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Abstract— We propose a geometry-driven deterministic sam-
pling method for Bingham distributions in arbitrary dimen-
sions. With flexibly adjustable sampling sizes, the novel scheme
can generate equally weighted samples that satisfy requirements
of the unscented transform and approximate higher-order
shape information of the Bingham distribution. By leveraging
retraction techniques from Riemannian geometry, the sigma
points are constrained to preserve the second-order moment.
Meanwhile, samples in each principal direction are located in a
way that minimizes a distance measure between the on-tangent-
plane Dirac mixtures and the underlying on-manifold density.
For that, the modified Cramér–von Mises distance based on
the localized cumulative distribution (LCD) is employed. We
further integrate the proposed approach into a quaternion-
based orientation estimation framework. Compared to the
existing unscented sampling approach drawing only fixed and
limited numbers of sigma points, simulation results show that
the proposed scheme enables better accuracy and robustness
for nonlinear Bingham filtering.

I. INTRODUCTION

Reliable orientation filtering is crucial for state estimation
and control problems that appear in various application sce-
narios, e.g., point registration [1], multilateration [2], pose es-
timation as well as robotic perception and manipulation [3]–
[8]. Due to the underlying nonlinearity and periodicity, how-
ever, recursive estimators for robust and accurate orientation
estimation cannot be trivially developed. Mathematically
speaking, the planar and spatial orientations belong to the
special orthogonal groups SO(2) and SO(3), respectively.
Conventional stochastic filtering algorithms, e.g., the well-
known extended Kalman filter (EKF) [9] or the unscented
Kalman filter (UKF) [10], rely on local linearization of
the nonlinearity with noise terms assumed to be Gaussian-
distributed. However, such approximations are problematic
under high nonlinearity and strong system noise as they lack
the consideration of the underlying nonlinear group structure.
For practical use, sensors providing higher-order motion
information are usually needed (e.g., IMU), and sensor fusion
techniques are required [11].

Moreover, orientations can be parameterized in different
ways. Popular options, such as the Euler angles, suffer
from gimbal lock. The singularity can be resolved via over-
parameterization, e.g., by using the well-known rotation
matrices. However, they can sacrifice numerical instabilities
due to the large degree of redundancy (3 × 3 elements for
3-DoF orientations). In contrast, unit quaternions provide a
natural way to parameterize orientations without singularity,
and only bring one degree of redundancy. In this paper,
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Fig. 1: Deterministic samples (red ‘x’) from the proposed
approach for S3 (shown on TmS3 via logarithm map) and
S2. Small blue dots are randomly drawn to show the density.

quaternions on S1 (unit circle) and S3 (unit hypersphere)
are employed to represent planar and spatial orientations.

In [4], [5], [12], the Bingham distribution [13] was used
for stochastically modeling uncertain unit quaternions, and
applied further for orientation estimation. As the distri-
bution is inherently defined on Sn, Bingham-based filter-
ing algorithms no longer require local linearization of the
manifold [14]. Corresponding nonlinear Bingham filters are
typically sampling-approximation-based, in which the distri-
bution is estimated via moment matching (for the first two
moments). Compared to Monte Carlo-based filtering frame-
works, deterministic schemes can guarantee reproducible
results and are more efficient.

In [15], a deterministic sampling approach for quaternion
Bingham distributions has been proposed following the idea
of the unscented transform (UT), and enables efficient recur-
sive orientation estimation. However, the sigma points are
limited to be of fixed size (on Sn only 2n+ 1 unduplicated
samples are generated1), and can only approximate mo-
ments up to the second order. This is sufficient for moment
matching-based parameter fitting of the distribution, but
lacks consideration of the higher-order shape information.
Nonlinear Bingham filtering approaches with small sample
sizes can easily suffer from degeneration issue in a sampling-
reweighting-approximation filtering workflow [2].

There has been effort to adapt the UT-based sampling
scheme to approximate higher-order moments for Gaussian
distributions, where certain statistical distance metrics are
minimized based on Dirac mixtures of deterministic samples.
The samples are either located on the principal axes [16]
or generally in the domain of definition [17]. In [18], a
sample reduction technique was introduced based on the
localized cumulative distribution (LCD), enabling Dirac mix-
ture approximation for non-continuous densities. However,

1Here, antipodally symmetric sigma points are considered as “duplicated”
as they represent the same orientation.



the aforementioned approaches are all proposed for linear
domains and cannot be trivially extended to distributions on
nonlinear manifolds, such as a Bingham on the hypersphere.
Though in [19], a sampling approach was introduced for
approximating the von Mises distribution on the circular
domain, it specifically relies on the trigonometric moment
and cannot be generalized for hyperspheres. Besides, some of
these approaches do not maintain the first two moments [20].
However, it is still our goal to have the sampling scheme
follow the idea of the unscented transform to ensure that no
information gets lost for parameter fitting.

In this paper, a novel deterministic sampling scheme
for the Bingham distribution is proposed (examples shown
in Fig. 1). Taking ideas from Riemannian geometry, the
geometric structure of the Bingham distribution on Sn can
be depicted on the tangent space at the mode. Optimization-
based Dirac mixture approximation is then performed in
each principal direction under constraints deduced by the un-
scented transform via retractions. The on-tangent-plane op-
timization is performed to minimize an LCD-based Cramér–
von Mises distance [18] between the Dirac mixtures and the
underlying on-manifold density. Our contributions are:
• A generic deterministic sampling scheme is proposed

for Bingham distributions in arbitrary dimensions. The
samples are located in principal directions and preserve
the first two moments with consideration of approxi-
mating higher-order moments of the Bingham density.

• The scheme allows flexibly given sizes of samples,
which are equally weighted for uniform contributions.
The accuracy and robustness of nonlinear Bingham
filtering can thus be improved.

The remainder of the paper is as follows. Preliminaries
about quaternion representation, Bingham distribution, and
spherical geometry are introduced in Sec. II. The general
geometry-driven sampling scheme is proposed in Sec. III. In
Sec. IV, geometric interpretation of the unscented transform
is derived, based on which the LCD-driven shape approxima-
tion technique is introduced. The novel sampling scheme is
then evaluated based on simulations for nonlinear Bingham
filtering in Sec. V. The work is finally concluded in Sec. VI.

II. PRELIMINARIES

A. Unit Quaternions and Orientation Parameterization
Unit quaternions [2] can be seen as a reparameterization

of the axis-angle representation for spatial orientations. A
rotation with angle θ around the axis of a unit vector u ∈ R3

can be represented by the quaternion as

x =
[
cos (θ/2) , u> sin (θ/2)

]> ∈ R4, (1)

according to which any v ∈ R3 can be rotated to v′ via

v′ = x⊗ v ⊗ x∗ . (2)

Here, ⊗ denotes the Hamilton product [21] and x∗ =
diag(1,−1,−1,−1) x is the conjugate of x. As the norm
of a quaternion is defined as

√
x⊗ x∗, the vector in (1)

is thus of unit length and belongs to the unit hypersphere
S3 =

{
x ∈ R4

∣∣ ‖x‖ = 1
}

. Moreover, as (2) indicates, two
antipodally symmetric unit quaternions on the hypersphere,
e.g., x and −x, denote the same rotation.

B. Bingham Distribution
As introduced in [4], [5], [15], [22], the Bingham distri-

bution defined on Sn ⊂ Rn+1 has the following form

fB(x; M,Z) =
1

N(Z)
exp

(
x>M Z M>x

)
, (3)

with the diagonal matrix Z = diag(z1, · · · , zn, z0) determin-
ing the concentration as well as the normalization constant
N(Z), and the real orthogonal matrix M ∈ R(n+1)×(n+1) the
orientation on Sn. The matrices Z and M can be generated
via eigendecomposition of a negative semi-definite matrix
CB. For convenience, the concentration elements are usually
readjusted in the ascending order, namely z1 ≤ ... ≤
zn ≤ z0 ≤ 0 , and column vectors of M are reordered
correspondingly. The mode of the Bingham is given as the
column vector of M associated with the largest value of
matrix Z. Intuitively, a Bingham distribution is derived by
conditioning a zero-mean Gaussian distribution in Rn+1 on
the sphere Sn followed by the re-normalization. Thus, its
first-order moment is zero and the second-order moment,
namely the covariance, is

covB = M · diag (d1, · · · , dn, d0) ·M> , (4)

with di = ∂N(Z)
∂zi

/N(Z) , i = 0, · · · , n denoting each ele-
ment of the diagonal matrix (

∑n
i=0 di = 1). The distribution

is thus able to model the antipodally symmetric uncertainty
of unit quaternions as fB(x) = fB(−x) denote the same
density value.

C. Spherical Geometry
As the sphere Sn is a compact Riemannian manifold with

constant unit curvature, the local geometric structure can be
depicted on the tangent plane [23]. Given x,y ∈ Sn ⊂ Rn+1,
y can be mapped onto the tangent plane at x, denoted as
Tx Sn, via the logarithm map

yt = Logx(y) = (y − cos(α) x)
α

sin(α)
, (5)

with α = arccos(x • y) being the arc length between x
and y. The inverse operation, namely the exponential map,
retracts yt ∈ Tx Sn back to Sn via

y = Expx(yt) = cos(‖yt‖) x +
sin(‖yt‖)
‖yt‖

yt . (6)

The distance metric denoted as geodesic between x ,y ∈ Sn
is essentially the arc length α, which is preserved by the
logarithm map, i.e., d(x,y) = α = ‖Logx(y)‖. Based on
spherical geometry, we illustrate the geometric structure of
the unit quaternion manifold as follows.

Remark II.1 Geometric structure of unit quaternion man-
ifold representing spatial rotations. When tangent space
is shifted between the identity 1 = [1, 0, 0, 0]> and the
Bingham mode m, the following rules hold

xt = Logm(x) = m⊗ Log1(m−1 ⊗ x) ∈ Tm S3 ,
x = Expm(xt) = m⊗ Exp1(m−1 ⊗ xt) ∈ S3.

The logarithm map at identity 1 can be derived according
to (5) as Log1(x) = [ 0, (θ/2)u> ]>. As u is of unit length



and θ ∈ [0, π] , points mapped to the tangent space of S3
are restricted in a ball of radius π/2. For arbitrary unit
quaternions x,y, their Hamilton product can be represented
as ordinary matrix multiplication [6], [7], namely for x =
[x1, x2, x3, x4 ]> ∈ S3 , we have x⊗ y = Q y, with

Q =

x1 −x2 −x3 −x4
x2 x1 −x4 x3
x3 x4 x1 −x2
x4 −x3 x2 x1

 :=
[
e0, e1, e2, e3

]
.

It can be confirmed that Q ∈ SO(4), i.e., the 4-dimensional
rotation group, as QQ> = Q>Q = I ∈ R4×4 and det Q =
1. Furthermore, Q essentially depicts the local structure of
S3 at x. Here, the first column vector e0 locates the tangent
space Tx S3, and {e1, e2, e3} is one orthonormal basis that
can be used as the local coordinate system [23] of Tx S3. In
other words, we have Tx S3 = Te0

S3 = span ({e1, e2, e3}).

III. GEOMETRY-DRIVEN SAMPLING SCHEME
FOR BINGHAM DISTRIBUTIONS

A. Spherical Sampling Scheme
Unlike the deterministic sampling approach given in [15],

we propose a geometry-driven scheme for drawing samples
that satisfy requirements of the unscented transform on
Bingham distributions in arbitrary dimensions. The idea
of the unscented transform is to use the so-called sigma
points to represent the distribution while preserving its first
two moments. As the Bingham is antipodally symmetric,
the sigma points can be drawn by first sampling on the
hemisphere associated with one mode to preserve the second
moment, then doubling with the antipodes. By doing so, the
sigma points can have zero mean.

For simplifying derivations below, we denote the matrix
M in (3) columnwise as MB =

[
m1, · · · ,mn,m

]
, with the

last column m being the mode as introduced in Sec. II-B.
Since MB is real orthogonal, the set {mi}i=1:n inherently
provides an orthonormal basis of the tangent plane Tm Sn,
such that Tm Sn = span ({mi}i=1:n). The proposed sam-
pling scheme is shown in Alg. 1 and explained as follows:

1) locate center sigma point to mode, i.e., σ0 = m ,
2) generate scaling factors ri on each axis i to localize

sigma points in a way that preserves the first two
moments and adapts to higher-order shape information
(line 3, Alg. 1) ,

3) locate two mirrored sigma points on each principal
direction mi according to each scaling factor ri,j , such
that σ±t,ij = ± ri,j mi ∈ Tm Sn , and

4) perform retractions from the tangent plane back to the
manifold, i.e., σ±ij = Rm

(
σ±t,ij

)
∈ Sn.

The scaling factors are given as a set of vectors {ri}i=1:n for
each principal direction mi, and elements for each vector ri
belong to a range Ωi determined by the retraction, namely

ri,j ∈ Ωi , j = 1, · · · , l. (7)

Here, each vector ri indicates 2× l locations on the principal
direction mi (including the mirrored ones). As columns of
MB are of unit length, we have ‖σ±t,ij‖ = ri,j . Derivation
of each scaling vector ri given size l for equally weighted
samples will be introduced in Sec. IV.

Algorithm 1 Spherical Sampling Scheme
procedure sphericalSampling (fB , l)

1: {m1, · · · ,mn,m} ← extractColumns (MB) ;
2: σ0 ←m ;
3: {ri,j ∈ Ωi}i=1:n,j=1:l ← getScalingFactors (fB , l) ;
4: for i = 1, · · · , n do
5: for j = 1, · · · , l do
6: σ±t,ij ← ± ri,j mi ;

7: σ±ij ← Rm

(
σ±t,ij

)
;

8: end for
9: end for

10: return
{
σ0, {σ±ij}i=1:n, j=1:l

}
end procedure

B. Spherical Retraction

A retraction is employed to preserve the principal direction
when mapping sigma points from the tangent plane back to
the manifold. We define the operator Rm : Tm Sn 7→ Sn
for retractions at the mode of the Bingham distribution.
The general introductions about retraction in Riemannian
geometry can be found in [23]–[25]. We hereby give three
options based on the spherical geometry (shown in Fig. 2):
exponential, orthographic, and gnomonic retraction.

1) Exponential Retraction: The exponential map in the
context of Riemannian geometry induces a natural retraction
for the hypersphere [23]. Given one sigma pair σ±t,ij =
± ri,j mi ∈ Tm Sn , the mapped point via the exponential
retraction can be directly derived from (6) as

Rexp
m

(
σ±t,ij

)
= cos

(
‖σ±t,ij‖

)
m +

sin(‖σ±t,ij‖)
‖σ±t,ij‖

σ±t,ij

= m cos ri,j ±mi sin ri,j ∈ Sn.

The logarithm and exponential map preserve the length of
geodesic connecting the mode m to the other points on Sn ,
and the dispersion of Bingham is antipodally symmetric.
Thus, the corresponding scaling factors in (7) for exponential
retraction are therefore bounded, namely ri,j ∈ [ 0, π/2 ].

For hyperspheres, different types of cartographic projec-
tions, which are originally used to visualize the spherical
surface on a plane, also induce possible retractions. More
specifically, inspired by the orthographic and gnomonic
projection, we introduce the following two projection-like
retractions [24], respectively.

2) Orthographic Retraction: The orthographic projection
projects a point on the hypersphere orthogonally to the
tangent plane. Therefore, the corresponding retraction is
given as its inverse operation, i.e.,

Rort
m

(
σ±t,ij

)
= σ±t,ij +

√
1− ‖σ±t,ij‖2 m

= ± ri,j mi +
√

1− r2i,j m ∈ Sn.

The scaling factors are thus limited by the largest possible
norm of vectors on the tangent plane induced by orthographic
projections, i.e., ri,j ∈ [ 0, 1 ].
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Fig. 2: Different retractions generating the same sigma points
(blue dots on the circle) for a Bingham distribution on S1.
Here, the tangent plane (a 1-D line) is located at θ = 0.

3) Gnomonic Retraction: The gnomonic retraction is de-
fined as the inverse operation of gnomonic projection, i.e.,

Rgno
m

(
σ±t,ij

)
=

σ±t,ij + m√
1 + ‖σ±t,ij‖2

=
±ri,j mi + m√

1 + r2i,j

∈ Sn ,

which essentially induces the nearest on-sphere point of
σ±t,ij ∈ Tm Sn. As points on the equator of Sn are mapped
to infinity via gnomonic projection, the range for the corre-
sponding scaling factors is unbounded, namely ri,j ∈ R+.

IV. ON-TANGENT-PLANE DIRAC MIXTURE
APPROXIMATION UNDER ON-MANIFOLD CONSTRAINTS

The aforementioned spherical sampling scheme relies on
a set of properly given scaling vectors {ri}i=1:n satisfying
requirements of the unscented transform and considering
higher-order moments of the Bingham distribution. We thus
formulate it as an optimization problem, where the statistical
distance between the sigma Dirac mixtures and the under-
lying Bingham density is minimized on Tm Sn under the
constraint of preserving the second moment on Sn.

A. Geometric Interpretation of the Unscented Transform
For setting up the constraints for optimizing the scaling

vectors {ri}i=1:n , we impose second-order moments in (4),
i.e., covB = d0 mm> +

∑n
i=1 di mim

>
i , to be identical to

the covariance of the on-manifold sigma points

P = w0 σ0σ
>
0 +

n∑
i=1

l∑
j=1

wij
(
σ+
ij(σ

+
ij)
> + σ−ij(σ

−
ij)
>) .

Here, wij denotes the weight of each sigma pair σ±ij retracted
from the tangent plane such that w0+2

∑n
i=1

∑l
j=1 wij = 1.

Appendix A shows the sample covariance for each retraction.
Given the weights, the scaling factors thus essentially pro-
vide a geometric interpretation of the unscented transform,
namely how far should the sigma points be located from the
mode along the principal curves on Sn [26], such that the
second moment is preserved. Given

∑n
i=0 di = 1, constraints

for each spherical retraction can be derived as follows.
• exponential retraction:
di = 2

∑l
j=1 wij (sin ri,j)

2 , ri,j ∈ [ 0, π/2 ] ;

• orthographic retraction:
di = 2

∑l
j=1 wij r

2
i,j , ri,j ∈ [ 0, 1 ] ;

• gnomonic retraction:
di = 2

∑l
j=1 wij r

2
i,j / (1 + r2i,j) , ri,j ∈ [ 0,+∞ ).

When l = 1, for instance, it gives the classical unscented
transform as shown in the following example.

Example IV.1 Classical unscented transform for Bingham
distribution on Sn. The weighting factors [10] are given as

w0 = λ/(n+ λ) , wi = 1/
(
2(n+ λ)

)
,

with i = 1 , · · · , n and λ the controlling factors as usual,
such that w0 + 2

∑n
i=1 wi = 1. By placing one pair of

mirrored sigma points (l = 1) in each principal direction,
one can derive, for instance, the scaling factors under
exponential retraction as ri = arcsin

√
di/(2wi). Since the

resulting scaling factors are bounded (ri ∈ [ 0, π/2 ]), λ is
also bounded. Scaling factors from the other two retractions
can be derived similarly. Fig. 2 shows the case of n = 1
and λ = 0.5 (equally weighted on S1 circle) for a Bingham
distribution with CB = diag(−1,−5).

B. On-tangent-plane Dirac Mixture Approximation

Under the constraint induced by the unscented transform in
each principal direction, we adapt the sigma points according
to the higher-order shape information of the Bingham distri-
bution by means of Dirac mixture approximation. Here, the
samples are equally weighted, such that uniform contribu-
tions among the sigma points are guaranteed. Therefore, the
weights are w = 1/(2 × n × l + 1), and the constraints in
Sec. IV-A can be simplified to C (ri) = 0 , ri,j ∈ Ωi for each
individual retraction as:
• exponential retraction:
Cexp (ri) = 2

∑l
j=1(sin ri,j)

2 − (2n l + 1) di ,

Ωexp
i = [ 0, π/2 ] ;

• orthographic retraction:
Cort (ri) = 2

∑l
j=1 r

2
i,j − (2n l + 1) di ,

Ωort
i = [ 0, 1 ] ;

• gnomonic retraction:
Cgno (ri) = 2

∑l
j=1 r

2
i,j / (1 + r2i,j)− (2n l + 1) di ,

Ωgno
i = [ 0,+∞ ).

We further manipulate the sigma points in each principal
direction to minimize their statistical distance to the underly-
ing Bingham density. First, we uniformly discretize the range
Ω±i := {±ω |ω ∈ Ωi} based on (7) with a certain resolution
K to get support points in each principal direction i, namely

{ vi,k mi }k=1:K ⊂ Tm Sn , vi,k ∈ Ω±i . (8)

The optimization is then to minimize the distance between
Dirac mixtures given by the sigma points f̃σi (x, ri) =

1
2 l+1

∑l
j=1{δ(x+ ri,j) + δ(x) + δ(x− ri,j)} , and the one

given by the support points f̃ s
i (x) =

∑K
k=1 pik δ (x− vi,k) ,

with x ∈ Ω±i . Here, δ (·) denotes the Dirac delta function and
pik is the Bingham density fB(Rm (vi,j mi)) at the retracted
support points after normalization. For this approximation,
the sample reduction technique proposed in [18] can be



1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

l = 2 l = 7 l = 12 l = 2 l = 7 l = 12
(a) Exponential retraction-based sampling on S1 and S2.

1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

l = 2 l = 7 l = 12 l = 2 l = 7 l = 12
(b) Orthographic retraction-based sampling on S1 and S2.

1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

1

00

0.1

0.2

1

0.3

0.5

0.4

0.5

0
-0.5 -1

-1

l = 2 l = 7 l = 12 l = 2 l = 7 l = 12
(c) Gnomonic retraction-based sampling on S1 and S2.

Fig. 3: Results given by the proposed deterministic sampling scheme generating flexibly given numbers of sigma points. For
each dimensionality of Sn (n = 1, 2), same Bingham distribution is approximated based on the exponential, orthographic,
and gnomonic retraction, respectively.
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Fig. 4: Results of the proposed deterministic sampling scheme based on exponential retraction for Bingham distributions
with different parameterizations CB (l = 7).

employed, where the densities are converted to the LCD form

F̃σi (ri,m, b) =
1

2n l + 1

{ l∑
j=1

exp

(
−

(ri,j −m)2

2 b2

)
+

exp

(
− m2

2 b2

)
+

l∑
j=1

exp

(
−

(ri,j +m)2

2 b2

)}
,

F̃ s
i (m, b) =

K∑
k=1

exp

(
−

(vi,k −m)2

2 b2

)
.

Here, m denotes continuous test centers, around which the
local mass of the distribution in range b is measured by the
kernel K(x−m, b) = exp

(
− 1

2 (x−mb )2
)

(see Appendix B).
The distance between Dirac mixtures LCDs can be measured
by the modified Cramér–von Mises distance [18]

D2
i (ri) =

∫
R+

h(b)

∫
R

(
F̃σi (ri,m, b)− F̃ s

i (m, b)
)2
dmdb ,

with h(b) =

{
1 , b ∈ [ 0, bmax ]

0 , elsewhere

controlling the kernel size of the weighting function. The
aforementioned distance metric has a closed-form solution,
and can be practically used as the target function in the
following optimization problem

r∗i = arg min
ri

Di (ri) , s.t. Ci (ri) = 0 , ri,j ∈ Ωi ,

with constraint functions Ci and boundaries Ωi as introduced
in Sec. IV-B. To solve this constrained optimization problem,
we employ the Matlab function fmincon of default setup.
Fig. 3 shows results using the three retractions introduced in
Sec. III-B. Numbers of samples are 2× n× l+ 1, with n =
1, 2 and l = 2, 7, 12. The Bingham parameters are Ccircle

B =
−diag(2, 5) , and Csphere

B = −diag(1, 5, 15). Fig. 4 shows
the results of varying parameters CB with n = 1, 2 and fixed
sample size.

V. EVALUATION

We evaluate the aforementioned sampling scheme in the
context of nonlinear Bingham filtering for orientation esti-
mation. We hereby set up a system model xk = xk−1 ⊗
uk ⊗ wk , with xk denoting the quaternion state, uk the
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Fig. 5: Tracking accuracy of nonlinear Bingham filtering for planar orientation estimation under different noise levels. We
compare the proposed scheme using all three retractions with the original deterministic sampling approach in [15].
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Fig. 6: Tracking accuracy and runtime results based on gnomonic retraction with different sample sizes of 2× l+ 1. Here,
l = 1 indicates the original UT-based sampling approach in [15] and l = 500 indicates a naively implemented Bingham
particle filter. A representative tracking result is shown in (a).

quaternion system input, and wk the noise term assumed to
be Bingham-distributed. A non-identity measurement model
is given as zk = xk ⊗ n0 ⊗ x∗k + vk , with zk being the
orientation measurement by rotating the initial orientation n0
with the quaternion state xk according to (2). An additive
noise term vk is used which is assumed to be zero-mean
Gaussian-distributed, namely vk ∼ N (0,Σv). We employ
the Bingham filtering framework originally proposed in [15],
however, with a modified update step for the non-identity
measurement model. Here, the prior can be computed by
composing Bingham distributions. In the update step, deter-
ministic samples from the prior are first drawn, and then
reweighted according to the following likelihood

f(zk|xk) = fvk(zk − xk ⊗ n0 ⊗ x∗k). (9)

The posterior is estimated by approximating the reweighted
samples via moment matching as introduced in [15]. Our
simulation is done for planar orientation estimation based
on 100 Monte Carlo runs of 50 time steps. The Bingham
noise is parameterized by Cw

B = −diag(1, 10), indicating a
large zero-centered uncertainty as shown in Fig. 4.

We first evaluate the estimation accuracy by using the pro-
posed sampling scheme in comparison with the original one
in [15] under different measurement noise levels. Here, we
have Σ

v
high = 10−1 · diag(1, 5), Σ

v
medium = 10−2 · diag(1, 5),

and Σ
v
low = 10−4 · diag(1, 5). The error metric is defined

based on the geodesic in arc length as introduced in Sec. II-
C. Fig. 5 shows the RMSE error for the original unscented

transform given in [15], where only 3 samples are drawn, and
for the proposed sampling scheme which gives 2×10 + 1 =
21 samples adaptive to the shape of the Bingham density.
For different noise levels, the proposed sampling scheme
gives more accurate results by using the three retractions.
Particularly, the original approach fails to track under low
measurement noise level due to the sample degeneration
issue as shown in Fig. 5(a). The three retractions show
similar tracking accuracy.

Furthermore, we evaluate the performance of the pro-
posed sampling scheme with different sample sizes regarding
accuracy and efficiency. The measurement noise is Σv =
10−3 · diag(1, 10). The proposed sampling scheme can give
accurate tracking result as shown in Fig. 6(a). Moreover,
it shows better tracking accuracy with more deterministic
samples than the UT-based Bingham filter (l = 1) originally
proposed in [15]. The Bingham filter using the proposed
deterministic sampling approach with l = 10 shows similar
tracking accuracy as the one using random sampling [27]
with l = 500, however, with much less runtime.

VI. CONCLUSIONS

In this paper, we proposed a novel deterministic sampling
scheme for the Bingham distribution based on spherical
geometry. The approach works for arbitrary dimensions and
can generate flexibly adjustable numbers of equally weighted
sigma points that satisfy requirements of the unscented
transform, meanwhile adapt to higher-order moments. The



basic spherical sampling scheme proposed in this work could
potentially be applied to other distributions defined on the
sphere or other nonlinear manifolds as well as to distributed
estimation schemes for sensor networks [28]. The simula-
tions show that our adaptive sampling approach improves
the accuracy and robustness of nonlinear Bingham filtering
for quaternion-based orientation estimation compared to the
basic unscented filter in [15]. Still, the proposed sampling
scheme has much potential to exploit. Its efficiency could be
considerably improved by including closed-form gradients
into optimizations as in [18]. The current sampling scheme
can be extended by approximating the density between
principal directions, such that a better filtering performance
can be expected.

APPENDIX

A. Covariance Given by Different Retractions
Sigma points covariance derived by different retractions

are summarized as follows:
• exponential retraction (Sec. III-B.1):

Pexp =
(
w0 + 2

∑n
i=1

∑l
j=1 wij(cos ri,j)

2
)

mm>

+ 2
∑n
i=1

∑l
j=1 wij (sin ri,j)

2 mim
>
i ;

• orthographic retraction (Sec. III-B.2):
Port =

(
w0 + 2

∑n
i=1

∑l
j=1 wij (1− r2i,j)

)
mm>

+ 2
∑n
i=1

∑l
j=1 wij r

2
i,j mim

>
i ;

• gnomonic retraction (Sec. III-B.3):
Pgno =

(
w0 + 2

∑n
i=1

∑l
j=1

wij

1+r2i,j

)
mm>

+ 2
∑n
i=1

∑l
j=1

wij r
2
i,j

1+r2i,j
mim

>
i .

B. Localized Cumulative Distribution (LCD)
For a probability density function f : Rn → R+ modeling

the uncertainty of variable x ∈ Rn, the corresponding
localized cumulative distribution (LCD) is in the following
form

F (m, b) =

∫
Rn

f(x)K(x−m, b) dx ,

with m ∈ Rn and b ∈ Rn+ denoting the location and the size
of kernel function K(x−m, b).
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