments, to the true values is slow so
that lots of samples are required. In addition, the given density
is not homogeneously covered.

For generating deterministic samples, moment-based ap-
proximations of Gaussian densities have been proposed in the
context of the Linear Regression Kalman Filter (LRKF), see
[3]. Examples are the Unscented Kalman Filter (UKF) in [4]
and its scaled version in [5], its higher-order generalization in
[6], and a generalization to an arbitrary number of deterministic
samples placed along the coordinate axes introduced in [7].
Methods for deterministic Dirac mixture approximation based
on distance measures have been proposed for the case of scalar
continuous densities [8], [9]. An algorithm for sequentially
increasing the number of components is given in [10] and
applied to recursive nonlinear prediction in [11]. Systematic
Dirac mixture approximations of arbitrary multi-dimensional
Gaussian densities are calculated in [12]. A more efficient
method for the case of standard normal distributions with a
subsequent transformation is given in [13].

For circular probability density functions, a first approach
to Dirac mixture approximation in the vein of the UKF is
introduced in [14] for the von Mises distribution and the
wrapped Normal distribution. Three components are systemati-
cally placed based on matching the first circular moment. This
Dirac mixture approximation of continuous circular probability
density functions has already been applied to sensor scheduling
based on bearings-only measurements [15]. In [16], the results
are used to perform recursive circular filtering for tracking an
object constrained to an arbitrary one-dimensional manifold.

A combination of random and deterministic sampling can
be found in [17].

IV. DIRAC MIXTURE APPROXIMATION

The goal of this section is to systematically find a Dirac
mixture approximation of a given density in such a way that
a certain distance measure is minimized. Typical distance
measures such as the Kullback-Leibler distance or squared
integral distances are not well defined [18] for directly compar-
ing continuous densities and Dirac mixture densities, so that

cumulative distributions or localized cumulative distributions
[18] are used instead. Here, we pursue a different approach that
is similar to the mass-based comparison approach in [12], where
we consider masses of both densities under certain kernels for
all possible kernel locations and widths, which allows the use of
integral measures for the mass functions. Appropriate weighting
gives an error spectrum with “blue noise” characteristics [19],
i.e., which is zero for low frequencies. In this paper, we use a
simplified and computationally more efficient approach inspired
by blue-noise sampling, e.g., see [20]. Instead of discs, however,
we use kernels for describing the mass of individual Dirac
components as in [21].

The key idea is to compare probability masses between the
two densities with the goal of shifting the mass distribution
of the approximating density as close to the true density as
possible. For that purpose, the individual Dirac components
are characterized by kernel functions representing the spread
of probability mass that is appropriate at a given location. For
reducing computational complexity, only the true densities at
the Dirac locations themselves are considered for calculating
the kernel function parameters. A distance measure is then
obtained by comparing the deviation between the true density
and the induced kernel density. Here, a squared integral distance
is used for that purpose. Finally, the locations are optimized in
such a way as to minimize this distance.

A. Induced Kernel Density

For characterizing each Dirac component i located at x̂i,
we use a Gaussian density normalized to the height of the
true density at the location of the Dirac component. For that
purpose, we take an axis-aligned unnormalized Gaussian density
with mean located at x̂i and equal spread in every dimension.
Multiplying it with the height of the true density at the Dirac
component location f̃(x̂i) gives the desired kernel functions

ki(x) = f̃(x̂i) exp

(
−1

2

1

τ2i
(x− x̂i)T (x− x̂i)

)
(3)

for i = 1, . . . , L, where the τi are individual spread parameters
yet to be determined.

The spread parameters τi in (3) are determined by main-
taining the mass in the Dirac component given by wi, so we
obtain ∫

IRN

ki(x) dx = wi ,

which gives (
√
2π τi)

N f̃(x̂i) = wi or

τi =
1√
2π

(
wi

f̃(x̂i)

) 1
N

. (4)

The resulting kernels have a larger width in low-density
regions of the given continuous density and these regions are
characterized with few Dirac components per unit area. In high-
density areas, the kernels have smaller widths, which results
in more Dirac components per unit area.

Finally, by inserting τi from (4) into the respective kernels
in (3), we obtain the induced kernel density as

k(x, η) =

L∑
i=1

ki(x) (5)

=

L∑
i=1

f̃(x̂i) exp

−π( f̃(x̂i)
wi

) 2
N

(x− x̂i)T (x− x̂i)

 .



When k(x, η) is close to f̃(x) on IRN , the mass distributions
of both f̃(x) and its Dirac mixture approximation f(x, η) are
similar and we consider the densities to be close. Hence, k(x, η)
can be used to define a distance measure D(η) between f̃(x)
and f(x, η) on IRN .

B. Distance Measure

Given the induced kernel density k(x, η) in (5) correspond-
ing to the Dirac mixture approximation f(x, η), we now define
a distance measure between f̃(x) and f(x, η) on IRN as

D(η) = D
(
f̃(x), f(x, η)

)
(6)

by actually comparing f̃(x) and the induced kernel density
k(x, η).

As specific distance measures, we can now employ the
Kullback-Leibler divergence given by

D(η) =

∫
IRN

f̃(x) log

(
f̃(x)

k(x, η)

)
dx

or the standard squared integral distance measure

D(η) =

∫
IRN

(
f̃(x)− k(x, η)

)2
dx . (7)

C. Moment Constraints

For defining the moment constraints, we employ a multi-
index notation with κ = (κ1, κ2, . . . , κN ) containing non-
negative integer indexes for every dimension. We define |κ| =
κ1+κ2+. . .+κN and xκ = xκ1

1 ·x
κ2
2 · · ·x

κN

N . For a scalar c, the
expression κ ≤ c is equivalent to κk ≤ c for k = 1, 2, . . . , N .
The moments of a random vector x with density f(x) are given
by

eκ =

∫
IRN

xκf(x) dx (8)

for κ ∈ INN0 . For zero-mean random vectors x, the moments
coincide with the central moments.

Moments of a certain order m are given by eκ for |κ| = m.
We define a multi-dimensional matrix EM of moments of up
to order M as

EM (κ+ 1) =

{
eκ |κ| ≤M
0 elsewhere ,

(9)

with κ ≤M and eκ from (8). The multi-dimensional matrix
EM ∈ IRM+1×M+1×...×M+1 is indexed from 1 to M + 1 in
every dimension. An example is given in (15).

D. Optimization

As the final optimization problem, we now desire to
minimize the distance measure in (6) while maintaining the
moment constraints in (9) of up to order M , i.e.,

η
opt

= argmin
η∈S

D(η) s.t. EM = ẼM . (10)

V. IMPLEMENTATION ISSUES

For implementing the proposed method for Dirac mixture
approximation, we have to select a specific distance measure
such as the one in (7), calculate the required integrals, and
perform an optimization for obtaining the desired parameters
of the Dirac mixture approximation.

A. Variation of the Distance Measure

Instead of using the plain squared integral distance measure
in (7), it is often advisable to place more emphasis on regions
with a small original density. This is done by weighting the
squared integral distance measure with one over the true density
according to

D(η) =

∫
IRN

(
f̃(x)− k(x, η)

)2 1

f̃(x)
dx ,

which after a simple expansion is seen to be equivalent to

D(η) =

∫
IRN

k2(x, η)

f̃(x)
dx , (11)

where constant terms have been omitted. This is the distance
measure we will consider from now on!

B. Performing the Integration

In some interesting cases, the integration in (11) can be
performed analytically, which gives the most precise results.
This includes the case of given Gaussian densities and Gaussian
mixture densities for Gaussian kernels that we assumed for this
paper anyway1.

When analytic integration is not possible, several numerical
integration schemes can be applied. Of course, one option is
to use a standard integration method, which typically is not
efficient as no problem-specific structure is exploited.

The first option for using the problem structure during
integration is to discretize the given true density f̃(x). When
the discretized true density f̃d(x) is close to the true density,
we can rewrite (11) as

D =

∫
IRN

k2(x, η)

f̃(x)

f̃d(x)

f̃(x)
dx .

With f̃d(x) a Dirac mixture density with P components given
by

f̃d(x) =

P∑
k=1

wk δ(x− tk) ,

the integration becomes a summation

D =

P∑
k=1

wk
k2(tk, η)

f̃2(tk)
.

Replacing the true density with a discretized version might
look like a contradiction, as the goal of this paper is to derive
such a discretization. However, a cheaper discretization such as
random sampling might be applied. Of course, random sampling
is only cheap for certain types of densities such as Gaussian
densities, Gaussian mixture densities, or uniform densities over
complicated support regions.

The second option for using the problem structure during
integration is to discretize the induced kernel density k(x, η).
Here, some discretization of the standard normal distribution
is used and applied to every kernel of the induced kernel
density by translation and scaling, which allows to convert the
integration to summation similar to the first option. This is the
most efficient but also most complicated integration method,
as the discretization points depend upon the parameters and,
hence, influence the gradient during the optimization process.

1We even assume axis-aligned Gaussian kernels with equal widths in every
dimension.



C. Optimization

The optimization problem (10) is nonlinear and nonconvex
with nonlinear equality constraints so that numerical mini-
mization can, depending upon the given starting values, get
stuck in local minima. To avoid this problem, we start with
a density with a known approximation and use a homotopy
continuation method [22] to approach the desired density. For
that purpose, we define a progression parameter γ ∈ [0, 1]
with f̃(x, γ = 0) corresponding to a density with known Dirac
mixture approximation and f̃(x, γ = 1) corresponding to the
given density for which a Dirac mixture approximation is
desired.

A generic parametrization of the true density is given by

f̃(x, γ) =
f̃γ(x)∫

IRN f̃γ(x) dx
. (12)

For specific true densities, however, problem-specific and
more natural parametrizations can be used as we will see
in Sec. VI. We start with γ = 0 corresponding to the density
f̃(x, γ = 0) with a known Dirac mixture approximation. Then,
we progressively increase the parameter γ and for every γ solve
the optimization problem by just correcting the result from
the previous step, which ensures tracking the desired solution,
see Alg. 1. No predictor is used. As a corrector in line 7, we
use the function fmincon for constrained optimization in our
MATLAB implementation. A maximum amount of iterations
is prespecified for fmincon and success is reported when the
optimum for an increased value of γ can be found within these
iterations.

VI. EVALUATION

We will now evaluate the proposed Dirac mixture ap-
proximation method by discretizing a variety of Gaussian
densities. It is important to note that arbitrary Gaussians
(different eigenvalues of the covariance matrix, not aligned
with the coordinate axes) are directly approximated. This is
different from first transforming an arbitrary Gaussian to a
standard normal distribution, performing the Dirac mixture
approximation, and transforming the resulting Dirac mixture
back. In addition, the mean and the central moments up to
third order are explicitly maintained.

To also allow for a visual inspection, the approximation
will be performed in two dimensions, i.e., N = 2. Without loss
of generality, we consider true densities that are zero-mean
Gaussian as

f̃(x) =
1

2π
√
|C|

exp

(
−1

2
xTC−1x

)
, (13)

with a covariance matrix specified by the standard deviations
σ1, σ2 of x1, x2, respectively, and the correlation coefficient
ρ ∈ [−1, 1] according to

C =

[
σ2
1 ρ σ1σ2

ρ σ1σ2 σ2
2

]
. (14)

A closed-form expression for the distance measure in (11) is
used in this case.

For progressive processing, we use a more problem-specific
parametrization than (12). The covariance matrix in (14) is
parametrized as

C(γ) =

[
σ2
1(γ) γ ρ σ1(γ)σ2(γ)

γ ρ σ1(γ)σ2(γ) σ2
2(γ)

]
,

Dirac mixture approximation
Input : Given true density f̃ , number of Dirac components L,

number of moments M to maintain
Output : Dirac mixture approximation with parameter vector η

according to (2) and number of progression steps PC
// Initialize progression step counter

1PC := 0;
// Initialize progression parameter γ

2γ := 0;
// Initialize ∆γ

3∆γ := ε (some small positive number);
// Parameters for in-/decreasing ∆γ

4Down := 0.5 , Up := 1.5;
// Initial parameter vector for γ = 0

5Initialize η;

6while γ < 1 do
// Try correcting values for increased γ

7[η
tmp
, success] := Corrector(η, γ + ∆γ);

8if Correction step successful? then
// Make trial update the temporary estimate

9η := η
tmp

;

// Increment γ
10γ := γ + ∆γ;

// Increase step size
11∆γ := Up ∗ ∆γ;

// Increment progression step counter PC
12PC := PC + 1;
13else

// Decrease step size
14∆γ := Down ∗ ∆γ;
15end

// Limit γ to [0, 1]
16if γ + ∆γ > 1 then
17∆γ := 1 − γ;
18end
19end

Algorithm 1: Dirac mixture approximation f(x, η) with
parameter vector η of given continuous density f̃(x).

with σi(γ) = (1 − γ)(σ1 + σ2)/2 + γ σi for i = 1, 2. The
parametrized true density

f̃(x, γ) =
1

2πσ1(γ)σ2(γ)
√
1− γ2ρ2

exp

(
−1

2
xTC−1(γ)x

)
now gives an axis-aligned Gaussian with equal widths in both
dimensions for γ = 0 and the original true density in (13) for
γ = 1.

For initializing the progressive optimization (line 5 in
Alg. 1), random components are used. An alternative is to use a
Dirac mixture approximation for a standard normal distribution
calculated offline by, e.g., the method in [13], and stored, which
is then scaled to the axis-aligned Gaussian with equal widths
in both dimensions for γ = 0.

The Dirac mixture approximation of (13) should maintain
moments up to third order, so we consider a moment matrix
E3 with

E3 =

1 2 3 4 e00 e01 e02 e03 1

e10 e11 e12 0 2

e20 e21 0 0 3

e30 0 0 0 4

. (15)



For the considered true density, the parametrized Gaussian
density, the normalization constant is one, i.e., ẽ00 = 1, the
means are zero, i.e., ẽ01 = 0, ẽ10 = 0, the three second-order
moments are given by ẽ20 = σ2

1(γ), ẽ11 = γ ρ σ1(γ)σ1(γ),
ẽ02 = σ2

2(γ), and the four third-order moments are given by
ẽ30 = 0, ẽ21 = 0, ẽ12 = 0, ẽ03 = 0. Hence, the moment matrix
of the parametrized true density is given by

Ẽ3(γ) =

 1 0 σ2
2(γ) 0

0 γ ρ σ1(γ)σ2(γ) 0 0
σ2
1(γ) 0 0 0
0 0 0 0

 .

The resulting Dirac mixture approximations for Gaussian
densities with σ1 = 1, σ2 = 1 and three different values of the
correlation coefficient ρ = 0.0, ρ = 0.4, and ρ = 0.8 are given
for three different numbers of components L = 12, L = 20,
and L = 30 in Fig. 1, Fig. 2, and Fig. 3, respectively.

VII. CONCLUSION

The proposed method reliably provides well-distributed
Dirac mixture approximations of arbitrary densities while
exactly maintaining a set of predefined moments. The Dirac
components are placed deterministically and homogeneously
cover the support of the given density.

The resulting Dirac mixture approximations are used to
replace continuous densities in order to make certain processing
steps feasible that are required in system identification, state
estimation, filtering, data fusion, and control. In contrast to
random sampling, significantly fewer samples are required and
reproducible results are generated.

As Gaussian densities play an important role, e.g., in
Gaussian filtering, and many methods for sampling Gaussians
have been proposed, we evaluated the proposed Dirac mixture
approximation method by approximating Gaussians. Gaussian
densities allow for an analytic integration of the distance
measure, which speeds up the calculation even more. The
resulting Dirac mixture approximations are well-distributed and
also visually appealing.

The next step is to thoroughly compare the Dirac mixture
approximations of Gaussian densities with the results of the
method in [12], which is used in the generalization of the
Unscented Kalman Filter (UKF) proposed in [1] and in the
nonlinear Gaussian filter proposed in [2]. In these filters, the
method in [12] is used to offline generate Dirac mixture
approximations for standard normal distributions that are then
online transformed to the desired arbitrary Gaussian. Compared
to the method in [12], the new method proposed in this paper
has three advantages with respect to approximating Gaussians:
(i) It is faster and, hence, (ii) allows the online approximation
of arbitrary Gaussians, and (iii) explicitly maintains moments
up to a prespecified order.

Future generalizations include greedy sequential approxima-
tions that add new components until a prespecified approxima-
tion quality is achieved without changing existing components.
In addition, densities over periodic quantities, i.e., densities on
circles, spheres, and tori will be considered.
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Fig. 1. Dirac mixture approximation of Gaussian density with L = 12 components for (left) ρ = 0.0, (middle) ρ = 0.4, (right) ρ = 0.8. All moments up to
order three are exactly maintained.
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Fig. 2. Dirac mixture approximation of Gaussian density with L = 20 components for (left) ρ = 0.0, (middle) ρ = 0.4, (right) ρ = 0.8. All moments up to
order three are exactly maintained.
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Fig. 3. Dirac mixture approximation of Gaussian density with L = 30 components for (left) ρ = 0.0, (middle) ρ = 0.4, (right) ρ = 0.8. All moments up to
order three are exactly maintained.


