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Abstract— Distributing workload between sensor nodes is a
practical solution to monitor large-scale phenomena. In doing
so, the system can be split into smaller subsystems that can
be estimated and controlled more easily. While current state-
of-the-art fusion methods for distributed estimation assume the
fusion of estimates referring to the full dimension of the state,
little effort has been made to account for the fusion of unequal
state vectors referring to smaller subsystems of the full system.
In this paper, a novel method to fuse overlapping state vectors
using a deterministic sample-based fusion method is proposed.
These deterministic samples can be used to account for the
correlated and uncorrelated noise terms and are therefore able
to reconstruct the joint covariance matrix in a distributed
fashion. The performance of the proposed fusion method is
compared to other state-of-the-art methods.

I. INTRODUCTION

Systems monitoring large-scale phenomena often need
to distribute the necessary estimation to several instances
to reduce computation costs. In doing this, the estimation
problem is partitioned into smaller, possibly overlapping
subsystems (see Figure 1). Possible applications include traffic
regulation, power systems, or economics [1].

Distributed estimation is an advancing field and has gained
much attention in recent years [2]. Although there are many
methods, as the information filter [3], that allow an efficient
calculation in a centralized fashion, a decentralized calculation
is a more natural approach for applications with multiple
spatially distributed sensors. Since no single point of failure
is introduced, distributed estimation also proves to be more
robust, modular, and scalable [4]. These advantages come
with the need for more complex algorithms to account for
the constraints which these methods force upon the fusion
algorithm and to merge local estimates into one consistent
result [5]–[7].

If the cross-covariances between estimates are known or
can be reconstructed, an optimal fusion of two estimates
using the well-known Bar-Shalom/Campo formulas [6] can
be executed. This can be further generalized for the fusion
of multiple sensor nodes [8]. Unfortunately, the cross-
covariances between state estimates usually remain unknown,
therefore creating the need to bound the possible cross-
covariances. Covariance Intersection [9] does not make any
assumptions about the underlying correlations between states
estimates and always yields a consistent, yet conservative
result. Since the resulting estimate can be overly pessimistic
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Fig. 1: Separation of the global state estimate x̂ into two
overlapping subsystems A and B with state estimates xA and
xB overlapping in section A2, B2.

in some applications, other approaches such as Ellipsoidal
Intersection [10] or Inverse Covariance Intersection [11]
have been developed to find a smaller bound for the cross-
covariances. Since all of these approaches tend to over- or
underestimate the uncertainty, efforts have been made to
find an optimal fusion result by reconstructing the cross-
covariances between state estimates. In [12], the common
past invariant Ensemble KF (CPI-EnKF) has been proposed
to enable cooperative localization of vehicles. A method to
reconstruct the cross-covariances using random samplers is
described in [13]. Recently, a distributed estimation method
that utilizes a set of deterministic samples to reconstruct the
cross-covariances for optimal fusion [14] has been proposed.
This was further developed to keep the number of samples
constant to limit computational and communication costs to
perform a suboptimal fusion [15].

Distributing the workload to several sensor nodes observing
only a limited number of state estimates instead of the
complete state space is further reducing computational costs
and enables proper estimation and control. Although many
methods for distributed estimation have been designed for
fusing estimates of the same state dimension, little effort
has been made to fuse partially overlapping state estimates
belonging to subsystems of the full system model. Consensus
methods [16] can be used to find a common global result,
but they lack the ability to take uncertainties into account
and therefore do not minimize the error covariance of the
resulting state estimate. Model decomposition for distributed
Kalman filtering was discussed in [17] and [18]. In [19],
an empirical method has been proposed to fuse partial state
estimates. Further, in [20] the problem of fusion for partially
overlapping state vectors was formulated as a weighted least-
squares problem. A method to utilize covariance intersection
was proposed to find a conservative solution to the fusion
problem, and the result is compared to the optimal fusion



result. Since covariance intersection does not offer a proper
way to weigh state estimates of unequal state dimension
so that the overall error is minimized, the authors in [21]
proposed a method for calculating weight matrices that scale
the fused estimate to achieve a more accurate estimate.
Yet, the problem of finding an optimal fusion result in a
distributed fashion without sharing information about how
state estimates correlate remains unsolved. By utilizing the
advantages of the Sample-based Fusion method [14], these
challenges can inherently be addressed. In this paper, a fusion
method using deterministic samples to account for the partial
correlations that originate from the overlapping state vectors
is proposed. These samples provide the means to optimally
or sub-optimally reconstruct the cross-covariances between
several distributed sensor nodes and are used to perform
optimal fusion.

The paper is structured as follows. Section III recapitulates
the problem of partially overlapping state vectors and the
Sample-based Fusion method. In Section IV, a method to use
deterministic samples to reconstruct the cross-covariances
between partially overlapping state vectors is proposed.
Section V shows the performance of the proposed method
using a small three-dimensional system model and a large
scale evaluation example featuring the heat distribution in
a rod. Afterwards, the results of the proposed method and
further research objectives are discussed in Section VI. Finally,
in Section VII the paper is summarized.

II. PRELIMINARIES

Underlined variables x denote vector-valued functions, and
lowercase boldface letters x are used for random quantities.
Matrices are written in uppercase boldface letters P. The
notation x̂ is used for the mean of a random variable, an
estimate of uncertain quality or an observation. The matrix
I is the identity matrix of the appropriate dimension. By
{p(m)}Mm=1, we denote a sample set with a number of M
sample vectors.

III. FORMULATION OF PROBLEM

We will assume a discrete-time time-variant linear stochas-
tic dynamic system

xk+1 = Akxk + Bkuk + wk with wk ∼ N
(
0,Qk

)
(1)

with state matrix Ak, state vector xk, input matrix Bk, input
vector uk, and zero-mean white Gaussian system noise wk
with covariance matrix Qk. A number of L sensor nodes
receive information about the observed system through a
noisy linear measurement model

y(i)
k

= C
(i)
k xk + v

(i)
k with v(i)k ∼ N

(
0,R

(i)
k

)
, (2)

for sensor node i ∈ {1, . . . , L} with C
(i)
k describing the

observation model and sensor noise v
(i)
k with covariance

R
(i)
k . The system is estimated using a linear Kalman Filter.

A. Optimal Fusion

In order to enhance the accuracy of the global state estimate,
the local state estimates and covariance matrices can be fused
together. The following formulas for the fusion of multiple
estimates [22] are a generalization of the Bar-Shalom/Campo
formulas [23] that are widely used in multisensor tracking
applications. The local state estimates can be rewritten as a
joint estimate vector

m̂k|k =
[(
x̂
(1)
k|k
)T

, . . . ,
(
x̂
(L)
k|k
)T
]T
.

The joint covariance matrix can be written as

Jk|k =


P

(1)
k|k P

(1,2)
k|k . . . P

(1,L)
k|k

...
...

. . .
...

P
(L,1)
k|k P

(L,2)
k|k . . . P

(L)
k|k

 , (3)

where
P

(i,j)
k|k = E[(x̂

(i)
k|k − xk)(x̂

(j)
k|k − xk)

T] (4)

is a local covariance or cross-covariance matrix for (i) = (i, i)
or (i, j), i 6= j, respectively. The fused covariance matrix and
state estimate can be calculated according to

Pk|k =
(
HT(Jk|k)−1H))−1, (5)

x̂k|k = Pk|kH
T(Jk|k)−1m̂k|k . (6)

with matrix H = [I, . . . , I]T containing the identity matrix
I of the system state dimension and thus reflecting that all
estimates contain the same state estimates.

While the vector m̂k|k can be obtained easily from the
local state estimates as well as the entries on the main
diagonal referring to the local covariance matrices, the cross-
covariances P

(i,j)
k|k with i 6= j on the other hand usually remain

unknown. They originate from the dependencies between state
estimates, namely double counting of common measurement
information as well as common system noise and prior
information. When discussing correlations, we will focus
on the problem of common process noise and common prior
information.

The incorporation of the common process noise into the
cross-covariances (4) can be seen during the prediction step

P
(i,j)
k+1|k = AkP

(i,j)
k|k AT

k + Qk+1 . (7)

The cross-covariances is additionally altered by the filtering
step by

P
(i,j)
k+1|k+1 =

(
I−K

(i)
k C

(i)
k

)
P

(i,j)
k+1|k

(
I−K

(j)
k C

(j)
k

)T
, (8)

where K
(i)
k is the Kalman gain of the local filter at node i.

As clearly visible from equation (7) and (8), bookkeeping
of the executed filtering steps is necessary to obtain the
cross-covariances between state estimates. This is not only
expensive, but also proves to be nearly impossible with
increasing complexity of topology and number of sensor
nodes. It also requires frequent communication and is prone to
packet loss. Therefore, other strategies need to be considered
to obtain optimal fusion results.



B. Optimal Deterministic Sample-based Fusion

The deterministic Sample-based Fusion first described
in [14] is a method to reconstruct the cross-covariances
between state estimates using a set of deterministic samples.
The construction of the sample-based representation bears
resemblance to the unscented transform [24]. However, in this
paper, samples are used to represent the joint error covariance
matrix. The samples for the Sample-based Fusion are created
using the simple deterministic spherical simplex sampling
method described in [25]. This basic sample set will be
referred to as the identity set {p(m)}Mm=1 with the special
properties

M∑
m=1

p(m) = 0 ,

M∑
m=1

p(m)
(
p(m)

)T
= ID×D .

The sample set is of size M = D + 1 = N + T ×W + 1
where N is the dimension of the system, W the dimension
of the system noise, and T accounts for the user defined
number of processing steps that will be encapsulated in the
samples.

The deterministic sample set that will be created to
reconstruct the joint covariance matrix is a square root
representation of the cross-covariances. The square root
decomposition of the cross-covariances equation (7) can be
rewritten as

P
(i,j)
k+1|k=Ak

√
P

(i,j)
k|k

(√
P

(i,j)
k|k

)T
AT
k+
√

Qk+1(
√

Qk+1)
T,

where the prior cross-correlation P
(i,j)
k|k between node i and

j is decomposed into

P
(i,j)
k|k =

√
P

(i,j)
k|k

(√
P

(i,j)
k|k

)T

and the system noise matrix Qk+1 is decomposed into√
Qk+1(

√
Qk+1)

T, respectively. All square root terms ob-
tained by the Cholesky decomposition until the time horizon
T can be rewritten into the block diagonal matrix

Σk = diag
(√

P
(i,j)
k|k ,

√
Qk+1, . . . ,

√
Qk+T

)
.

The identity set {p(m)}Mm=1 is then weighted with the matrix
Σk

d
(m)
k = Σkp

(m) , ∀m = 1, . . . ,M

=
[
(s

(i,m)
k|k )T, (w

(m)
k+1)

T , . . . , (w
(m)
k+P )

T
]T
. (9)

By doing so, a set of weighted samples {d(m)
k }Mm=1 is

created. The first sample set {s(i,m)
k|k }

T accounts for the
prior cross-covariances between the state estimates P

(i,j)
k|k and

the remaining entries account for the system noise matrices
Qk+1, . . . ,Qk+P . It should be noted that the samples are
created in state space, but represent covariances. Due to the
underlying simplex structure all entries of {d(m)

k }Mm=1 refer to
the same state space, but they are uncorrelated to each other.

When multiplying sample sets that correlate, the underlying
covariances can be reconstructed according to

P
(i,j)
k|k =

M∑
m=1

s
(i,m)
k|k

(
s
(i,m)
k|k

)T
,

Qk+τ ′ =

M∑
m=1

w
(i,m)
k+τ ′

(
w

(i,m)
k+τ ′

)T
,

where τ ′ is an arbitrary processing step with 0 < τ ′ ≤ T .
In contrast, when two sample sets that are uncorrelated are
multiplied, we observe that they result is the zero matrix

M∑
m=1

s
(i,m)
k|k

(
w

(m)
k+τ ′

)T
=

M∑
m=1

w
(m)
k+τ ′

(
w

(m)
k+τ ′′

)T
= 0 ,

with the arbitrary processing steps τ ′ and τ ′′ and τ ′ 6= τ ′′. To
encapsulate the processing steps of the local Kalman filters
into the sample set {s(i,m)

k|k−1}
M
m=1, the sample set is altered

during the prediction step and the uncorrelated noise set
{w(m)

k }Mm=1 for the current time step is added

s
(i,m)
k|k−1 = Aks

(i,m)
k−1|k−1 + w

(m)
k , ∀m = 1, . . . ,M . (10)

Afterwards, the measurement update is performed using the
Kalman filter gain K

(i)
k , yielding

s
(i,m)
k|k =

(
I−K

(i)
k H

(i)
k

)
s
(i)
k|k−1 , ∀m = 1, . . . ,M . (11)

In case no measurement is available, the prediction is kept,
i.e., x̂(i)k|k = x̂

(i)
k|k−1, P

(i)
k|k = P

(i)
k|k−1 and s

(i)
k|k = s

(i)
k|k−1.

After T or fewer time steps, the cross-covariances can be
reconstructed using

Pi,j
k+T |k+T =

M∑
m=1

s
(i,m)
k+T |k+T

(
s
(j,m)
k+T |k+T

)T
. (12)

These cross-covariances can be reconstructed between all
nodes and be processed together with the local covariance
matrices into the joint covariance matrix in order to enable
the usage of the optimal fusion algorithm as described in
Section III-A. The fused state estimate x̂k+T and fused
covariance matrix Pk+T can be used to reinitialize the local
state estimates and covariance matrices. Since the fused result
is more accurate, this will reduce the local estimation error
and prevent the local filter from diverging, e.g., if the local
state space is not completely observable [26].

C. Optimal Fusion of Partially Overlapping State Vectors

The optimal fusion algorithm has been described for equal
state vectors. When estimating smaller subsystems of a large-
scale phenomenon, these fusion algorithms do not have the
ability to merge partially overlapping state estimates into
one fusion result. In order to better illustrate the problem of
overlapping local state estimates we will assume a system
containing two local sensor nodes A and B with state
estimates x̂A = [x̂T

A1, x̂
T
A2]

T and x̂B = [x̂T
B2, x̂

T
B3]

T. Further,
these state estimates overlap at sections x̂A2 and x̂B2. This
example is illustrated in Figure 1.



The global system (see equations (1) and (2)) is separated
into subsystems, so that the local system model can be
rewritten as

x
(i)
k+1=A

(i)
k x

(i)
k +B

(i)
k u

(i)
k +w

(i)
k with w(i)

k ∼ N
(
0,Q

(i)
k

)
,

where the dimension of the local subsystem n(i) is smaller
than the dimension N of the global system. Each state
estimate can be regarded as an observation [20] with matrix H
(see equation (5)), which shows how the local state estimates
map into the global state space

x̂A1

x̂A2

x̂B2

x̂B3

 = H

x1

x2

x3

+ x̃ , (13)

where the matrix H is defined as

H :=


I 0 0
0 I 0
0 I 0
0 0 I


}

HA}
HB

.

This means the matrices HA and HB select the partial
estimates x̂A and x̂B , respectively, from the global estimate.
The measurement noise x̃ has the covariance matrix

J =

[
PA PA,B

PB,A PB

]
=

[
PA1,A1 PA1,A2 PA1,B2 PA1,B3

PA2,A1 PA2,A2 PA2,B2 PA2,B3

PB2,A1 PB2,A2 PB2,B2 PB2,B3

PB3,A1 PB3,A2 PB3,B2 PB3,B3

]
, (14)

which is the joint covariance matrix from equation (3)
rewritten for the overlapping state vector problem and
where the time-index k is omitted for simplicity. This joint
covariance matrix necessary to obtain (6) can be calculated
recursively. The joint process noise distributed over the system
can be described by

QJ
k = HQkH

T ,

where Qk denotes the system noise distributed over the global
model and matrix H from (13) contains the information on
how the state estimates are distributed between the local
estimators. It should be noted that the way how the system
noise is distributed very much depends on the separation of
the global system and the used process noise assumption. It
can be useful to inflate the process noise where the systems
are separated into the subsystems to account for the missing
model information. However, the focus of this paper is not
the optimal separation of the global system into the local
subsystems, but the optimal fusion of the distributed state
estimates. Therefore, for simplicity the separation of the
global system is not further discussed.

The prediction of the joint covariance matrix (14) can be
calculated by

Jk|k−1 = AJ
kJk−1|k−1(A

J
k)

T + QJ
k .

The joint system matrix AJ
k is the block diagonal matrix of

the local system matrices

AJ
k = diag

(
A

(1)
k , . . . ,A

(L)
k

)
.

The measurement update can be incorporated into the joint
covariance matrix

Jk|k = LJ
kJk|k−1(L

J
k)

T + RJ
k

with the joint measurement matrix RJ and the joint gain LJ
k

RJ = diag
(
K

(1)
k R

(1)
k (K

(1)
k )T , . . . ,K

(L)
k R

(L)
k (K

(L)
k )T

)
,

LJ
k = diag

(
I−K

(1)
k C

(1)
k , . . . , I−K

(L)
k C

(L)
k

)
.

This joint covariance matrix can be calculated recursively
after each time step to calculate the current cross-covariances
between the state estimates. In a distributed network this
would mean to constantly communicate all processing steps.
Especially under restricted communication bandwidth and
package loss or delay this is not a feasible solution to keep
track of the cross-covariances.

IV. OPTIMAL DETERMINISTIC SAMPLE-BASED FUSION
FOR PARTIALLY OVERLAPPING STATE VECTORS

By studying the derived recursive analytical calculation
of the joint covariance matrix, the diagonal structure of the
systems becomes evident. This structure can be used to derive
a distributed notation of the joint covariance matrix

P
(i,j)
k|k−1=A

(i)
k P

(i,j)
k−1|k−1(A

(j)
k )T+H

(i)
k Qk(H

(j)
k )T ,

P
(i,j)
k|k =(I−K

(i)
k C

(i)
k )P

(i,j)
k|k−1(I−K

(j)
k C

(j)
k )T,with i 6=j.

The common process noise is determined by the overlapping
parts of the states. Therefore, the state estimates contain an
independent part where they do not overlap and a dependent
part which results in a cross-covariance term. To model this
behaviour, the deterministic samples also need to contain
independent and dependent sections.

The concept of correlated and uncorrelated samples for
fusion has been discussed by [13] before. In the Sample-based
Fusion, this is achieved by the underlying simplex form. It
is the same mechanism that leads to independence between
correlation terms and process noise terms.

A. Sample-based Fusion for Overlapping State Vectors

In order to reconstruct the cross-covariances between the
overlapping state estimates of two sensor nodes, we need to
create sample sets with dependent and independent sections.
In the above example of two partial estimates, each local
estimator uses the corresponding selection matrix HA or HB

to generate its local sample set. The block diagonal matrix
for node A is

ΣA
k =diag

(
HA
√

P
(i,j)
k|k ,H

A
√

Qk+1, . . . ,H
A
√

Qk+T

)
,

which is employed to obtain the local reduced samples

d
(A)
k = ΣA

k p
(m) , ∀m = 1, . . . ,M



by means of (9). The number M of samples remains the same
as for the full state space representation (9), but the dimension
of each sample is reduced according to the dimension of
the partial estimate x̂A. The gist of this construction is that
different matrices HA and HB select the same entries of each
ΣA
k p

(m) and ΣB
k p

(m) for the overlapping parts and exclusive
entries for the non-overlapping parts. These local samples
are then processed through the local time update (10) and
measurement update (11). The corresponding local samples
are generated for node B or, more generally, for each node
i = 1, . . . , L in the network. As a result, different local
sample sets {s(i,m)

k|k }
M
m=1 are obtained that encode correlations

among overlapping parts of the local state estimates and
are uncorrelated for the non-overlapping parts. The cross-
covariance matrix for each pair of local estimates can then
be computed by (12).

B. Reinitialization

After the fusion has been executed, there are two different
approaches to continue with the state estimation process. The
sample creation proposed in [14] can be defined recursively so
that the nodes could continue creating samples to account for
the cross-correlation. The fusion result could also be used to
reinitialize the nodes and restart the sample generation from
the beginning. In the first approach, the number of samples
may grow infinitely and therefore has to be restricted in
order to prevent increasing communication and calculation
efforts. As proposed in [15], this can be prevented by only
communicating a limited set of samples to account for the
latest filtering steps.

The fused state estimate xk+T and covariance matrix
Pk+T that were fused at time horizon T can be used to
reinitialize the local estimators. Since this fused covariance
matrix contains the full correlation of the state, it is necessary
to create a fully correlated sample set with system dimension
N . The identity sample set is weighted with the Cholesky
decomposition of the covariance matrix Pk+T . Hence, it
now contains the full correlations. Since the subsystems do
not contain the full correlation, but a subset defined by the
selection matrix H(i), this sample has to be reduced to state
dimension n(i) before proceeding.

C. Sample Creation

To obtain the local sample sets for the fusion of overlapping
state vectors, the simple deterministic spherical simplex
sampling method can be adapted. This section proposes a
recursive creation of samples so that the time horizon until
the fusion T does not need to be known from the beginning,
but samples can be created as long as necessary.

As discussed in Section IV-B, the first sample set
{s(i,m)
k|k }

M
m=1 has to be created with the dimension N of

the global state space in order to include the full correlation
between states. Afterwards, the sample set will be reduced to
the section relevant to the local sensor node. The necessary
sample creation can be obtained from [14]. Alternatively the
sample creation of Algorithm 1 can be adapted, so that the
position pos(x̂1) of state x̂1 is 1, the dimension of the local

Algorithm 1 Recursive Sample Creation
1: function CREATESAMPLESET(processing step τ , dimen-

sion of global system N , dimension of local system n(i),
position pos(x̂

(i)
1 ) of the first entry of local state estimate

x̂(i))
2: for k = 0, 1, 2, . . . n(i) do
3: d = N · τ + pos(x̂

(i)
1 ) + k

4: c = 1/
√
d · (d+ 1)

5: for m = 0, 1, 2, . . . d do
6: wτ (k,m, τ) = c
7: end for
8: wτ (k, d+ 1, τ) = −d · c
9: end for

10: return wτ
11: end function

system n(i) is N and the current processing step τ is zero
as will be explained in the following section.

To obtain the samples dedicated to the local process noise,
the adapted sample creation in Algorithm 1 is used. The
sample creation starts at the position of the first entry x̂(i)1 of
the local state estimate x̂(i) in reference to the global system
space and ends after length n(i) of the state estimate where
the state space is no longer occupied. As an example, if the
first entry of estimate x̂(i) of node i starts at state x̂3 of the
global state estimate, then the position pos(x̂(i)1 ) of x̂(i) is 3.
The created sample {w(m)

k+τ}Mm=1 contains the process noise
for processing step τ and will be included into the sample
set {s(i,m)

k+τ |k+τ}
M
m=1 which will then contain the complete

correlation of the processing step. Analogously to equations
(10) and (11), the time-update is performed with

s
(i,m)
k+τ |k+τ−1 = Ak+τs

(i,m)
k+τ−1|k+τ−1 + w

(m)
k+τ ,

and the measurement step is executed with

s
(i,m)
k+τ |k+τ =

(
I−K

(i)
k+τC

(i)
k+τ

)
s
(i)
k+τ |k+τ−1 ,

for all m = 1, . . . ,M . Since the size of the sample set
increases with the number of processing steps, it increases
linearly. The size M of the samples set is M = D + 1 =
N × T + pos(x1) + n(i) + 1.

V. EVALUATION

In this section, two evaluation examples are discussed.
First, a small-scale example of a constant acceleration model
demonstrates the performance of the method. Second, a
large scale scenario of a heat conduction in a rod that is
modeled with 100 states is evaluated. In both examples, the
deterministic Sample-based Fusion method is compared with
other state-of-the-art methods.

A. Small-scale Example of Constant Acceleration Model

In this section, a simple three-dimensional model is utilized
to show the performance of the proposed method. The linear
discrete-time stochastic global system model is given by

xk+1 = Axk + wk with wk ∼ N (0,Q) and



A =

 1 0.2 0
−0.2 1 0.1
0 −0.5 0.8

 ,Q =

1 0 0
0 1 0
0 0 1

 .
Further, the system is segmented into two subsystems where
subsystem 1 is observing states x̂1 and x̂2, and subsystem 2
observing states x̂2 and x̂3. Therefore, both subsystems are
overlapping at state x̂2. The local system models of subsystem
1 and 2 are given by

A1 =

[
1 0.2
−0.2 1

]
,A2 =

[
1 0.1
−0.2 0.8

]
,

Q1 =

[
1 0
0 1

]
,Q2 =

[
1 0
0 1

]
.

The global measurement model is given by

y
k
= Cxk + vk with vk ∼ N (0,R) and

C =

[
1 0 0
0 0 1

]
,R =

[
0.1 0
0 0.1

]
.

According to the before mentioned separation into subsystem
1 and 2, the local measurement models are given by

C1 =
[
1 0

]
,R1 = 0.1

C2 =
[
0 1

]
,R2 = 0.1

The fusion step is executed every 10 time steps. After the
fusion result is obtained it is used to reinitialize the local
subsystems to enhance the accuracy and prevent the filter
from diverging.

The system is simulated with 1000 Monte Carlo runs over
200 time steps. Figure 2 shows the comparison between
different fusion methods for this evaluation example. In
addition to the proposed Sample-based Fusion method (SbF),
the optimal fusion obtained by bookkeeping of the cross-
covariances (Opt) (see Section III-C), naı̈ve fusion (Naı̈ve)
where the cross-covariances are completely neglected and
covariance intersection (CI) [20] are evaluated. Also using
the full system representation, a central Kalman filter is
simulated to compare the fusion methods to the optimal
filter result with full system knowledge. Figure 2(a) shows
the mean squared error (MSE). The central Kalman filter
outperforms the other fusion methods, as expected. The
difference between the central Kalman filter and the fusion
methods is large since the missing model information was
not compensated, for e.g. by increasing the process noise.
The proposed sample-based method performs identically to
the optimal fusion method as intended. The fusion results
of covariance intersection and naı̈ve fusion show a slightly
higher MSE. The fusion algorithms are also compared in
terms of the average normalized estimation error squared
(ANEES) [27]

ε =
1

NnMCR

nMCR∑
i=1

εi=
1

NnMCR

nMCR∑
i=1

(x̂i − xi)TP−1i (x̂i − xi) ,

where N is the dimension of the global system and nMCR
is the number of Monte Carlo runs. The ANEES can be

0 50 100 150 200
0

2

4

k

M
SE

xSbF xNaı̈ve xCentr
xCI xOpt

(a) Mean Squared Error (MSE) from 1000 test runs.
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(b) Average normalized estimation error squared (ANEES) from
1000 test runs.

Fig. 2: Comparison of Sample-based Fusion (SbF), covariance
intersection (CI), naı̈ve fusion, Optimal fusion (Opt) and the
central Kalman filter (Centr).

used for testing if an estimator is credible and if it is
optimistic or pessimistic. The value of the ANEES should
be close to 1, where a value over 1 is ranking the estimator
optimistic and a value under 1 pessimistic, respectively. In
figure 2(b) it can be seen that the naı̈ve fusion results in a
much higher ANEES then the other fusion method, since the
error is underestimated due to the missing cross-covariances.
Covariance intersection is performing more conservative than
the Sample-based Fusion method or the optimal fusion. The
performance of the Sample-based Fusion is identical to the
optimal fusion and is more conservative than the naı̈ve fusion
and less conservative then covariance intersection.

B. Large-scale Example of Heat Conduction in a Rod

In this section, we will discuss the example of heat
conduction in a rod. Hence, we will recapitulate the example
considered in [19] and [20]. As pictured in figure 3(a), the
temperature of each of the 100 segments is calculated in a
distributed fashion by five local estimators with overlapping
state vectors. The initial temperature of the rod is set to
300K. The rod is then heated at segment 50 with 15W and
at segments 30 and 70 with −10W. The discretized system
model can be described by xk+1,n = 0.17xk,n−1+0.66xk,n+
0.17xk,n+1 + wk,n, where k denotes the time steps and n
for the n-th segment of the rod. Every segment of the rod



is affected by normally distributed noise wk,n ∼ N (0, 30).
Where state estimates were separated into the subsystems,
the process noise of the edge segment is inflated by 1.66 to
N (0, 50), which is the local process noise at this segment
plus the influence of the process noise from the neighboring
segments and can be calculated from the system equation.
This accounts for the influence of neighboring segments that
are not included in the local state vector. Each of the local
estimators features one sensor with variance 0.01 measuring
the temperature of a single segment. These sensors can
be found at segment 10, 30, 50, 70, and 90. The local
measurement models can be described by

zAk = xk,10 + vAk , z
B
k = xk,30 + vBk , z

C
k = xk,50 + vCk ,

zDk = xk,70 + vDk , z
E
k = xk,90 + vEk

The system is initialized with a mean of 300K for all
segments and covariance matrix P0 = 30 I. A central fusion
center is assumed that merges the local state estimates at time
step k = 100 together. Analogously to the example in [20]
the local state estimates are not reinitialized with the fused
estimate and covariance matrix. Figure 3(b) shows how the
distributed estimation results differ from the global result due
to the limited information every local state estimate has about
the global system. In Figure 4 the result from the optimal
fusion and the results obtained by the proposed sample-fusion
method and covariance intersection are compared. It can be
seen, that the Sample-based Fusion, as well as the covariance
intersection, are very close to the optimal result.

VI. RESULTS AND DISCUSSION

The Sample-based Fusion is able to reconstruct the cross-
covariances between state estimates in a distributed fashion.
The evaluation examples show, that it is also possible to
use the proposed overlapping deterministic sample structure
to reconstruct the cross-covariances of partially overlapping
state estimates. This can be valuable in applications such
as surveillance, where for e.g. several objects may be seen
by a varying number of networked cameras. Because of the
straight-forward processing of the sample set, the method can
be easily extended to non-linear filters, e.g., the EKF [28] and
UKF [29]. The evaluation examples also show that a lot of
care has to be taken when separating a global system in several
subsystems. An additional hypothesis on the observability can
be determined to help design a proper distributed setup. The
precision of the Sample-based Fusion comes with the need
to communicate the set of deterministic samples each node
produces. The sample size grows linearly with the number
of processing steps of the local filters and is dependent on
the dimension of the global system. This can lead to an
increased communication overhead when observing systems
with large dimension or when communication between nodes
is very rare. Further, the processing of the sample set and
the reconstruction of the cross-covariances leads to additional
computational costs. The number of processing steps included
in the sample set can be kept constant [15], but future research
should investigate how the remaining cross-covariances can
be bounded to ensure that the fusion results stay consistent.
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(a) Separation of the global system into the local subsystems.
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(b) Overlapping state estimates of nodes A to E and comparison
to the real system state x̂.

Fig. 3: Evaluation example of a 100 segment long rod
estimated in an overlapping fashion.
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Fig. 4: Comparison of central Kalman filter and optimally
fused state estimate

VII. CONCLUSION

In this paper, a novel method to fuse correlated and
uncorrelated state estimates of partially overlapping state
estimates using a set of deterministic partially overlapping
samples has been proposed. The size of the sample set
grows linearly with the number of processing steps included
and depends on the dimension of the global system. The
performance of the method was demonstrated using a small
three-dimensional evaluation example and a large state
estimate example featuring the temperature distribution in a
heated and cooled rod. It has been shown that the proposed



deterministic sample fusion provides the means to calculate
the cross-covariances between unequal state vectors under
common process noise and prior information.
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