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Abstract— In this work, the problem of pole identification
of discrete-time single-input single-output (SISO) linear time-
invariant (LTI) systems directly from input-output data is
considered. The solution to this nonlinear estimation problem is
derived in form of the general Bayesian estimation framework,
as well as a practical approximate solution by application
of statistical linearization. The derived direct pole estimation
algorithm by statistical linearization is given in closed-form
and regression point based, by the so-called Linear Regression
Kalman Filter (LRKF). We consider both, an input-output
and a state-space formulation. Two realizations of the LRKF
algorithm are tested, namely the Unscented Kalman Filter
(UKF) for low computational complexity and thus, for high
update rates, and the Smart Sampling Kalman Filter (S2KF)
for high precision with faster convergence. Both, the UKF and
S2KF are compared to the Adaptive Pole Estimation (APE),
a solution by recursive nonlinear least squares minimizing the
prediction error gradient.

I. INTRODUCTION

The identification of poles of the transfer function of a
system, plays a key role in many applications, such as linear
systems identification and analysis [1], speech analysis [2],
and signal processing [3]. For example the comparison of
two systems can be calculated on basis of the poles of
the transfer functions [4]. Several different applications of
this pole based distance measure can be found in literature,
such as change point detection [5], anomaly detection [6],
or structural damage analysis [7]. Another structural damage
analysis method based on damage indication calculated from
poles of the transfer function can be found in [8]. The dam-
age condition of a bearing is determined by vibration-based
monitoring and calculated from the position of the poles in
[9]. Biomedical applications can be found in [10] and [11]. In
[10], the poles of voice signals show a significantly different
behavior in terms of pole deviations between healthy and
unhealthy glottal tracts of test subjects. In [11], it is shown
that a significant change of poles of EEG signals indicates a
specific change in the mental state of rats.

The typical approach in pole estimation, is to identify
the polynomial coefficients or the system matrix by a well-
established method like the Recursive Least Squares (RLS)
algorithm [1] or the Yule-Walker equations [12], [13] (for a
modern formulation see also, e.g., [1]). Then, in a second
procedure, the roots of the (characteristic) polynomial are
determined by standard factorization methods. With this two-
step approach, information about the identification quality,
i.e., uncertainty of the identified parameters, is present in the
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Fig. 1. Direct estimation of poles of the transfer function of an AR
process. Green dots show the actual position of the poles of the system,
red crosses and dashed ellipses show the mean and Gaussian uncertainty
region displayed as the 3σ bound of the estimated poles. As can be seen,
poles close to the unit circle are identified faster, which can be explained
by their stronger impact on the input-output bahavior.

polynomial coefficient space. Usually only a point estimate is
then transformed into pole-space and the information about
the parameter uncertainty is disregarded. One possible way
to determine the uncertainty in pole-space is by application
of a sampling approach, where not only the point estimate is
transformed, but a set of samples. This approach has a heavy
computational burden if poles are required to be updated each
time step with high precision.

Hence, an effective on-line pole estimation method has
to satisfy the following requirements. (i) The pole estimates
have to be updated at every time step directly from the data,
providing information about the identification uncertainty.
Furthermore, (ii) the estimates have to improve with every
information gain. Finally, (iii) the method has to work with
fixed amount of memory and computation time, independent
of the amount of available data samples, i.e., saving all
captured data points and processing them explicitly at every
time step has to be avoided. In Fig. 1 an intermediate result
of the direct pole estimation is illustrated, showing the pole
constellation of a system depicted by green dots and the
estimated poles depicted by red crosses together with their
uncertainty region shown as red ellipsoids.



There are few proposals in literature solving this problem,
while satisfying the stated requirements (i) to (iii). In [14]
the poles of an AR process are directly estimated from
data by solving a Nonlinear Recursive Least Square (NRLS)
problem formulation. By application of a Gauss-Newton
Recursive Prediction Error (RPE) method a quadratic error is
minimized recursively over time, where the error gradient is
calculated with respect to the poles. Though, the derivation
the adaptive pole estimation (APE) algorithm in [14] comes
by a completely different course, careful analysis reveals
that APE is an approximate solution to the general Bayesian
direct pole estimation presented in this work, namely cal-
culation by the Extended Kalman Filter (EKF). Only an
optional forgetting factor introduced to the APE shows some
differences to the EKF solution. Given that data samples are
in spectral domain, pole estimation can be performed directly
using spectral all-pole estimation (SAPE) presented in [15].
Though designed for the special case of process output
realizations in spectral domain, SAPE can also be applied for
samples in time domain by using windowing over a set of
samples and transforming into spectral domain utilizing the
Discrete Fourier Transform (DFT). This approach is useful,
for example, with non-uniform sampling intervals, but with
the disadvantage that the last several hundred samples have
to be saved and processed every time step.

A. Contribution

The main contribution of this work is the derivation of a
general Bayesian solution to the problem of the estimation
of poles of the transfer function that characterize the system
behavior. We assume that the system order is known. The
key idea is to obtain the poles by directly processing the
input-output data without prior identification of polynomial
coefficients or the system matrix. The presented Bayesian
solution can not be computed in closed form, but it enables
the application of many approximate estimation methods.
Methods can be selected depending on given requirements,
such as available computational resources or estimation
quality. This is demonstrated by application of statistical
linearization, which can be calculated in a closed-form for
the present case [18], or by means of the LRKF [16], [17].
We will evaluate two approaches utilizing linear regression,
namely the computationally inexpensive Unscented Kalman
Filter (UKF) [19] and the Smart Sampling Kalman Filter
(S2KF) [20] with adjustable precision.

B. Outline and General Notation

The remainder of this paper is structured as follows: In
the following section, the formal problem formulation is
given, introducing the considered system model. In Sec. III,
the general solution is derived using the recursive Bayesian
estimation by directly mapping the data to system poles and
hence, identifying poles from data. A practical algorithm
by application of statistical linearization is presented in
Sec. IV. In Sec. V the solution to simultaneous state and
pole estimation in the state-space form is given based on
state augmentation. In Sec. VI, the LRKF-based solution is

evaluated comparing the UKF and the S2KF based LRKF-
realizations to the Adaptive Pole Estimation (APE) [14]. The
last section concludes the paper and gives an outlook on
future work.

Throughout this work the following notation will be used:
We distinguish deterministic quantities a and random vari-
ables a by normal lettering and bold face letters, respectively.
The notation a ∼ f(a) describes the characterization of the
random variable a by it’s probability density function f(a).
Finally, a vector a is indicated by an underscore and a matrix
A will be denoted as a bold face capital letter.

II. PROBLEM FORMULATION

In this paper, we consider a single-input single-output
(SISO) linear time-invariant (LTI) system S = {A,B,C}
given in the control canonical form

xk+1 = Axk +B(uk +wk)

yk = Cxk + vk ,
(1)

with the state vector xk = [xk,xk−1, . . .xk−p+1]
>, the

system input uk and output yk, and the zero-mean white
system noise wk and zero-mean white measurement noise
vk. The system matrix A is characterized by

A =


−a1 −a2 . . . −ap−1 −ap
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

...
0 . . . 0 1 0

 , (2)

with the system order p ∈ N+. Since we are only interested
in the poles, which are characterized by eigenvalues of the
system matrix A, for the sake of simplicity the matrices
B and C are given by B = [1, 0, 0, . . . , 0] and C =
[1, 0, 0, . . . , 0]>, which can easily be extended to an arbitrary,
but known case. We consider the system to be discrete-time
with the time index k.

Given that the input uk is known and the state is directly
accessible (i.e., vk = 0), we can restate the system in an
input-output form, by an AR process of the form

yk = −
p∑
i=1

aiyk−i +wk , (3)

where the parameters ai with i = 1, . . . , p are AR coeffi-
cients and the known input uk is subtracted. In z-domain
the AR process is described by the transfer function

H(z) =
1∑p

i=0 aiz
−i νw =

1∏p
i=1(1− αiz−1)

νw , (4)

where a0 := 1. The transfer function H(z) can be repre-
sented as a rational function of a sum or a product, where
the parameters αi are known as the poles of the model.
Considering a real valued AR process implies that all αi
occur in complex conjugate pairs.

The main problem addressed in this work is to identify the
poles αi directly from system input-output data without prior
identification of the coefficients ai. This is performed in a



recursive way by application of Bayesian inference, which
is introduced in the following section.

III. BAYESIAN POLE IDENTIFICATION

Parameters of a stationary process or an LTI system can
be identified by application of the recursive Bayesian esti-
mation, whereby one Bayesian inference step is performed
every time step.
Remark I: In the case of a non-stationary process or a time-
variant system, the prediction step can be exploited as a data
forgetting step. The forgetting factor can be realized in a
random walk fashion, by using the identity as prediction
function adding a small noise in each time step. Thus,
the presented pole identification algorithm is able to track
moving poles over time at the cost of a slower convergence
rate. Since there are several valid ways of adding a forgetting
factor to allow for the tracking of non-stationary parameters,
we will not further elaborate on this case in the presented
work.
Remark II: In the given algorithm, there is no restriction on
stable systems. Poles outside the unit circle can be identified
in the same way as poles inside the unit circle. The only
restriction is the numerical stability. Unstable systems have
increasing output values over time, which may result in
surpassing the numerical range.

A. General Parameter Identification

Let θ be a constant vector with dimension nθ and let Y =
yk with k ∈ N+ be a discrete-time stochastic process. The
vector θ represents the set of parameters to be identified
and Y is typically called observation process. The single
observations are conditionally independent of each other and
have the marginal distribution

P(yk ∈ A|θ) =
∫
A

fL(yk|θ) dyk ,

where A is a subset of IR. Commonly, fL(yk|θ) is called
the likelihood of the measurement yk. In the following, we
define the probability density function

fk(θ) = f(θ|yk, yk−1, . . . , y1) ,

being the estimate of θ at time step k comprising all available
observations y

k
, y
k−1, . . . , y1. Given a prior estimate f0(θ)

the Bayes theorem allows us to update fk(θ) with new
observations using the recursion

fk(θ) = ck · fL(yk|θ)fk−1(θ) , (5)

where ck = 1/
∫
IRnθ

(fL(yk|θ)fk−1(θ)) dθ is a normaliza-
tion factor.

B. AR Model Identification

Let us consider θ to be a set of parameters to be estimated
and let the observation process be given by the scalar
dynamic model

yk = h(θ,yk−1:k−p) +wk , (6)

where yk−1:k−p = [yk−1,yk−2, . . . ,yk−p]
T is a vector of

the last p consecutive observations. The observation process
will be called measurement function in the following. The
process noise wk ∼ fw(w) is an independent identically
distributed (i.d.d.) random variable. By factorization of the
joint density f(yk, w) and exploiting the fundamental prop-
erty of the Dirac delta function, we can further specify the
likelihood of (5) by

fL(yk|θ) =
∫
IR

δ(yk − h(θ, yk−1:k−p)− w)fw(w) dw

= fw(yk − h(θ, yk−1:k−p)) .
(7)

C. Direct Pole Observation

The formulation given above can be applied to general
parameter identification problems of an AR process. We
now derive the measurement function for the direct pole
identification of an AR process.

We define the random vector θk ∼ fk(θ) as estimation of
the set of unknown parameters

θ := [α1, . . . , αp]
T , (8)

where every αi = σi+jωi is one complex pole composed of
the real part σi and the imaginary part ωi, with the imaginary
unit j2 = −1. Thus, the length of the parameter vector θ is
2p.

Comparing (3) and (6), exploiting the relation of ai and
αi in (4), and substitution of ai leads to the measurement
function

h(θk,yk−1:k−p) =−
p∑
i=1

(
(−1)iyk−i ·

∑
M⊆{1..p}
|M |=i

( ∏
m∈M

αm

))
,

(9)
mapping the poles directly to the process data. The coeffi-
cients ai are replaced by the sum of all products of poles
consisting of i factors of all subsets M with i elements.
The complete derivation of (9) is given in the Appendix.
The function can be generated by the power set of all poles.
The subsets with i elements are summed up and multiplied
by (−1)iyk−i. Note that a power set is independent of the
sorting of its elements. This results in a function comprising
a symmetry over the ordering of all elements in θ. As
a consequence, there are n! potential correct results of
estimating all αi, namely all permutations of θ. We illustrate
this with a simple example system.

Example System 1 (Two Poles) Let us consider a simple
system with two real valued poles given by

yk = −0.15yk−1 − 0.76yk−2 +wk ,

with the poles located at the positions [−0.8, 0.95] and the
process noise wk ∼ N (0, 1). The measurement function in
this case is given by

h([α1, α2],yk−1:k−2) = (α1 + α2) · yk−1 − (α1 · α2) · yk−2 .

It is easy to see that α1 and α2 can be swapped without impact
on the result of h(., .). Fig. 2 illustrates how the symmetry in
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Fig. 2. This figure illustrates Example System 1. Subfig. (a) shows the
pole constellation on the complex unit circle with the poles on the real
axis visualized by red dashed lines. Subfig. (b) shows the actual estimation
space, with the symmetry axis illustrated by the black dashed line, which
is located on α1 = α2. Each of the red dots shows the position of both
poles α1 and α2, but in reverse order.

the measurement function results in multiple correct solutions,
occurring as a consequence of possible permutations of θ.

For a given realization series of outputs yk, yk−1, . . . , yk−p
we can perform the recursive Bayes inference step by
evaluation of (5). Although, (9) is nonlinear and thus, it is
not possible to evaluate the Bayesian inference step exactly.
Therefore, we introduce a practical approximate solution in
Sec. IV by application of statistical linearization.

D. Known Proportion of Real and Complex Poles

Exploiting the fact that the output is real-valued, we
can give a more efficient formulation, if the proportions of
complex and real-valued poles are known. Since in this case
complex poles are given by complex conjugate pairs, the
length of the parameter vector θ can be reduced by half.

We define real and complex valued poles as

αi =

{
αRs = σRs + j · 0 , if Im(αi) = 0

αCt = σCt + j · ωCt , if Im(αi) > 0
, (10)

where for every αCt there is a complex conjugate αC∗t , i.e.
αC∗t = σCt − jωCt . Both s = 1, . . . , n and t = 1, . . . ,m
are new consecutive indices for the real and complex poles,
respectively, with

p = n+ 2m .

Using definition (10), we can rewrite the denominator of (4)
by

p∏
i=1

(1− αiz−1) =
n∏
s=1

(1− αRs z−1)·

m∏
t=1

(1− αCt z−1)(1− αC
∗

t z−1) .

The new parameter vector is then given by

θ = [σR1 , . . . , σ
R
n , σ

C
1 , . . . , σ

C
m, ω

C
1 , . . . , ω

C
m]T . (11)

Using (10) we can map (11) back to the form (13) and thus,
we can proceed as in III-C. This formulation allows to ensure

Data: θ̂0, C0, y1,2,..., νw
Result: θ̂k, Ck

[θ̂p,Cp]← [θ̂0,C0]

for k ← p+ 1 to end do
// calculate regression point (e.g., [19], [20]) and
// apply observation function (9)
θk−1 ← getRegressionPoints(θ̂k−1,Ck−1);
Yk ← h(θk−1, yk−1:k−p);
// calculate expected observation mean and varinace,
// joint state-observation cross-covariance, and gain
ŷk =

∑r
i=1 ω

(i)
k−1ỹ

(i)
k

ν
(y)
k ←

∑r
i=1 ω

(i)
k−1(ỹ

(i)
k − ŷk)2;

c
(θy)
k ←

∑r
i=1 ω

(i)
k−1(θ̃

(i)

k−1 − θ̂k−1)(ỹ
(i)
k − ŷk)T ;

Kk ← (c
(θy)
k )T (ν

(y)
k + νw)

−1;
// update estimate and estimation uncertainty
θ̂k ← θ̂k−1 +Kk (yk − ŷk);
Ck ← Ck−1 −Kkν(y)k KTk ;

end

Fig. 3. Direct pole identification from data using an LRKF update.

the constraint that the system output is real-valued and at the
same time remove all redundancy in the estimation.

IV. POLE ESTIMATION BASED ON STATISTICAL
LINEARIZATION

In the case of a nonlinear observation function, it is com-
mon to utilize a modification of the Kalman filter. Nonlinear
functions are handled by linearization, either by function
linearization around a single point (e.g., Taylor-series based
linearization) or by statistical linearization, which can be
performed analytically for polynomials [18] or based on
regression points [16], [17]. This results in the general
assumption of a Gaussian distributed joint density f(θ, y, w).
Consequently, the estimate θk ∼ fk(θ) is approximated by
a Gaussian distribution θ̃k given by the mean θ̂k and covari-
ance matrix Ck. First, we will introduce the LRKF [16], [17],
which uses regression point based statistical linearization,
also called weighted statistical linear regression. Then, we
introduce the analytic statistical linearization [18]. As already
mentioned in the introduction, the adaptive pole estimation
(APE) [14] equals the application of the EKF in method, but
for the optional forgetting factor, hence, the introduction to
this approach will be omitted.

Using the regression point based statistical linearization,
θ̃k−1 is deterministically sampled by a Dirac mixture density

Xk−1 =

r∑
i=1

ω
(i)
k−1δ

(
θ − θ̃

(i)

k−1

)
,

comprising r regression points at positions θ̃
(i)

k−1 and weights
ω
(i)
k−1, with

∑r
i=1 ω

(i)
k−1 = 1, such that the mean and the

covariance of Xk−1 equal θ̂k−1 and Ck−1, respectively.
The sampling method determines quality and complexity of



each estimation step. We recommend the so-called Unscented
Transformation used by the Unscented Kalman Filter (UKF)
[19] for few samples and thus, low complexity and high
sampling rates, or the Smart Sampling Kalman Filter (S2KF)
[20] for high quality estimation with faster convergence.
The observation function h(·) is then evaluated at every
regression point of Xk−1 and linearized by

h(θ̃
(i)

k−1, yk−1:k−p) = Hkθ̃
(i)

k−1 + bk + e
(i)
k = ỹ

(i)
k ,

where e
(i)
k is an additional linearization error for every

regression point. Note, that yk−1:k−p is a realization of
yk−1:k−p, namely, the actual measurements. We will denote
the Dirac mixture density of all transformed regression points
by Yk, i.e.,

Yk = h(Xk−1, yk−1:k−p) =
r∑
i=1

ω
(i)
k−1δ

(
y − ỹ(i)k

)
.

Minimization of the sum of the least squares of the lineariza-
tion error yields

[Hk, bk] = argmin
H,b

r∑
i=1

ω
(i)
k

(
e
(i)
k

)2
,

which can be solved by

Hk = (c
(θy)
k )T (Ck−1)

−1

bk = ŷk −Hkθ̂k−1 ,

with

c
(θy)
k =

r∑
i=1

ω
(i)
k−1

(
θ̃
(i)

k−1 − θ̂k−1
)(

ỹ
(i)
k − ŷk

)T
the regression point based joint state-measurement covari-
ance. The linearization error can be characterized by the error
variance

ν
(er)
k = ν

(y)
k −HkCk−1H

T
k ,

with ν(y)k =
∑r
i=1 ω

(i)
k−1(ỹ

(i)
k − ŷk)2, which is used as an ad-

ditional noise source in order to ensure a consistent estimate.
With the linearized formulation, the insertion of θ̂k−1, Ck−1,
Hk and ν(er)k into the Kalman filter measurement update [21]
yields

θ̂k = θ̂k−1 +Kk · (ŷk −Hkθ̂k−1 + bk)

Ck = Ck−1 −KkHkCk−1 ,

with the Kalman gain

Kk = Ck−1H
T
k ·
(
HkCk−1H

T
k + νw + ν

(er)
k

)−1
.

Together with the regression point based expected measure-
ment mean

ŷk =

r∑
i=1

ω
(i)
k−1ỹ

(i)
k

this can be transformed to

θ̂k = θ̂k−1 +Kk (yk − ŷk)
Ck = Ck−1 −Kkν(y)k K

T
k ,

with Kk = (c
(θy)
k )T (ν

(y)
k + νw)

−1 the statistically linearized
Kalman gain.

The complete algorithm for direct pole estimation using an
LRKF is summarized in Fig. 3. We assume that the system
order is known a priori. As initial value, it is possible to
use any prior knowledge to initialize θ̂0, which includes, for
example, a prior analysis of a set of the first data samples
by other well established methods like the Yule-Walker equa-
tions [12], [13] without the necessity of a priori knowledge.
Without prior knowledge it is also possible to use some
distributed set of poles over the unit disc as initialization.
For stable systems we recommend the concentric uniform
distribution on a circle with radius r, with 0.5 ≤ r ≤ 0.9.
The covariance matrix C0 represents the uncertainty of the
chosen initial value of θ̂0. If no detailed prior knowledge is
at hand, we recommend an initialization by C0 = c · I, with
a constant 0.2 ≤ c ≤ 0.5.

For analytic calculation of the statistical linear regression,
all the regression point based calculations need to be re-
placed by analytic calculations [18]. These are the expected
measurement mean ŷk, the observation variance v(y)k , and the
joint state-observation cross-covariance c(θy)k . For the present
case this is performed by

ŷk =

∫
h(θk, yk−1:k−p) · f(θk) dθk

v
(y)
k =

∫
h(θk, yk−1:k−p)

2 · f(θk) dθk − ŷ2k + v(w)

c
(θy)
k =

∫
θk · h(θk, yk−1:k−p) · f(θk) dθk − ŷ2k + v(w) .

(12)
The dependence of (12) on the function h(θk, yk−1:k−p),
causes the necessity of a specific set of formulas (12) for
different system orders. Unfortunately, the application of the
analytic solution is only reasonable for systems with order
p < 4, due to high complexity.

V. DIRECT EIGENVALUE ESTIMATION

Let a system S be given by (1) and θ be the vector of
unknown eigenvalues characterizing A given by

θ := [α1, . . . , αp]
> , (13)

where every αi = σi + jωi is one complex eigenvalue
composed of the real part σk,i and the imaginary part ωi.
Thus, written in the form αi = [σi, ωi]

> the length of the
parameter vector θ is 2p, where p denotes the system order.
We restate the system formulation using state augmentation,
in order to calculate the state and parameter estimates xk
and θk simultaneously at every time step k by[

xk+1

θk+1

]
=

[
A 0
0 I

] [
xk
θk

]
+

[
B
0

]
(uk +wk)

yk =
[
C 0

] [xk
θk

]
+ vk ,



Time

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2
0.4
0.6
0.8

1

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2
0.4
0.6
0.8

1

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2
0.4
0.6
0.8

1

APE
S2KF
UKF
True Value
Permuted True Value

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.8
−0.6
−0.4
−0.2

0

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2
0.4
0.6
0.8

1

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2
0.4
0.6
0.8

1

Re (   )1
^

Re (   )2
^

Re (   )3
^

Im (   )1
^

Im (   )2
^

Im (   )3
^

Fig. 4. This figure shows the estimated mean of the simulated system (15). The horizontal plot pairs show the real and imaginary part of one pole.
Because of the occurrence of complex conjugate pairs, only three of the six poles are plotted.

where the matrix Ak is given by (2), with the parameters ai
directly calculated from θk by

ai = (−1)i ·
∑

M⊆{1..p}
|M |=i

( ∏
m∈M

αm

)
, (14)

i.e., the same transformation as derived from the AR-
coefficients ai by replacing the sum of all products of poles
consisting of i factors of all subsets M with i elements. With
this formulation we can estimate [xk,θk]

> for a given input-
output time series [y1...k, u1...k] analogously by application
of recursive Bayesian estimation.

VI. SIMULATION

In order to demonstrate the performance of the presented
approach to direct pole identification by Bayesian estimation,
we evaluate the presented LRKF solution with UKF sampling
[19] and S2KF sampling [20] using 50 regression points per
dimension, and compare it to the adaptive pole estimation
(APE) [14].

For the evaluation we generated a dataset of 2000 data
samples by simulation of the 6th order stable system with

yk = 0.9yk−1 + 0.6yk−2 − 0.586yk−3 − 0.6817yk−4

+ 0.913yk−5 − 0.3768yk−6 +wk ,
(15)

with the process noise wk ∼ N (0, 1). The poles are located
at positions [−0.85±0.55j, 0.45±0.5j, 0.85±0.3j]. We have
visualized the pole constellation together with an exemplary
intermediate result of the identification process in Fig. 1.
Two of the three pole pairs have a position far from the
unit circle, which results in slower impact of data on their
identification process, and thus a slower convergence. The
system is initialized with a zero state. The pole identification
process is started at time step k = 7, using output data
of time steps k = 1 . . . 6 as initial input y6:1. The prior
x0 = [0± 0.8j, 0.6928± 0.4j,−0.6928± 0.4j] was chosen
by an uniformly distributed set of poles over the complex
circle with radius 0.8. As initial uncertainty area C0, we
chose C0 = 0.3 · I, which covers a sufficient area of the unit
circle for each pole considering the 3σ-bound of a Gaussian
density.

Fig. 4 shows an exemplary outcome of the point estimate
of the poles with their real (left column) and imaginary (right
column) part. On the first impression the first pole, which is
close to the unit circle shows fast convergence by all of the
tested methods, as it was expected. Closer analysis shows
that APE is slightly faster in the initial phase of the pole
estimation process. It shows that permutations of the poles
in the estimation vector actually do occur in the present case
on the poles 2 and 3. Thus, instead of the more commonly
used Root Mean Square Error (RMSE), we utilize the so-



called Mean Optimal Subpattern Assignment (MOSPA) met-
ric with the Euclidean distance as base distance for further
quantitative evaluation of the proposed method. The MOSPA
metric uses the smallest distance over all possible assignment
permutations between estimated and actual poles and thus,
calculates the estimation error, while simultaneously solving
the assignment problem [22].

The evaluated MOSPA metric over 1000 identification
runs is displayed in Fig. 5. As in the single run analysis
APE shows a fast convergence rate in the initial identi-
fication phase. The proposed LRKF identification method
outperforms APE in terms of convergence rate on the long
run, using the UKF as well as the S2KF regression point
calculation.

In order to explain this behavior, we take a look at the
Example System 1. Fig. 6 shows the estimation result after
15 time steps. We used a particle based approach, where we
distributed 10000 particles and updated the particle weights
by the likelihood (7). The light blue particle cloud shows
97,73% of the probability mass. It can be seen, that the
particle mass is starting to split into two masses being
drawn to the actual pole positions. This results in a bimodal
probability density, where each mode lies over one of the
two permutations. Now considering the Gaussian probability
density resulting from a Kalman filter based approach, the
worst case initialization having the mean on the symmetry
axis (i.e. α1 = α2), results in a good estimate of the
whole bimodal density, instead of an estimate of one mode.
Note that this happens also to the APE, if the initial value
is chosen exactly on the symmetry axis. The statistical
linearization considering the whole uncertainty region for the
linearization, may cause an attraction towards the symmetry
axis, if the uncertainty is having large probability masses
on both sides of the symmetry axis. Thereby, the estimation
convergence is slowed in the beginning.

VII. CONCLUSIONS AND FUTURE WORK

A general recursive Bayesian solution to direct identifica-
tion of poles of SISO-LTI systems has been derived. With
the general Bayesian approach at hand, it is possible to apply
many different Bayesian estimation methods for fast and
effective recursive pole identification. An easily applicable
solution by utilizing statistical linearization was introduced,
which can be calculated analytically or based on regression
points. We have derived the likelihood function and the direct
mapping from the poles to incoming data and thus, other
solutions as the commonly used sequential Monte Carlo
filter, are also easily applicable.

We pointed out a systematic problem, caused by the
symmetry of the measurement function mapping the poles
directly to the process output. In future work, we will address
this problem by the development of constrained filtering
restricting the estimation space to one possible mode, and
multiple-shooting-based filtering splitting the initial estimate
and launching multiple estimation processes, fusing them as
soon as convergence is reached. Though we presented both
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Fig. 5. Evaluated Mean Optimal Subpattern Assignment (MOSPA) metric
[22] over 1000 identification runs for a simulated data set of 2000 data
points. The identification is performed by the proposed LRKF method with
UKF (blue-dotted) and S2KF (green) regression point sampling, as well as
the APE [14] (red) for comparison.

a solution for a known and unknown proportion of real and
complex poles, if the proportion is unknown the identification
result does not necessarily guarantee complex conjugate pole
pairs and hence, does not guarantee a real valued system. In
future work we will also focus on a Bayesian solution where
the identification problem is solved under the constraint of
real valued system output and unknown proportion of real
and complex poles.

APPENDIX

In this part we derive the measurement function (6).
Comparing (3) and (6) yields

h(x,yk−1:k−p) = −
p∑
i=1

aiyk−i . (16)

By canceling out νw and z−p equation (4) reveals the relation
between ai and αi, which is given by

zp +

p∑
i=1

(aiz
p−i) =

p∏
i=1

(z − αi) .

Expansion of the right-hand side yields

zp +
∑p
i=1(aiz

p−i) = zp+
−(α1 + α2 + . . .+ αp−1 + αp)z

p−1

+(α1α2 + α1α3 + . . .+ α1αp + α2α3 + . . .)zp−2

−(α1α2α3 + . . .+ α1α2αp + α2α3α4 + . . .)zp−3

...
(−1)p(α1α2α3 · . . . · αp−1αp)z0
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Fig. 6. Result of the pole estimation of Example System 1 after 15 time
steps. Each of the red dots illustrates the pole positions of both poles,
but in reverse orderring, as in Fig. 2 (b). The light blue points show
99, 73% of the probability mass of the result of a sample-based estimation
apporach, adjusting the sample weight by multiplication with the likelihood
function (7). Over time the cloud splits and forms two modes, both giving
a correct result. The red cross and dashed ellipsoid shows exemplary mean
and covariance of one of the described Kalman filter based approaches,
estimating both modes. Thus, it is not converging to one of the two correct
results.

and it follows
a0 = (−1)0

a1 = (−1)1(α1 + α2 + . . .+ αp−1 + αp)

a2 = (−1)2(α1α2 + α1α3 + . . .+ α1αp + α2α3 + . . .)

a3 = (−1)3(α1α2α3 + . . .+ α1α2αp + α2α3α4 + . . .)

...
ap = (−1)p(α1α2α3 · . . . · αp−1αp) .

We will write this in short form as

ai = (−1)i
∑

M⊆{1..p}
|M |=i

( ∏
m∈M

αm

)
.

Substitution of ai in (16) finally yields the measurement
function

h(xk, yk−1:k−p) = −
p∑
i=1

(
(−1)iyk−i ·

∑
M⊆{1..p}
|M |=i

( ∏
m∈M

αm

))
.
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