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Abstract1

In this article, a new mechanism is described for mod-
eling and evaluating hybrid Bayesian networks. The
approach uses Gaussian mixtures and Dirac mixtures
as messages to calculate marginal densities.
The mechanism is proven to be exact, hence the ac-
curacy of resulting marginals is only dependending
on the accuracy of the conditional densities. As
these densities are approximated by means of Gaus-
sian mixtures, any desired precision can be achieved.
The presented approach removes the restrictions con-
cerning the ancestry of discrete nodes often made in
literature. Hence it enables the designer to model arbi-
trary parent-child relationships using continuous and
discrete variables.

1. Introduction
The application of Bayesian networks is evolving since it’s
origin in 1988 [8]. Their stochastic foundation provides a
method to build models for systems with an uncertain be-
haviour. The common approach to model such systems is
to identify parts of the system that can be represented by
random variables. The behaviour of the system is then ex-
pressed by a joint probability over these random variables.
The term random variable is usually used for scalar values
only. For the sake of simplicity this paper only deals with
scalar values, too, but it is easy to extend the presented ap-
proach to vector values. Hence, the term random variable
can easily be translated into random vector.

Bayesian networks are considered to be an efficient repre-
sentation of joint probabilities exploiting the causal back-
ground of a domain. This is achieved by representing the
causal structure of a domain by a directed acyclic graph
(DAG). Each random variable is depicted by a node in this
graph and every edge stands for a direct dependency be-
tween two variables. Probabilistically, this dependency is
expressed by a likelihood function. Bayesian networks have
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the big advantage, that not all possible combinations of vari-
ables and their states have to be addressed. It is sufficient
to consider the conditional density of a variable given it’s
parents.

The first Bayesian networks were limited to a discrete do-
main and their likelihood functions were modeled by con-
ditional tables. Pearl’s approach to evaluate the network by
means of message passing [8] was extended to continuous
networks in [1]. They used Gaussian mixtures, which are
sums of weighted Gaussian densities, to approximate the
likelihood functions and to represent their messages.

The treatment of hybrid Bayesian networks today is mainly
influenced by the articles [2–4, 7], which use so called cg-
potentials. The drawback of this approach is the mere usage
of the first two moments (mean and variance) to character-
ize continuous densities. Another problem is the method
can not handle discrete nodes as children of continuous par-
ents. An attempt to remove this restriction by using sigmod-
functions is given in [6]. This approach is picked up in [5]
to include it into Lauritzen’s mechanism. Again, their accu-
racy is restricted to the first two moments of the densities.

A rarely considered problem in the context of Bayesian net-
works is the treatment of nonlinear dependencies between
variables. The possibility to approximate the likelihood
functions induced by nonlinear dependencies using Gaus-
sian mixtures is offered in [1].

The remainder of this paper is structured as follows. The
next section gives a formulation of the considered prob-
lem. Sections 3 and 4 present new formulations for hybrid
conditional density functions and accordingly adapted mes-
sage representations. The method for computing marginal
densities given some evidence is shown in section 5 fol-
lowed by the mechanism that calculates the resulting new
messages in section 6. Section 7 presents an example of a
hybrid Bayesian network and it’s evaluation using the new
approach. The corresponding results are compared to the
result using Lauritzen’s method.

2. Problem Formulation

Evaluating hybrid Bayesian networks requires the simul-
taneous consideration of continuous and discrete random
variables. Hence, a compatible representation for densities
in both cases has to be found. The goal of this work is to
develop a mechanism that allows the evaluation of a hybrid
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Bayesian network in a computationally tractable way, pro-
ducing a result close to the exact solution.

The drawback of using only the first two moments to de-
scribe a continuous density lies in the fact that there exist
many densities having identical first moments. This can be
seen in figure 1 for the functions f1(x) = N(x, 0, 1) and
f2(x) = 0.5N(x,−√

0.5,
√

0.5) + 0.5N(x,
√

0.5,
√

0.5)
where N(x, µ, σ) = 1√

2πσ
exp− 1

2
(x−µ)2

σ2 is a Gaussian
density with mean µ and deviation σ. Both densities (f1, f2)
have mean 0 and variance 1 which are the first two mo-
ments.

Figure 1. Two distinct densities f1(x) = N(x, 0, 1) and
f2(x) = 0.5N(x,−√

0.5,
√

0.5) + 0.5N(x,
√

0.5,
√

0.5)
with identical means and variances.

The simultaneous treatment of continuous and discrete vari-
ables used in our approach considers two distinct cases,
which are shown in figure 2. The nodes in box shape
are discrete whereas the continuous nodes have a round
outline. For the parent nodes u1, . . . ,um and the child

Figure 2. The simultaneous treatment of continuous and
discrete variables requires the consideration of two distinct
cases. The nodes in box shape are discrete, whereas the
continuous nodes have a round outline.

nodes y1, . . . ,ym we assume a partition into continuous
(u1, . . . ,un or y1, . . . ,yn) and discrete (un+1, . . . ,um or
yn+1, . . . ,ym) variables.

Creating hybrid Bayesian Networks requires hybrid condi-
tional densities to capture the relationship between contin-
uous and discrete variables. These densities must describe
the probability of a continuous or discrete random variable,
depending on the state of a set of mixed parent variables.
Mixed means the set of parent variables contains continu-
ous and discrete variables as well.

Since this new approach is based on message passing, the
message schemes known from pure discrete [8] or continu-
ous [1] approaches must be extended for the use in hybrid
networks. This is due to the fact that messages from contin-
uous variables travel directly to discrete successors and vice
versa. Hence, a new representation is needed, that allows si-
multaneous treatment of continuous and discrete densities.

3. Hybrid Conditional Densities
A hybrid conditional density f(x|u1, . . . um) is given by

f(x|u1...um) =
|un+1|∑
kn+1=1

· · ·
|um|∑
km=1

(
m∏

i=n+1

δ(ui − ki)

)
f∗(x|u1, ..., un).

This formulation contains a single continuous condi-
tional density f∗(x|u1, ..., un) for each joint discrete state
(un+1, . . . , um) of x’s discrete predecessors. The aster-
isk is a shorthand notation indicating the dependence on
(kn+1, . . . , km). The number of states of a discrete vari-
able is indicated by |ui|. δ(ui − ki) is the Dirac function
which can be seen as a Gaussian density with a standard
deviation approaching zero

δ(x − µ) = lim
σ→0

N(x, µ, σ) .

It has the property that it’s value is zero for all x �= µ.

The conditional densities f∗(x|u1, ..., un) used in this pa-
per are modeled using Gaussian mixtures in the continuous
case and as sum over Gaussians and Dirac pulses in the case
that x is discrete. This means we have a single Gaussian
for each continuous parent variable and another Gaussian
or sum of weighted Dirac pulses depending if x is continu-
ous or discrete. This is

f∗
c (x|u1, . . . , un) =

M∗∑
j=1

α∗
jN(x, µ∗

x,j , σ
∗
j )·

N(u1, µ
∗
u1,j , σ

∗
u1,j) · . . . · N(un, µ∗

un,j , σ
∗
un,j)

in the continuous and

f∗
d (x|u1, . . . , un) =

M∗∑
j=1

α∗
j

⎛
⎝ |x|∑

lj=1

p∗lj δ(x − lj)

⎞
⎠ ·

N(u1, µ
∗
u1,j , σ

∗
u1,j) · . . . · N(un, µ∗

un,j , σ
∗
un,j)

in the discrete case. In the continuous case the product
of Gaussians can be interpreted as a multivariate Gaussian
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density with n + 1 dimensions that is aligned with the axes
of the coordinate system.

4. Messages in a Hybrid Network
The probability density over a node x is updated according
to a set of evidence e. As shown in figure 3, this evidence-
set is divided into a subset e+

x of infomation from the upper
part of the network and a subset e−x of information from the
lower part of the network according to x.

The evidence travels to x by means of messages πx(ui)
from the parent nodes and λyj

(x) from the child nodes.
Continuous parents send their messages as Gaussian mix-
ture densities

πxc(ui) = f(ui|e+
i ) =

Mi∑
li=1

w
(i)
li

N(ui;µ
(i)
li,π

, σ
(i)
li,π

)

whereas discrete parents send a sum of weighted Dirac
pulses

πxd(ui) = f(ui|e+
i ) =

|ui|∑
li=1

p
(i)
li

δ(ui − li) .

The message from a continuous child is again a Gaussian
mixture

λyic(x) =

⎧⎨
⎩

Mi∑
li=1

w
(i)
li

N(x;µ(i)
li,λ

, σ
(i)
li,λ

) if e−i �= ∅
1 if e−i = ∅

where e−i is the evidence coming from node yi. The mes-
sage from a discrete child is a sum of weighted Dirac pulses

λyid(x) =

⎧⎨
⎩

|x|∑
li=1

p
(i)
li

δ(x − li) if e−i �= ∅
1 if e−i = ∅

.

The term e−i = ∅ indicates, that no information was gath-
ered in node yi. Hence, the message of this node is set to 1,
causing no update for x.

5. Density Update
The density2 over x depending on the gathered evidence is
calculated as:

f(x) = f(x|e)
= f(x|e+

x , e−x )
= αf(x|e+

x )f(e−x |x)
= απ(x)λ(x) (1)

where α is a normalizing constant. The updated density
over x is a function depending on the evidence e for the
whole network. This evidence can be split into the evidence
e+
x from above x and e−x from below. Since these parts of

evidence are independent, the density function over x can
be written as a product. The density function depending on

2Often quoted as the belief function.

the information from above is abbreviated as π(x) and the
density depending on the information from below as λ(x).

The information from the upper part of the net can be writ-
ten as

π(x) =

∞∫
−∞

· · ·
∞∫

−∞
f(x|u1, ..., um) ·

m∏
j=1

f(uj |e+
j ) du1 · · ·dum .

This calculates the marginal density over x out of the in-
formation coming from every predecessor weighted by the
likelihood of x.

Inserting the definitions from above and simplifying the for-
mula yields

π(x) =
|un+1|∑
kn+1=1

· · ·
|um|∑
km=1

(
m∏

i=n+1

Pr(ui = ki)

)

·
∞∫

−∞
· · ·

∞∫
−∞

f∗(x|u1, ..., un) ·

n∏
j=1

πxc(uj) du1 · · ·dun . (2)

Pr(ui = ki) is the probability, that variable ui is in state
ki. (2) is equal for both continuous and discrete variables
x. To make the distinction between continuous or discrete
x f∗(x|u1, ..., un) has to be chosen accordingly.

Hence, for a continuous x we receive the message

πc(x) =
|un+1|∑
kn+1=1

· · ·
|um|∑
km=1

M∗∑
t=1

γ∗
t N(x; µ∗

x,t, σ
∗
t )

which is a Gaussian mixture density with the weights

γ∗
t = α∗

t

(
m∏

i=n+1

Pr(ui = ki)

)
·

n∏
j=1

Mj∑
lj=1

w
(j)
lj

Nuj (µ
∗
t ; µ

(j)
lj ,π, σ∗

t + σ
(j)
lj ,π) . (3)

The term Nuj (µ
∗
t ; µ

(j)
lj ,π, σ∗

t + σ
(j)
lj ,π) describes a Gaussian

Density over uj with mean µ
(j)
lj ,π and variance (σ∗

t + σ
(j)
lj ,π)

evaluated at µ∗
t .

In the case that x is discrete, the message from the upper
part of the net is

πd(x) =
|un+1|∑
kn+1=1

· · ·
|um|∑
km=1

M∗∑
t=1

γ∗
t

⎛
⎝ |x|∑

ht=1

p∗ht
δ(x − ht)

⎞
⎠

with the same weights γ∗
t as in (3). This message is a sum

of weighted Dirac pulses.
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Figure 3. The evidence coming from the upper and lower part of the net is indicated by e+ and e− .

The message from the lower part of the net is written as

λ(x) =
m∏

j=1

λyj
(x),

which is a product of the single messages coming from ev-
ery child node of x. In the case that x is continuous, this is
again a mixture of Gaussians according to

λc(x) =
M0∑

l0=1

w′
l0N(x;µl0,λ, σl0,λ)

with w′
l0

=
∏m

j=1 w
(j)
lj

. In the discrete case we have a prod-
uct over sums of weighted Dirac pulses

λd(x) =
m∏

j=1

|x|∑
lj=1

p
(j)
lj

δ(x − lj) .

The density function for a continuous or discrete x can
now be obtained by multiplying the appropriate π- and λ-
message.

6. Calculating the Messages to be Sent by an
Updated Node

Every node receiving messages from it’s neighbor sends
out messages to the other neighbors as well. It sends π-
messages to it’s children and λ-messages to it’s parents.

Figure 4. Messages flow into y to update it’s density. Then
y sends back messages to the network.

The π-Messages

The message πyi
(x) that a node x sends to it’s i-th succes-

sor is calculated the following way

πyi
(x) = f(x|e − e−i )

= f(x|e−i = ∅)
= απ(x)λ(x)|λyi(x)=1 .

This means that all evidence excluding e−i , which is the
information coming from yi, is passed ahead. Hence, this
message can be calculated as shown in section 5 under the
assumption λyi(x) = 1.

The λ-Messages

The calculation of the λ-messages is a little more tricky
since these messages travel against the direction of the mod-
eled dependency f(x|ui).

Depending on the continuous or discrete identity of the par-
ent variable, the message sent by x is a Gaussian mixture
density or a sum of weighted Dirac pulses as shown in ta-
ble 1. The main information of these messages is carried

ui λx(ui)

cont.
|un+1|∑
ln+1=1

· · ·
|um|∑
lm=1

M∗∑
j=1

ψ∗
j,iN(ui, µ

∗
ui,j

, σ∗
j )

disc.
|ui|∑
li=1

δ(ui − li) · ηi
li

Table 1. The λ-messages from x to it’s parent ui differs for
continuous or discrete ui.

by their weight vectors ψ∗
j,i and ηi

li
which are calculated in

different ways if x is continuous or discrete.

Boundary Conditions

If x is a root node for which no evidence is available, it’s
π-message is set to be the prior density for that node. This
is a Gaussian mixture density for a continuous x and a sum
of weighted Dirac pulses for a discrete x.

If x is a leaf node that has not been observed so far, it’s
λ-message is set to 1. Hence the density for this node is
calculated as f(x) = π(x).

Exact evidence x = x0 is represented by λ(x) = δ(x −
x0) = N(x, x0, 0). This implies f(x) = x0. Uncertain
evidence is expressed by means of a density.

7. Example
To evaluate the presented approach we give an example net-
work for which some evidence is entered. Depending on
that evidence the density over a node is calculated using the
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approach of Lauritzen [2] and the proposed new approach.
These results are compared with the true density.

Figure 5. An example of a hybrid Bayesian network for the
evaluation of the new approach. The nodes in box shape are
discrete, the continuous nodes have a round outline.

Linear

The example network can be seen in figure 5. The pa-
rameters for the network in this example are the following:
The two root nodes x and v have the a priori distributions
Pr(x = 1) = 0.4 and Pr(x = 2) = 0.6 , Pr(v = 1) = 0.3
and Pr(v = 2) = 0.7 respectively.

The discrete variable u has two states, hence the likelihood
of u given v is modeled in the following table

v Pr(u = 1|v) Pr(u = 2|v)
1 0.5 0.5
2 0.3 0.7

y is continuous and has a single continuous density for ev-
ery state of it’s discrete predecessor x. For the sake of sim-
plicity we choose a Gaussian density over y with the fol-
lowing parameters for every state of x:

x µy σy

1 -2 1
2 2 1

The relationship between u and z is linear, but different for
every state of u:

u = 1 z = 2 + y + wz

u = 2 z = −2 + y + wz

wZ is a zero mean, Gaussian noise term, which yields the
following likelihood functions:

f(z|y,u = 1) = N(z, 2 + y, 1)
f(z|y,u = 2) = N(z,−2 + y, 1)

For using the new approach this density is approximated by
the Gaussian mixture densities

f(z|y,u = 1) ≈
25∑

j=−25

1
50

·N(y, 2 + 0.5j, 1)N(z, 0.5j, 1)

and

f(z|y,u = 2) ≈
25∑

j=−25

1
50

·N(y,−2+0.5j, 1)N(z, 0.5j, 1) .

To compare the results of the proposed approach with the
exact density and the approach by Lauritzen, the evidence
{v = 1, z = 3} is entered into the network and the density
over y is calculated. The result of this procedure is shown
in figure 6.

Figure 6. Given the evidence {v = 1, z = 3} we compare
the density over y gained by Lauritzen’s method and the
new approach using Gaussian mixture approximation.

Nonlinear

To show the ability of the proposed approach to deal with
nonlinear relationships, the likelihood function f(z|y, u) is
modified to cover the following relationship

u = 1 z = 0.01 · y3 + wz

u = 2 z = 0.01 · (−y)3 + wz
.

The according likelihood is again approximated by Gaus-
sian mixture densities which can be seen in figure 7.

The resulting density over y depending on the evidence
{v = 1, z = 3} is shown in figure 8.

Figure 8. Comparing the exact density over y given the
evidence {v = 1, z = 3} with the new approach having a
nonlinear dependency f(z|x, u).
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Figure 7. Nonlinear conditional density f(z|x,u = 1) approximated by means of a Gaussian mixture density. (two views
of the same density function)

8. Conclusions
The proposed new approach for evaluating hybrid Bayesian
networks allows arbitrary combinations of continuous and
discrete variables while making no restrictions on their an-
cestry. This is achieved by the unified notation of the cor-
responding continuous and discrete likelihood functions.
Even nonlinear dependencies between variables can be
modeled by this approach.

The distance to an exact solution is only governed by the
quality of the approximated likelihood functions. Hence it
is possible to make a tradeoff between accuracy and com-
plexity in computation and storage by adjusting the number
of Gaussian densities used to approximate the likelihood
functions.

The big improvement at this approach concerning the accu-
racy of the result is gained by using full densities as mes-
sages instead of only their first two moments. The usage of
full densities is essential since it is not possible to recon-
struct a density solely from it’s first two moments.

One drawback of the approach is the limitation to singly
connected graphs. One possible way to overcome this is
to find a method to do clustering in the graph. Lauritzen
uses clustering techniques when building his junction trees,
but this results in collapsing the densities to a first two mo-
ments representation. To preserve the accuracy of our ap-
proach the persistence of the full densities in a cluster must
be guaranteed.

The presented approach has already been used in the con-
text of intention recognition in the robotics domain and
showed good results. Especially the freedom in modeling
and the accuracy in the evaluation were a big advantage.
Since this approach is very generic, a wide field of applica-
tions is imaginable.

An interesting topic for future research is the development
of effective methods for approximating likelihood functions
by Gaussian mixtures. These approximations can be based
upon known (non-)linear dependencies between variables
or upon measured samples from an unknown underlying
distribution.
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