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Abstract

This paper presents a modified set theoretic framework
for estimating the state of a linear dynamic system based
on uncertain measurements. The measurement errors are
assumed to be unknown but bounded by ellipsoidal sets.
Based on this assumption, a recursive state estimator is
(re–)derived in a tutorial fashion. It comprises both the
prediction step (time update), i.e., propagation of a set
of feasible states by means of the system model and the
filter step (measurement update), i.e., inclusion of a new
measurement into the current estimate. The main con-
tribution is an efficient square–root formulation of this
estimator, which is well suited especially for practical
applications.

1 Introduction

In many applications, it is necessary to estimate the state
of a dynamic system based on a linear state–space model
and erroneous observations of the system output. When
(erroneous) measurements of the system input are avail-
able, they can be included in the estimation process. How-
ever, often only bounds for the measurement errors can be
given, since a more detailed error description is not avail-
able or too complicated. In this case, set theoretic estima-
tion methods have found to be useful and even superior to
statistical estimation methods [10, 11, 12]. Set theoretic
estimation provides the set of all feasible system states
that are compatible with the system model, the observa-
tions, and the error bounds. This is in sharp contrast to
statistical estimation concepts, where an “optimal” point
estimate is supplied together with its associated distribu-
tion. Different descriptions of the feasible sets are found
in literature: Rectangular sets [1], polytopes [22], and el-
lipsoids [25]. This paper focuses on ellipsoidal sets, since
they can be manipulated by simple matrix operations and
lead to computationally efficient estimation algorithms.

Set theoretic state estimation consists of 1. propagating a
set of feasible states with the aid of the system model,
2. testing the propagated set of states and the set of
states defined by a new observation for common points,
and 3. fusing the two sets via set intersection in case they
overlap. The exact description of the resulting feasible
sets has been investigated in [30]. An approximation by
parallelotopes is derived in [29]. Some early results on
using ellipsoidal sets and approximating the intersection
of two ellipsoids is found in [21]. The topic has then
been extended in [28]. Parameter set estimation based
on the approximation by bounding ellipsoids is discussed
in [6, 7, 24, 8, 9, 3].

State estimation, i.e., a method for state propagation and
several fusion schemes, is discussed in [2]. For the case of
one–dimensional observations, a simple and efficient fusion
method is given in [25], which is based on the results in
[6, 7].

This paper first (re–)derives a solution framework for the
above mentioned problems in the case of ellipsoids, i.e.,
1. the propagation of an ellipsoid and 2. the fusion of an
ellipsoid and a possibly degenerated ellipsoid based on the
work in [28] and then recasts the resulting algorithms into
a square–root form. The resulting algorithms are simple
and compact, efficient, and easy to implement. Further-
more, they can be applied to arbitrary dimensional state
and observation vectors.

The estimation problem is formulated in Sec. 3. Section 4
introduces the concept of time updating by propagating
the last estimate through the system model. An efficient
algorithm for performing measurement updates by fusion
of an ellipsoid and a possibly degenerated ellipsoid is given
in Sec. 5.

2 Preliminaries

In the following, we will represent symmetric, positive
definite matrices by means of their square–roots, i.e,

F = F F
T ,



where F is a lower triangular matrix, e.g. the cholesky
factor of F. Furthermore, the following lemma is used
extensively [26]:

Lemma 2.1 For two matrices F, G , there exists an orthog-
onal matrix Θ, ΘΘT = I, such that

FΘ = G

if, and only if, F FT = G G
T holds. F is called the pre–

array, G is called the post–array [23].

3 Problem Formulation

Consider a discrete–time linear dynamic system given by

xk+1 = Ak xk +Bk uk (1)

zk = Hk xk + ek , (2)

with N–dimensional state vector xk and M–dimensional
observation vector zk. The initial state x0 is assumed to
be confined to an ellipsoidal set given by

X0 =
{
x0 : (x0 − x̂0)

T X−1
0 (x0 − x̂0) ≤ 1

}
.

Observations suffer from output noise ek, which is mod-
eled via amplitude bounds according to ek ∈ Ek, where Ek

is an ellipsoid given by

Ek =
{
ek : e

T
k E−1

k ek ≤ 1
}

. (3)

In addition, the system input uk is uncertain and also
modeled by amplitude bounds uk ∈ Uk where Uk is an
ellipsoid given by

Uk =
{
uk : u

T
k U−1

k uk ≤ 1
}

. (4)

When an uncertain measurement ûk of the system input is
available, the uncertainty set (4) will be centered around
ûk according to

Uk =
{
uk : (uk − ûk)

TU−1
k (uk − ûk) ≤ 1

}
. (5)

The uncertainty models (3), (5) are more general than
component–wise error bounds, since they also include cor-
relation between variables. The sizes of the uncertainty el-
lipsoids are assumed to be a priori known for the purpose
of this paper.

The state estimation or filtering task consists of calculat-
ing the set of feasible system states at time k denoted by
Sk based on observations z0, z1, . . . , zk. Rather than
performing batch processing, an estimate should be made
available at every time k. The following notation 1 is used:

1This notation is preferred to XP
k XM

k , XS
k to avoid excessive

sub–/superscripting.

Pk denotes the set of predicted system states at time k

with

Pk =
{

x :
(
x − p̂

k

)T

(Pk)
−1
(
x − p̂

k

)
≤ 1
}

.

Mk denotes the set of system states defined by an observa-
tion at time k, and Sk denotes the set of estimated system
states at time k according to

Sk =
{

x : (x − ŝk)
T (Sk)

−1 (x − ŝk) ≤ 1
}

.

The system equation (1) is used to predict all feasible
system states Pk at time k based on an estimated system
state Sk−1 at time k − 1 and the system input Uk−1. A
new observation zk at time k defines a set Mk of states
that could possibly cause the observation. Thus, at time
k, two state estimates are available: The set of predicted
states Pk and the set of states Mk compatible with the
observation. Set theoretic estimation now calculates the
set of feasible states via set intersection [5], i.e., the exact
set of estimated system states Sk at time k is given by

Sk = Pk ∩Mk .

Neither the set of predicted states Pk nor the fusion result
Sk are in general ellipsoids. Hence, the remainder of this
paper will be concerned with the efficient calculation of
outer bounding ellipsoids for Pk, Sk to arrive at a simple
recursive estimation scheme similar to the Kalman filter.

4 Prediction Step (Time Update)

Given a set of estimated system states Sk−1 at time k−1,
the system equation (1) is used to predict all feasible sys-
tem states Pk at time k (time update). Since ellipsoids are
closed under affine transformations, the right hand side of
(1) can be interpreted as the summation of two ellipsoids
with centers Ak−1 ŝk−1, Bk−1 ûk−1 and definition matri-
ces Ak−1Sk−1AT

k−1, Bk−1Uk−1BT
k−1, respectively. Two

ellipsoidal sets are added up by Minkowski summation,
which is defined by adding every point contained in the
first ellipsoid to all the points contained in the second ellip-
soid. However, the Minkowski sum of two ellipsoids is not
in general an ellipsoid. Nevertheless, a family of bounding
ellipsoids can be found that contain the Minkowski sum
[28]. The center is always given by the sum of centers

p̂
k
= Ak−1ŝk−1 +Bk−1ûk−1 (6)

and the matrix Pk is given by

Pk =(0.5− κk)−1Ak−1Sk−1AT
k−1

+(0.5 + κk)−1Bk−1Uk−1BT
k−1

(7)

with parameter κk for κk ∈ (−0.5, 0.5).



Proof: Given a direction vector t of unit length, i.e, ‖t‖ =
1, and tangential planes for both the Minkowski sum and
the bounding ellipsoid, for which t is the normal vector.
Then, the normal distances from the center (6) to the
planes are given by

pMinkowski =
√

tTAk−1Sk−1AT
k−1t

+
√

tTBk−1Uk−1BT
k−1t

for the Minkowski sum and by

pbound =
√

tT Pkt

=

√√√√ (0.5− κk)−1tT Ak−1Sk−1AT
k−1t

+(0.5 + κk)−1tTBk−1Uk−1BT
k−1t

for the bounding ellipsoid. Pk is in fact the definition
matrix of a bounding ellipsoid, since

pMinkowski ≤ pbound (8)

for every t, ‖t‖ = 1. This is easily verified by squaring
both sides of (8), which leads to

(√
tTAk−1Sk−1AT

k−1t+
√

tT Bk−1Uk−1BT
k−1t

)2

≤ (0.5− κk)−1tT Ak−1Sk−1AT
k−1t

+(0.5 + κk)−1tT Bk−1Uk−1BT
k−1t .

(9)

Hölder’s inequality is given by

N∑
i=1

|aibi| ≤
(

N∑
i=1

|ai|p
) 1

p
(

N∑
i=1

|bi|q
) 1

q

for p−1 + q−1 = 1, p > 1, q > 1. Squaring both sides and
setting p = 2, q = 2, Cauchy’s inequality is obtained as

(
N∑

i=1

|aibi|
)2

≤
(

N∑
i=1

|ai|2
)(

N∑
i=1

|bi|2
)

.

The special case of ai = α
1
2
i , bi = α

− 1
2

i βi gives

(
N∑

i=1

|βi|
)2

≤
(

N∑
i=1

|αi|
)(

N∑
i=1

|α−1
i |β2

i

)
.

Setting N = 2, β1 =
√

tT Ak−1Sk−1AT
k−1t, β2 =√

tTBk−1Uk−1BT
k−1t, α1 = 0.5−κk, α2 = 0.5+κk yields

(9) and concludes the proof. �

Remark 4.1 κk may be selected in some optimum way, for
example in such a way as to minimize the volume of Pk.

We define lower triangular square–root factors according
to

Sk−1 = Sk−1 (Sk−1)
T

and

Pk = Pk (Pk)
T

.

Theorem 4.1 A square–root algorithm for the prediction
step (6), (7) is given by
 (0.5− κk)−

1
2 Ak−1Sk−1 (0.5 + κk)−

1
2 Bk−1Uk−1

(0.5− κk)
1
2 ŝT

k−1

(
S
−1
k−1

)T
(0.5 + κk)

1
2 ûT

k−1

(
U
−1
k−1

)T

Θ1

=


 Pk 0

p̂T

k

(
P
−1
k

)T ∗


 ,

(10)

where Θ1 is an arbitrary orthogonal rotation matrix with
Θ1ΘT

1 = I, that performs the desired triangularization. ∗
denotes elements, that are not of interest for the predic-
tion.

Proof: According to Lemma 2.1, “squar-
ing” the left–hand–side of (10) leads to

 (0.5− κk)−

1
2 Ak−1Sk−1 (0.5 + κk)−

1
2 Bk−1Uk−1

(0.5− κk)
1
2 ŝT

k−1

(
S
−1
k−1

)T
(0.5 + κk)

1
2 ûT

k−1

(
U
−1
k−1

)T

Θ1

ΘT
1

[
(0.5− κk)−

1
2S

T
k−1A

T
k−1 (0.5− κk)

1
2S

−1
k−1ŝk−1

(0.5 + κk)−
1
2U

T
k−1B

T
k−1 (0.5 + κk)

1
2U

−1
k−1 ûk−1

]

=


K11

k−1 K12
k−1

K21
k−1 K22

k−1




with

K11
k−1 =(0.5− κk)−1Ak−1Sk−1AT

k−1

+(0.5 + κk)−1Bk−1Uk−1BT
k−1

K12
k−1 =Ak−1ŝk−1 +Bk−1ûk−1

K21
k−1 =ŝT

k−1A
T
k−1 + ûT

k−1B
T
k−1

K22
k−1 =(0.5− κk)ŝT

k−1S
−1
k−1ŝk−1

+(0.5 + κk)ûT
k−1U

−1
k−1ûk−1 .

“Squaring” the right–hand–side of (10) gives
 Pk 0

p̂T

k

(
P
−1
k

)T ∗


[PT

k P
−1
k p̂

k

0 ∗

]
=

[
Pk p̂

k

p̂T

k
p̂T

k
P−1

k p̂
k
+ ∗

]
.



Comparing the elements completes the proof. �

The elements of the resulting post–array (10) are then
used for calculating the desired prediction ellipsoid Pk

given by the center p̂
k
and the definition matrix Pk. For

that purpose, we use boxes to denote the block matrices

Pk and p̂T

k

(
P
−1
k

)T
that are directly obtained from the post–array in (10).
The center and the definition matrix are then calculated
according to

p̂
k
= Pk p̂T

k

(
P
−1
k

)T T

,

Pk = Pk Pk
T

.

5 Fusion Step (Measurement Update)

An observation zk at time k defines a set Mk of states
given by

Mk = {mk : zk − Hkmk ∈ Ek}

according to (2) or equivalently by

Mk =
{

mk : (zk − Hkmk)
T E−1

k (zk − Hkmk) ≤ 1
}

.

Calculation of the minimum–volume bounding ellipsoid
for the intersection of Pk and Mk requires numerical op-
timization. Here, a suboptimal method is pursued, that
1. provides a whole family of bounding ellipsoids and
2. yields recursion equations similar to the Kalman filter.
This method has first been reported in [28] and consists of
bounding the intersection set by the convex combination
of Pk and Mk according to

Sk =
{

sk : (0.5− λ∗
k) (zk − Hksk)

T E−1
k (zk − Hksk)

+(0.5 + λ∗
k)(sk − p̂

k
)T P−1

k (sk − p̂
k
)
}

(11)

After some manipulations and bilinear–transformation

λk =
0.5 + λ∗

k

0.5− λ∗
k

, where λk ∈ [0,∞] and λ∗
k ∈ [−0.5, 0.5],

Sk can be written in the following feedback form.

Lemma 5.1 A bounding ellipsoid for the intersection of
Pk and Mk is given by

ŝk = p̂
k
+ λkPkHT

k R−1
k ε̂k

Sk = dkCk

with

dk = 1 + λk − λk ε̂T
k R−1

k ε̂k

Ck = Pk − λkPkHT
k R−1

k HkPk

Rk = Ek + λkHkPkHT
k

ε̂k = zk − Hkp̂
k

for λk ∈ [0,∞].

Remark 5.1 Obviously, we have

(Pk ∩Mk) ⊂ Sk ⊂ (Pk ∪Mk) ,

i.e., the bounding ellipsoid Sk not only contains the inter-
section of Pk andMk, but is also itself contained in their
union.

Theorem 5.1 A square–root algorithm for the fusion step
(11) is given by:




Ek λ
1
2
k HkPk

0 Pk

−λ
1
2
k zT

k

(
E
−1
k

)T
p̂T

k

(
P
−1
k

)T


Θ2

=




Rk 0

λ
1
2
k PkHT

k

(
R
−1
k

)T
C k

−λ
1
2
k ε̂T

k

(
R
−1
k

)T
ŝT

k

(
C
−1
k

)T




(12)

with Rk = Rk R
T
k , Ck = C k C

T
k , ans Ek = Ek E

T
k .

Proof: Again, according to Lemma 2.1, the left–hand–side
of (12) is “squared”




Ek λ
1
2
k HkPk

0 Pk

−λ
1
2
k zT

k

(
E
−1
k

)T
p̂T

k

(
P
−1
k

)T


Θ2

ΘT
2


 E

T
k 0 −λ

1
2
k E

−1
k zk

λ
1
2
k P

T
k HT

k P
T
k P

−1
k p̂

k


 =




Ek + λkHkPkHT
k λ

1
2
k HkPk −λ

1
2
k

(
zk − Hkp̂

k

)
λ

1
2
k PkHT

k Pk p̂
k

−λ
1
2
k

(
zT

k − p̂T

k
HT

k

)
p̂T

k
p̂T

k
P−1

k p̂
k
− λkzT

k E−1
k zk






and compared with the “squared” right–hand–side of (12)



Rk 0

λ
1
2
k PkHT

k

(
R
−1
k

)T
C k

−λ
1
2
k ε̂T

k

(
R
−1
k

)T
ŝT

k

(
C
−1
k

)T





RT

k λ
1
2
k R

−1
k HkPk −λ

1
2
k R

−1
k ε̂k

0 C
T
k C

−1
k ŝk


 =




Rk λ
1
2
k HkPk −λ

1
2
k ε̂k

λ
1
2
k PkHT

k Ck + λkPkHT
k R−1

k HkPk ŝk − λkPkHT
k R−1

k ε̂k

−λ
1
2
k ε̂T

k ŝT
k − λk ε̂T

k R−1
k HkPk ŝT

k C−1
k ŝk + λk ε̂T

k R−1
k ε̂k




to prove (12). �

Again, we use boxes to denote the block matrices

C k , ŝT
k

(
C
−1
k

)T
, and −λ

1
2
k ε̂T

k

(
R
−1
k

)T
that are directly obtained from the post–array in (12).
The center and the definition matrix of the fusion ellipsoid
Sk are then calculated on the basis of these block matrices
according to

ŝk = C k ŝT
k

(
C
−1
k

)T T

,

Sk = dk C k C k
T

,

dk = 1 + λk − −λ
1
2
k ε̂T

k

(
R
−1
k

)T −λ
1
2
k ε̂T

k

(
R
−1
k

)T T

.

6 Recursive State Estimation

At every time k, the set of feasible states is predicted
using (10). In addition, when a new observation zk is
available, a fusion step according to (12) is subsequently
performed. The resulting recursion equations are similar
in appearance to the Kalman filter equations. However,
the resulting state estimates are different because of the
different uncertainty model.

At first glance, four inversions of square–root factors U−1
k ,

E
−1
k , P−1

k , S−1
k must be performed for setting up the left–

hand–side block matrices for prediction and fusion, re-
spectively. However, in fact only U

−1
k and E

−1
k must be

calculated, since p̂T

k

(
P
−1
k

)T
is available as a by–product

from the prediction post–array. Furthermore, the lower
left block matrix of the prediction pre–array is calcu-
lated on the basis of the elements of the fusion post–array
according to

(0.5− κk)
1
2 ŝT

k−1

(
S
−1
k−1

)T
= (0.5− κk)

1
2
1
dk

ŝT
k−1

(
C
−1
k−1

)T
.

Some technical details like the determination of overlap of
Pk and Mk and the calculation of κk, λk for obtaining
minimum volume bounding ellipsoids at every time step
have been omitted for the sake of brevity.

It is important to note, that the calculation of a minimum
volume ellipsoid at each time step allows for recursive com-
putation. Hence, it is useful from a practical point of view.
However, doing so does not mean that the final ellipsoid
recursively obtained after several time steps is of minimum
volume. For calculating a minimum volume ellipsoid after
several time steps, all previous measurements have to be
reconsidered.

7 Conclusions

Efficient approximate set theoretic state estimators have
been derived in square–root form by generalizing the re-
sults for Kalman filtering reported in [23]. The estimators
apply to linear state–space models for the case, that both
system and observation uncertainties are modeled as un-
known but bounded by ellipsoidal sets. Besides having
numerical advantages, the square–root form allows a par-
allel or even decentralized implementation of set theoretic
estimators similar to the treatment of Kalman filtering
in [4].

The proposed square–root algorithms are also useful in the
context of the unification of stochastic and set theoretic
estimators proposed in [13] – [20].
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