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Abstract

Within the existing GSM standard, several measurements are
available that can be used for estimating the position of a cel-
lular phone. First, the timing advance (TA) gives an estimate
for the distance to the serving base station. Second, the signal
strengths (RXLEV) of neighbouring base stations can also be
interpreted as distance information. Both TA and RXLEV are
subject to measurement errors caused for example by shadow-
ing, reflections, and fast fading. Thus, a nonlinear set-theoretic
estimation technique based on pseudo ellipsoids is applied. The
uncertainty regions in the original space defined by the mea-
surements are transformed into a hyperspace of higher dimen-
sion and described by pseudo ellipsoids. An approximation of
the set intersection of the pseudo ellipsoids can be calculated
recursively by a linear set-theoretic filter. The resulting pseudo
ellipsoid is transformed back into the original space, and the
position estimate is calculated as center of gravity of the re-
sulting uncertainty region. The algorithm is evaluated based on
the data of an extensive field trial in a rural area. Compared
to Cell ID, the accuracy is significantly increased by using TA
and RXLEV, reducing the mean error by half.

1 Introduction

Location Based Services (LBS) are expected to play a major
role in cellular networks like GSM, UMTS, DECT, WLAN,
and Bluetooth in the near future. Examples of LBS include
emergency services (E911 regulations by the Federal Commu-
nications Commission), security applications (cash machines,
cars), fleet management (trucks), and finding points of inter-
est (petrol station, pizzeria). The required accuracy, reliability,
and availability of the position estimate for these applications
is quite different. Network based positioning may enhance or
replace satellite—based techniques (GPS, Galileo, GLONASS),
e.g. for indoor applications.

Various techniques for cellular position estimation have been
proposed, including Observed Time Difference of Arrival in
UMTS networks and Enhanced Observed Time Difference in
GSM networks. Nevertheless, the network operators are not
yet willing to deploy additional network infrastructure, and
the handset market does not accept expensive additional hard-
ware. With the increasing demand to provide location based

services already in existing networks, there is a significant in-
terest in mobile positioning approaches operating on the basis
of installed network infrastructure and legacy cellular phones.

In this paper, position estimation in GSM networks [5] is con-
sidered. The proposed algorithm uses a single network mea-
surement report of the cellular phone, including the cell iden-
tifier of the serving and neighbouring base stations, the timing
advance to the serving base station, and the signal strengths of
up to six neighbouring base stations. Cell data like the position
of the base station as well as characteristics and orientation of
the antenna are given in a data base.

The timing advance (TA) yields an estimate for the distance
to the serving base station. The signal strengths (RXLEV) of
neighbouring base stations can also be interpreted as distance
information. Both TA and RXLEV are subject to measurement
errors caused for example by shadowing, reflections, and fast
fading. Thus, stochastic algorithms [9, 10, 13] as well as pat-
tern recognition techniques [14] have been applied. Here, a
set—theoretic filter approach is proposed.

Since the measurement equations are nonlinear and the uncer-
tainties are large, a standard filtering approach based on lin-
earization of the measurement equation cannot be applied. In-
stead, a new nonlinear set-theoretic estimation technique based
on pseudo ellipsoids [8] is used.

Estimating the state of a dynamic system based on a sequence
of uncertain measurements is a standard problem in many ap-
plications. Usually, this problem is approached in a stochas-
tic setting. Alternatively, set-theoretic methods can be used
by assuming a priori bounds on the uncertainties. Estima-
tion then consists of constructing sets of possible states, which
are consistent with the a priori bounds and the measurements
[1,2,19].

Most work has been done in set-theoretic state estimation for
linear systems [17, 18, 21]. Typical applications are in the field
of speech processing [3, 4] and robotics [7, 16], where the dif-
ferences between stochastic and set—theoretic estimation have
been studied intensively [6].

In the case of nonlinear systems, the complex sets result-
ing from the estimation procedure are either approximated by
simple—shaped sets, e.g. ellipsoids, boxes [15, 12], polytopes
[20], or by the union of simple sets [11, 12].



Set theoretic estimators similar in concept to the Extended
Kalman Filter (EKF) have also been pursued [20]. As in the
EKF, the nonlinear state equations are linearized about the cur-
rent state estimate. Unlike the EKF, linearization errors are not
neglected, but rather considered as additional exogeneous dis-
turbances. Estimation is performed recursively and provides
polytopes as approximation of the posterior feasible set.

Estimators not relying on linearization of the nonlinear state
equation have also been proposed and work e.g. by recursively
calculating the smallest axis—aligned box enclosing the pos-
terior feasible set [15]. More complex approaches character-
ize the posterior feasible set by enclosing it between internal
and external unions of boxes on the basis of interval analysis
[11, 12].

In this paper, a new nonlinear filtering algorithm for nonlin-
ear systems is applied, that does not rely in any way on lin-
earization. In addition, the approach is not based on a grid
or on propagating particles, but provides a finite—dimensional
closed—form representation of the resulting complex—shaped
sets. This includes nonconvex sets or sets that are not even
connected. When applying this filter recursively to a sequen-
tial stream of measurements, the size of the analytical repre-
sentation of the resulting sets does not grow with the number
of measurements.

The key idea of the filter is to transform the original N-
dimensional space .S to an L—dimensional hyperspace S * with
L > N. This results in an N-dimensional manifold U*,
called the universal manifold, in the L-dimensional trans-
formed space S*. Complex—shaped subsets of the original N—
dimensional space are then represented by N—dimensional sub-
manifolds of U* in the space S*. These submanifolds are de-
fined by the intersection of L—dimensional simple—shaped sets,
e.g. ellipsoids, with the universal manifold U *. Furthermore,
the nonlinear measurement equation is transformed to a linear
one in the hyperspace S*. Hence, nonlinear filtering can be
performed by a linear filter operating in the transformed space
S*.

In section 2, the nonlinear set-theoretic estimation technique is
presented. In section 3, this technique is applied to the position
estimation of cellular phones using TA and RXLEV measure-
ments. Experimental results of an extended field trial in a rural
area are presented in section 4. The position error of the pro-
posed algorithm is discussed in section 5. Issues of integrating
the algorithm into a radio network are treated in section 6.

2 Recursive Nonlinear Set-Theoretic Estima-
tion

Consider a nonlinear discrete-time dynamic system with sys-

tem state z, (not directly observable) at time step k. Mea-

surements z,, of the system output are taken at time instants
k =1,2,... according to the nonlinear measurement equation

2y = hy(z),) + vy

with measurement uncertainty v,, which represents exoge-
neous noise sources or model parameter uncertainties.

The uncertainties v;,, K = 1,2, ..., are assumed to be bounded
by a known set V. according to v;,, € V. The set can be of
complicated shape, i.e., can be nonconvex or not connected.

The goal is to estimate at each time instant k& the state z
based on all available measurements z, for I = 1,2,... k.
Of course, a recursive estimation procedure is preferred, which
calculates a state estimate based on the estimate at the previous
time step and the current measurement. Therefore, it is not re-
quired to store and reprocess all measurements. Furthermore,
instead of trying to construct point estimates, we prefer to cal-
culate at each time instant & all states that are compatible with
the measurements and their corresponding uncertainties.

On a theoretical level, the problem can easily be solved: Let
A_, denote the set of all states compatible with all the mea-
surements up to time step £ — 1 and their respective uncertain-
ties. Furthermore, A} denotes the set of states defined solely
by the measurement at time k according to

Xt ={zy, : 2 — Iy (zy) € Vi) -
Then the estimate X’} is given by the intersection
X=X, _ Nl .

However, representing these sets in practical applications at
least approximately by a finite set of parameters is not a trivial
task. On one hand, the parameter set should not be too large,
even more, the approximation should degrade gracefully with a
decreasing number of parameters. On the other hand, the num-
ber of parameters should not be permanently growing with an
increasing number of incoming measurements. Hence, the re-
mainder of this section is concerned with a new parametric rep-
resentation of complex—shaped sets and an efficient procedure
for calculating the corresponding parameters.

The key idea is to represent an uncertainty X’ with a compli-
cated shape in the N—dimensional original space S by a sim-
pler shaped uncertainty X’ in an L-dimensional hyperspace
S* with L > N. Points g, in S are related to points ¢} in S*
via a nonlinear transformation 7°(.) according to

T
zi =Lz = [ @), L@, . Tu(0)] -

Hence, T'(.) defines an N-dimensional manifold U * in an L—
dimensional space.

In addition, L—dimensional sets X’} of simple shape are defined
in the transformed space S*. Here, ellipsoidal sets according
to

Xy = {ak : (ag - 20) " (X0) 2k - 27) < 1}

are used, where z; is the ellipsoid midpoint and X7 is a sym-
metric positive definite matrix.

The intersection of an ellipsoid X' with the manifold U* de-
fines a submanifold of U*, which, in turn, defines a compli-
cated set in the original space S.



Based on the concept of pseudo ellipsoids, which represent
complex—shaped sets in the original space S by pseudo ellip-
soids in the hyperspace S*, the nonlinear filter step can now be
performed by a linear filter in the hyperspace .S *. For that pur-
pose, a pseudo-linear expansion of the nonlinear measurement
equation h, (.) is performed according to

hy(zy,) =
where el represents the approximation error defined by e =
hy(zy,) — Hiay.

In general, the expansion can be enhanced by an additional
nonlinear transformation g(.) of the measurements according
to

* ok h * ok
Hiz, +e, ~ Hpz;,

= ﬂ(ﬁk (EL)) .
The left hand side can be approximated by

Q(Zk —uy)

~ ~k * ok U,k * ok
9y —v) =2, — Grug — ¢ ~ 2, — Gy

where z; and G} are nonlinear functions of z, and v is a
nonlinear functlon of v,,. e’ accounts for the approximation
error.

The right hand side is again approximated according to
g(ﬁk (z))

with approximation error QZ7*. As a result, the measurement
equation in the hyperspace is obtained according to

h,
=Hja; + ¢ ~ Hizg

h, ,
zy =Hjz} +ey *+ G +QZ’:

Wi
with wj; representing the total uncertainty.

Let the set of all predicted states be given by the set X7, which
is defined in the transformed space S* by

EYT) gy — 2
Furthermore, let w;; be bounded by the set
(wi)" (W)~

Then, the set defined by the measurement is given by

Xp’ —{:I:k' _i'z7 <].}

Wi = {wj - twp <1}

Xﬁ*—{xk (3 - Hiz}) (Wz)l(ZZ—HZzz)Sl}-

The fusion result is given by aset X" (again an ellipsoid in the
transformed space, but a set of complicated shape in the origi-
nal space!) that contains the intersection of the ellipsoids x'2"*
and X;"". Hence, X" is obtained by a linear set-theoretic
filter in the hyperspace S* [19]

Xt ={zy: (ap — 2y T (EY) T (@ — 2y <1}
with
&yt ="+ A EYT(H)T

(Wi + A HEED (H)T} " (2 - 2l

and

S,k _ 7% S, %
Ek _dkPk: )

Py" = Ep” - A EL(H})”
(Wi + N HiEp"(H))"} ' HiED”
where
dy =1+ — N (2 — H*A’”)
(Wi + N HEED (Hy)T} ' (5 - Hiap”)

The fusion parameter A} is selected in such a way, that a certain
measure of the size of the set X}, the resulting set in the original
space, is minimized.

3 Nonlinear Set—Theoretic Position Estimation
of Cdlular Phones

In GSM networks [5], the mobile station sends a measurement
report to the serving base station every 480 ms. Although these
measurement reports are not intended for localization of the
cellular phone, some of the data can be used for position esti-
mation. The timing advance (TA) measures the time—of—flight
from the serving base station to the mobile station. Using the
line—of-sight assumption, the TA thus gives an estimate for
the distance of the mobile station to the serving base station,
with a quantization uncertainty of 554 m. The signal strength
(RXLEV) of up to six neighbouring base stations can also be
interpreted as distance of the mobile station to the respective
base station. The base stations are identified using the cell ID,
and the positions of the base stations are known.

The TA measurement defines a ring as uncertainty region. Us-
ing the orientation and characteristics of the serving antenna,
this region can further be reduced, e.g. to a 120° ring seg-
ment. Since the RXLEV measurements are subject to large
errors caused by shadowing, reflections, and fast fading, they
are interpreted as specification of a maximum distance to the
respective antenna, thus defining a circle. The final region of
uncertainty is then given by the intersection of the ring segment
and the circles.

Since the exact intersection is of complex shape and hard to
determine, the approximative nonlinear filtering technique pre-
sented in the previous section is used.

The uncertainty region defined by the TA measurement is given
by the ring

R < (x—a0)*+(y—ay)* <R,

where the inner radius R; and the outer radius R, are defined
by the (quantized) TA value, with R, = R; + 554 m, and the
center a,, a, corresponds to the position of the serving base
station. This uncertainty region may be expressed as

R2 + R?

s =@ —a)+y—a) +w
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Figure 1: Approximation of the uncertainty region defined by
the TA and the antenna characteristics.
and is thus given as

R? + R?

5 = —2a,2} — 2a,x5 + 2} + 2% +a + ) +w

in the hyperspace

*

. B T
" = [:r y, x%, xy, yz] =

T
= I:xL T3, T3, T, 1'3] ’
where the uncertainty w* = w is bounded by the interval

) R — R\ (R - R}
v () (%

This defines the measurement equation

R2+R?  , .
¥ __ XK. F ¥ _ "0 (] 2 2
2 =H'z +w—72 —ay — Gy

with
H* = [—Qaz, 2y, 1, 0, 1]

and the uncertainty set

2 _ p2\2 -1
X — {g*:(é*—H*g*)T <<R02Rl> )
(2*_H*£*)S]—}

in the hyperspace for the TA measurement.

The measurement equation and the uncertainty set for the an-
tenna characteristics and the RXLEV measurements are de-
fined in a similar way. Fig. 1 shows the approximation of the
ring segment defined by the measured TA and the antenna char-
acteristics. This uncertainty region in the original space corre-
sponds to a pseudo ellipsoid in the hyperspace. Fig. 2 shows the
corresponding uncertainty regions in the original space when

the three RXLEV measurements to the neighbouring base sta-
tions 1 to 3 are recursively used to update the uncertainty re-
gion. Note that the uncertainty regions in the original space
are only shown here to clarify the behaviour of the proposed
algorithm, they are not used in the calculation. Finally, the po-
sition estimate is calculated as center of gravity of the resulting
uncertainty region. Here, grid points in the original space are
transformed into the hyperspace and tested if they are elements
of the resulting uncertainty ellipsoid. This numerical calcula-
tion of the center of gravity avoids transforming the uncertainty
ellipsoid from the hyperspace back into the original space.
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Figure 2: Approximation of the set intersection when three
RXLEV measurements are recursively used to update the un-
certainty region.

4 Experimental Results

A data set from a field trial in a rural area was used for eval-
uating the algorithm. The data set consists of about one hun-
dred thousand measurement reports, measured in a rural area
of about 10 km x 8 km. For each measurement report, the
reference position was measured by GPS. Fig. 3 shows the
GPS positions as well as the positions of the three serving base
stations.

The maximum radius as a function of signal strength was
derived from maps of predicted signal strength. For each
measurement report, an estimate of the position of the cel-
lular phone was calculated using the proposed nonlinear set—
theoretic algorithm. The algorithm was implemented in MAT-
LAB, the average time for calculation of the estimate on a stan-
dard PC was about 10 ms. The mean absolute error in position
of the proposed algorithm was 774 m, while the mean absolute
error of pure cell ID, i.e., using the position of the serving base
station as estimate, was 1483 m. Thus, the accuracy of position
estimation has been significantly improved by using TA and
RXLEW.



The accuracy could further be improved by increasing the di-
mension of the hyperspace. Nevertheless, the actual choice
of the dimension seems to be a good compromise regarding
accuracy and computational effort.
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Figure 3: GPS positions of the measurement reports and posi-
tions of the serving base stations of the field trial.

5 Discussion of the Position Error

A major drawback of algorithms like Cell ID (an algorithm that
uses only the cell identifier to estimate the position of the cel-
lular phone, e.g. reporting the cell center or antenna position)
and Enhanced Cell ID (an algorithm that uses the cell identi-
fier and additional measurements like TA and RXLEV, e.g. the
proposed nonlinear set—theoretic estimator) is the fact that the
position error scales with the cell radius. The maximum cell
radius of GSM corresponds to a TA of 63, i.e., the maximum
cell radius is about 35 km, although the typical cell radius even
in a rural area is much smaller, see for example Fig. 3.

The expected absolute error, assuming that the true position is
uniformly distributed inside the uncertainty region, is an ap-
propriate measure for the accuracy of the algorithm. Using the
antenna position as position estimate of the cellular phone, the
expected absolute error is given by

E(abs(e)) = f TCE”abS (e) f(r,p) rdrdy
=0 r=0
with
abs(e) = r
and
flre) = %

cell

This yields

E(abs(e)) = 7 Tce”r

¢=0 r=0

s—rdrde

Teell
Tecell

2m
1 2
= 3 / dap/ redr
cell
[
2

=0 r=0

= 5 Tcell -

3

Taking into account the results of the field trial, the expected
absolute error of the nonlinear set-theoretic estimator is ap-
proximately given by
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Figure 4: Expected absolute error of Cell ID and the nonlinear
set-theoretic estimator.

6 Integration into a Radio Network

The proposed algorithm can be integrated into a radio network
that provides location based services. For this purpose, the al-
gorithm may be implemented on a location server that handles
the requests of the different applications. If an application re-
quests the position of a mobile phone the location server re-
quests for a network measurement report (NMR) from the mo-
bile device. On the mobile device the request may be handled,
for example, by a SIM application toolkit (SAT) function over
SMS for legacy GSM handsets or by a java applet. When the
location server receives the NMR, the positions and antenna
characteristics of the involved base stations are queried from
a data base and passed together with the NMR to the position
estimation algorithm. Finally the resulting estimated position
is returned to the application that initiated the request.



7 Summary

A nonlinear set-theoretic approach for position estimation of
cellular phones in a GSM network based on installed network
infrastructure and legacy phones has been proposed. The al-
gorithm uses the data of a single network measurement report
of the cellular phone, including cell ID, TA, and RXLEV, as
well as a data base of cell parameters like position, orientation,
and characteristics of the antenna. The uncertainty regions in
the original space defined by the measurements are transformed
into a hyperspace of higher dimension and described by pseudo
ellipsoids. Thus, an approximation of the set intersection of the
pseudo ellipsoids can be calculated recursively by a linear set—
theoretic filter. The resulting pseudo ellipsoid is transformed
back into the original space, and the position estimate is cal-
culated as center of gravity of the resulting uncertainty region.
The algorithm was evaluated based on the data of an extensive
field trial in a rural area. Compared to Cell ID, the accuracy
was significantly increased, reducing the mean error by half.
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