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Abstract— We consider stochastic nonlinear time-variant sys-
tems with imperfect state information in the context of model
predictive control. The optimal control performance can only
be achieved by closed-loop feedback (CLF) policies, which in
fact anticipate future behavior. However, the computation of
these policies is in general not tractable due to the presence
of the dual effect, i.e., the control actions not only influence
the state but also the uncertainty of its estimate. Thus, we
propose an approximation to closed-loop control. We use a
forward calculation approach, which is derived from an open-
loop feedback (OLF) control setup, but implements the funda-
mental property of closed-loop control that future measurement
feedback is considered in the optimization. By using a finite
set of representative measurements, the feedback behavior is
anticipated only on basis of current information. The proposed
optimization scheme is based on a continuation method, which
implements an effective calculation to obtain a sequence of
control inputs. The effectiveness of the presented approach is
demonstrated by means of a miniature walking robot.

I. INTRODUCTION

In Model Predictive Control (MPC), the main objective is
to compute and apply control inputs such that the behavior of
a system quantified by means of a cost function is optimized
over a certain control horizon. Modelling errors or distur-
bances affecting the system can be considered in a stochastic
fashion leading thereby to stochastic MPC (SMPC). The
optimal solution, or strictly speaking the closed-loop optimal
solution, is given by the Bellman equation, which unfor-
tunately is only computable in few special cases, such as
the linear-quadratic-Gaussian (LQG) control problem or the
control of systems with a finite number of states and control
inputs. This is mostly due to the curse of dimensionality and
the fact that separation of estimation and control does not
hold in the case of stochastic nonlinear systems [1], [2].

Literature Review: Assuming state feedback, scenario-
based approaches solve the control problem by sampling the
underlying uncertainty space. This has been implemented for
linear systems [3], [4], [5] and nonlinear systems [6], [7],
where for convex optimization problems a bound has been
established on the number of required random samples for a
guaranteed quality of control [8]. An alternative approach
is the usage of vector quantization, where the scenarios
are represented as part of a code book. This approach is
implemented for finite input sets and nonlinear systems [9].
Other methods include an approach based on a minimum
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Fig. 1. Example system miniature walking robot.

principle, where the control problem is converted into a
two-point boundary-value problem and solved by homo-
topy continuation [10], and a two-step approach based on
open-loop feedback (OLF) pre-calculation and closed-loop
feedback (CLF) post-processing on a discretized restricted
state space [11]. Perturbed measurement feedback has been
considered for finite sets of control inputs and finite sets
of representative measurements, by generating a search tree
by means of all combinations of inputs and measurements
over the control horizon [12]. Partially observable Markov
decision processes (POMDPs) traditionally consider discrete
state spaces. Here the feedback information is represented
in form of estimated states in the so-called belief space.
Relevant work assumes an infinite control horizon with
discounted cost using reinforcement learning methods to
explore the belief space and compute an explicit form of
the cost function. This leads to the calculation of station-
ary policies, which implies time-invariant systems [13]. In
recent years continuous-state spaces have been considered,
by discretization of the belief space and thereby diffusing
the separating line between POMDPs and SMPC. Using
Gaussian representations of the belief space, continuous state
POMDPs with finite sets of inputs [14], [15] and continuous
input spaces [16] are solved. Alternatively the belief space
can be represented by a finite set of discrete probability
densities. This has been considered using a Monte-Carlo
approach and Kullback-Leibler divergence as similarity mea-
sure [17] and deterministic state propagation together with
cost interpolation based on the Wasserstein distance [18].

Contribution: In our approach, we present an MPC ap-
proach with CLF control properties for stochastic time-
variant systems with disturbed measurement feedback. More
specifically, a continuous-valued state space and continuous-
valued control inputs are considered. Two key ideas render
a feasible solution. First, we approximate the CLF control



problem by a forward calculation derived from an OLF
control approach. This is made possible by the assumptions
that future feedback can be anticipated by a finite set of
representative measurements and measurement feedback is
not handled directly by the controller, but given in form of
a state estimate. Second, an effective optimization method
is employed, which exploits the solution of a simplified
problem. Using homotopy continuation, this simplification
is progressively transferred back into the original problem.
The optimum is tracked by a gradient descent method.

Notation: Throughout this work, random variables x are
denoted in bold face letters, while deterministic quantities
x are in normal letters. Vector-valued quantities x are made
distinguishable from scalar quantities x by underlining the
corresponding variables. The notation xk ∼ fxk (xk) de-
notes that xk is characterized by the probability distribution
fxk (xk), where the index k assigns a variable or a function
to a specific time-step. Finally, a matrix A is written in bold
face capital letters.

Outline: In the following section, the formal problem is
stated. We introduce the considered system and present the
general closed-loop control problem. In Sec. III, we approx-
imate the original problem using a finite set of representative
measurements and derive a forward calculation approach.
This forward calculation approach is used to minimize the
cost function with respect to the control inputs by means
of an optimization based on homotopy continuation method.
Finally, in Sec. IV, we evaluate the presented work based on
an experiment using a miniature walking robot and Sec. V
concludes this work.

II. PROBLEM FORMULATION

In this work, we consider time-variant stochastic nonlinear
systems of the form

xk+1 = ak(xk, uk) + wk , (1)

where the system state xk ∈ Rx is a random variable
characterized by the probability density fxk (xk). The initial
state x0 ∼ fx0 (x0) is known and the control input vector
uk ∈ Ru is chosen from the bounded set U = [umink , umaxk ].
State propagation is performed by the system function
a : Rx × U → Rx, which is affected by independent and
identically distributed (i.i.d.) noise wk ∈ Rx, where wk is
characterized by fwk (wk). We assume the state xk not to be
directly accessible. It can only be observed according to the
following equation

y
k

= h(xk) + vk , (2)

where y
k
∈ Ry is the measurement output characterized by

fyk (y
k
). The measurement function h : Rx → Ry is disturbed

by the i.i.d. noise vk ∈ Ry with vk ∼ fvk (vk).

Example System: Miniature Walking Robot
Let us visualize this class of systems by a simple example. We
assume an autonomous walking robot moving with constant
speed following a given path. We are only interested in the

system sensor delay

Bayesian estimatorstochastic controller

Fig. 2. The system structure considered in this work.

distance deviation to the path and the relative orientation of
the robot, i.e, the system state xk = [xk,φk]

T . The robot can
be controlled, by changing its orientation by the control input
uk, which leads to the the two-dimensional process model

xk+1 =

[
xk+1

φk+1

]
=

[
xk + sin(φk + uk)

φk + uk

]
+

[
wx
k

wφ
k

]
,

where wk = [wx
k,w

φ
k ]
T is a disturbance affecting the position

and orientation of the state, respectively. The state itself cannot
be observed directly. Instead, the robot is equipped with a 360◦

distance sensor, which measures the closest distance to ob-
jects in the robots environment. Therefore a one-dimensional
sensor model is given by

yk = d(xobs,xk) + vk ,

where d() is a distance function, xobs is the positions of closest
obstacle, and vk is an additive noise term. We have visualized
the given example by depicting the robot in his environment in
Fig. 1.

We consider closed-loop feedback model predictive con-
trol, which takes into account that future control deci-
sions will be based on more available feedback informa-
tion. In general, this leads to the optimization of func-
tions µk() mapping the initial condition, available measure-
ments, and already applied control inputs to new control
inputs, i.e., µk(fx0 , y1:k

, u0:k−1) = uk. In the following,
we assume that the state conditional probability density
fxk (xk|fx0 , y1:k

, u0:k−1) characterizing the state estimate xk
is a sufficient statistic. We assume, the controller has no
direct access to the measurement feedback y

k
, but can only

make decisions based on xk, which is calculated recursively
via Bayes’ law. We have illustrated the system structure in
Fig. 2.

Let us denote the admissible control policy consisting
of a sequence of functions by π = {µ0(), µ1(), . . .}. The
objective is to find an optimal policy π∗, minimizing the
expected cumulative cost function

Jπ = IE

{
gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk))

}
(3)

over a control horizon N , where gk : Rx × U → R+ is a
one-step cost function mapping every state-input pair to a
real number and gN : Rx → R+ denotes the terminal cost.



The expectation is subject to the noise w0:N−1 and v0:N−1,
and the initial condition x0. Thus, we are looking for π∗ such
that Jπ

∗
= minπ∈Π J

π , where Π is the set of all admissible
policies.

Using Bellmans principle of optimality, the minimal cost
Jπ

∗
and consequently the closed-loop optimal input se-

quence U∗ = u∗0:N−1, can be obtained by nested opti-
mization problems minimizing the expected cost conditioned
on available information at each time step. Solving this
optimization problem has to be worked from inside out,
i.e., by starting the calculation from the innermost expec-
tation, which leads to the well-known backward-recursive
formulation based on the concept of dynamic programming.
Unfortunately, this is computationally not feasible in this
general formulation [1].

III. APPROXIMATION OF CLOSED-LOOP FEEDBACK
CONTROL

The CLF MPC problem implies an optimization of func-
tions, resulting from the principle of optimality. Thus, CLF
optimal policy can be computed by

JCLF = min
u0

IE

{
g(x0, u0) + min

u1

IE
{
g(x1, u1) + min

u2

. . .

. . .+ min
uN−1

IE{g(xN−1, uN−1) + g(xN )|xk−1} . . .

. . . |x2

}∣∣∣x1

} ∣∣∣ x0

}
,

which are nested optimization problems minimizing expected
cost conditioned on the available information at each time
step. Due to this nested formulation, this computation is not
solvable for nonlinear systems [2].

A. Derivation from an Open-Loop Feedback Policy

We propose to minimize the cost over the control horizon
conditioned on the available information at the given time
step. This is described by the policy

JOLF

= min
u0:uN−1

IE
x

{
gN (xN ) +

N−1∑
k=0

gk(xk, uk)
∣∣∣ x0, u0:N−1

}
= min
u0:uN−1

IE
x

{
g0:N (x0:N , u0:N−1)

∣∣∣ x0, u0:N−1

}
,

(4)
which, on the other hand, in an open-loop feedback (OLF)
policy. In this case the measurement feedback is not con-
sidered in the optimization process. As a matter of fact,
consideration of all future measurements using this forward
formulation is equivalent to not considering any future feed-
back. The future possible measurements are removed by
taking the expectation, i.e., in short form, the expectation

in eq. (4) can be calculated by∫
x

g0:N (x0:N , u0:N−1)fp(x1:N |x0, u0:N−1) dx0:N

=

∫
x

∫
y

fy(y
1:N
|x0, u0:N−1)g0:N (x1:N , u0:N−1)

· fe(x0:N |x0, y1:N
, u0:N−1) dx0:N dy1:N ,

(5)

where we emphasized the prior conditional state densities by
fp as in predicted state, the posterior densities comprising
all measurements by fe as in estimated state, and the density
of possible measurements by fy . The proof is given in the
Appendix.

In order to solve the problem of removing measurement
considerations form the presented forward formulation, we
propose to approximate all measurement probability densities
fy(y

k
|x0, u0:k) by a set of specific measurements, i.e.,

fy(y
k
|x0, u0:k) ≈

L∑
j=1

1

L
· δ
(
y
k
− y(j)

k

)
,

where δ(·) is a Dirac delta function and y
(j)
k denotes the

position of the j-th Dirac component. This approximation
can be used in various ways. First, it is possible to consider
only the expected measurement ŷ

k
= hk(IE{xk|u0:k}, 0).

Second, in the case of bounded measurement noise, the
worst measurement realization can be chosen, i.e., the one
maximizing the cost function. A similar approach has been
implemented for systems with finite sets of inputs and finite
sets considered measurements in [19]. Finally, the density
fy(y

k
|x0, u0:k) can be approximated by means of a discrete

probability density (e.g. by [20], [21], [22]). Note that the
expected measurement may lead to a loss of robustness,
while computation of the worst measurement realization re-
sults in an expensive min-max optimization problem. Finally,
utilization of several specific measurements results in a tree
like optimization structure, where the computational cost
strongly depends on the number of measurement samples.

Using this formulation, the calculation can be performed in
a forward prediction-filtering approach minimizing the cost
function by optimizing over the control inputs, instead of
functions. This can be interpreted as an OLF optimization
with the property of considering future information feedback,
which is an approximation of the closed-loop optimal policy.

B. Progressive Optimization

The main challenge of the now stated forward calculation
is to find an optimal sequence of control inputs by mini-
mizing the cost over the control horizon. This means that
we have to solve a high-dimensional optimization problem.
The evaluation of the expected cost implies Bayesian esti-
mation over the control horizon and integration of the state
estimates over the cost function. Considering the already
high computational cost for prediction and estimation of
nonlinear systems, we use expected measurements ŷ

k
in the

optimization method.



The key idea of the proposed optimization method is to
use an easy computable control problem as an initial solution,
which is done by system simplification. This simplified sys-
tem is progressively transferred by means of a continuation
method into the original system, while the solution is tracked
by a gradient descent method.

First, we use a successive linearization approach for the
system simplification, where the system is linearized around
a nominal trajectory. Each step consists of system lineariza-
tion around the nominal state x̂k and input uk by

Ak =
∂a(x̂k, uk)

∂xk
, Bk =

∂a(x̂k, uk)

∂uk
, Hk =

∂h(x̂k)

∂xk
.

The resulting system together with its nominal state

xk+1 = Akxk + Bkuk + wk ,

y
k

= Hkxk + vk

are then used to calculate the next control input uk+1 by
means of a linear-quadratic-Gaussian (LQG) controller. The
resulting input sequence u0:N−1, together with the sequence
of linear systems A0:N−1,B0:N−1,C1:N , are then used as
the starting point for the optimization procedure. Second,
we progressively transfer the linear system to the original
nonlinear system by means of a linear continuation method,
given by

xk+1 = ãk(xk, uk, γ) + wk ,

y
k

= h̃k(xk, γ) + vk ,

where γ ∈ [0, 1] is the progression parameter. The linear
progression functions for state prediction ãk(·, ·, ·) and mea-
surement h̃k(·, ·) are given by

ãk(xk, uk, γ) = γ · ãk(xk, uk) + (1− γ)(·Akxk + Bkuk),

h̃k(xk, γi) = γ · h̃k(xk) + (1− γ) ·Hkxk .

Thus, for γ = 0 the system is equal to the linearized
starting point and for γ = 1 the original nonlinear system is
considered. During the optimization γ is stepwise increased.
Finally, we update the sequence of control inputs u0:N−1

for each step of the progression by a gradient descent
approach. We generate for each calculated control sequence
the corresponding trajectory and assumed measurements.
This implies Bayesian filtering for nonlinear systems (e.g.,
see [23], [24], [25]). The gradient of the cost function is
calculated around this trajectory and the control sequence is
updated. This procedure is repeated until the optimization
for γ = 1 is finished.

IV. EVALUATION

We have evaluated the presented approximate closed-
loop MPC approach by implementing the example system
described in Sec. II on a simulation of the miniature walking
robot depicted in Fig. 1. The used robot is a 3D printed
advanced version of the omnidirectional miniature walking
robot first introduced in [26]. The implementation consists
of the following setup. The robot can apply control inputs
uk ∈ [−0.2, 0.2] updating its orientation in radiance. The

TABLE I
EVALUATION RESULTS

Method ø cost # safety stops before crash

Approx. CLF (proposed) 8.47 0
Discrete Input CLF 9.39 0
Linearized LQG 16.75 12

initial position is set to x0 = [5cm, 0]T . State estimation is
conducted by the Unscented Kalman Filter (UKF) [23] and
is initialized by x0 ∼ N (x̂0,C0), where

x̂0 =

[
5
0

]
, C0 =

[
0.1 0
0 0.03

]
.

In order to construct a challenging control problem, we
consider a tunnel scenario, where the path followed by the
robot is enclosed by walls to both sides, which is depicted in
Fig. 3. The walls are positioned at xw1,w2 = ±17cm. Thus
considering the robot’s center and rotation, the robot must
not cross xmax = ±12cm to avoid crashes. The system noise
and measurement noise are modeled as Gaussian, zero mean,
white-noise with wk ∼ N (0,Cw

k ) and vk ∼ N (0,Cv
k),

respectively, where the covariance matrices are set to

Cw
k =

[
0.3 0
0 0.001

]
, Cv

k = [0.5] .

We employ the quadratic cost function

g(xk, uk) = xTk

[
0.1 0
0 1

]
xk + uTk [1]uk

and evaluate the expected cost by stochastic numerical in-
tegration by approximation of the state estimate xk by a
discrete density representation utilizing the technique intro-
duced in [21].

We compare the proposed work to a CLF controller for
systems with finite sets of control inputs proposed in [12].
Here, we use the finite set Ud = {−0.2,−0.1, 0, 0.1, 0.2} and
use the control optimization horizon N = 3. Furthermore,
we compare these approaches to a linear controller, where
the system is linearized locally at the point of the nominal
state estimate IE{xek} and is controlled by a linear quadratic
Gaussian (LQG) regulator. Using this method on the other
hand, separation of estimation and control for the linearized
system holds and the CLF-optimal policy is equal to the

Fig. 3. The evaluated tunnel scenario.



5

0

-10

position (in cm)

time step
10 20 30 40 500

10

-5

Approx. CLF (proposed)
Discrete Input CLF
Linearized LQG

(a) Actual robot behavior

5

0

-10

position (in cm)

time step
10 20 30 40 500

10

-5

(b) State estimate

Fig. 4. An exemplary evaluation of the example system for the three
compared approaches. (a) depicts the behavior of the real system, whereas
(b) shows the corresponding state estimate. The solid lines represent the
mean and the dashed lines together with the shaded colors indicate the
uncertainty showing the σ = 3 bound.

deterministic policy. This unfortunately does not hold for
the original nonlinear system.

We have summarized the evaluation of 50 performed runs
over 50 time-steps in Tab. I. As can be seen, the proposed
approximation of closed loop feedback control, as well as
the CLF control with discretized control input is able to
control the robot without leading it into a safety hold. The
slightly worse quality of the second is due to the application
of discretized control inputs and thus, has less precise control
options. On the other hand, the assumed CE in the LQG
approach leads to poor control performance and safety holds
caused by imminent crashes.

For further analysis of the control behavior, we have plot-
ted the trajectory of the robot of one exemplary outcome for
each of the three compared approaches in Fig. 4. Prominent
in the estimation plot is that the LQG control approach,
holds the control target perfectly, but the uncertainty rises
beyond the scale of the plot. This is given rise to by the fact
that the state cannot be reconstructed correctly in the tunnel
center. With both walls equally far away, in this position it
is undecidable which obstacle wall has been measured. This
interpretation is also supported by the actual robot trajectory,
which can be seen as random walk. In blue, the discrete input
CLF control uses some oversteering, resulting in frequent
changes of the approached side. This results in the increased
control cost. On the other hand it implicitly implements a

good trade-off between information gain and control cost,
leading to a good overall control quality. A slightly better
result can be seen with the proposed method in green. After
an initial phase, the robot finds a good line on one side and
tries to optimize the distance of the desired path such that
the information acquired by the feedback sensor is sufficient
for the control loop. This keeps the uncertainty of the state
estimate low and the resulting control cost low.

Summarizing the evaluation results, we can say that the
approximation of CLF control solves the problem of si-
multaneously optimizing information, which is crucial in
systems, where observability is dependent on the control
strategy. Thus, both approaches considering the dual effect
show a good coverage of estimated state and the real system
behavior. This is also emphasized by Fig. 5, where we plotted
the average determinant of the state estimate over 50 Monte-
Carlo simulation runs. In contrast, the control policy of the
CE approach is to stay at a point, where no detectability is
given and thus, the uncertainty rises after few steps beyond
the range of the plot.

V. CONCLUSION AND FUTURE WORK

We present a novel control approach for stochastic non-
linear time-variant systems with imperfect state information.
The system is considered for continuous state and control
input spaces. The presented method effectively exploits in-
formation about future measurement feedback into an oth-
erwise open-loop feedback optimization. This enables the
consideration of the dual effect of control and estimation
similar to a closed-loop optimal controller. The optimization
is performed by a continuation method, which progressively
transfers a linearized starting point into the original nonlinear
system, while keeping track of the minimum. The minimum
is tracked by a gradient descent method that calculates the
trajectory and the assumed measurements for a given input
sequence and updates the sequence by linearizing the cost
function around this trajectory.

Major benefit of the presented approach is that the dual
effect of control and estimation is considered in an effective
way and issues involving the observability can be handled
implicitly. Though the introduced optimization method al-
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Approx. CLF (proposed)
Discrete Input CLF
Linearized LQG

Fig. 5. Visualization of the estimation quality performed during the control.
The Bayesian filtering was performed for all methods by the UKF [23]. The
plot shows the development of the covariance matrix over time, by means
of its determinant averaged over all 50 runs.



lows for an efficient calculation, the heavy computational
load from recurring evaluation of nonlinear Bayesian filtering
restricts this approach to a relatively short control horizon.

Future work includes the improvement of the continuation
method by a prediction-correction approach and the imple-
mentation of more effective optimum tracking methods to
increase the performance. Furthermore, effective optimiza-
tion methods for more robust measurement strategies, as
introduced in Sec. III-A, have to be developed.

APPENDIX

Proof of eq. (5): Let us consider all possible measurements
of an arbitrary time step based on the predicted state proba-
bility density fp. Omitting the time index, we can write this
as a probability density

fy(y) =

∫
x

f(y|x) · fp(x)dx . (6)

Furthermore, we can write the posterior fe in terms of the
prior fp by the Bayesian filtering step

fe(x|y) = c(y) · f(y|x) · fp(x) , (7)

where c(y) = 1/
∫
f(y|x) · fp(x)dx is a normalization

constant. Using the filter step (7) we can rewrite the right-
hand side of eq. (5) by∫
x

∫
y

c(y1:N ) · fy(y
1:N
|x0, u0:N−1) · g0:N (x1:N , u0:N−1)

· f(y1:N |x0, u0:N−1) · fp(x0:N |x0, u0:N−1)dx0:N dy1:N .

Using eq. (6) to rewrite the measurement density fy , we
obtain

fy(y
1:N
|x0, u0:N−1) = 1/c(y1:N ) ,

which then leads to∫
x

g0:N (x1:N , u0:N−1) · fp(x0:N |x0, u0:N−1)dx0:N

·
∫
y

f(y1:N |x0, u0:N−1)dy1:N ,

where f(y1:N |x0, u0:N−1) is a probability density and thus,
the second part integrates to one. This yields the desired
result.
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