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Abstract— A novel discrete Bayesian filtering scheme is
proposed on the manifold of unit quaternions for rotation esti-
mation. Existing quaternion filters rely on specific distributions
(typically the Bingham distribution) to model the uncertainty
in a parametric form. The scheme proposed in this paper
allows non-parametric modeling of the underlying uncertainty
using Dirac mixtures located on a hyperspherical grid. The
grid is generated by first discretizing the tangent space layer-
wise w.r.t. spherical coordinates. Then, the on-tangent-space
grid is mapped back to the manifold via the exponential map.
The on-manifold grid of quaternions is deployed in a discrete
Bayesian filtering scheme. We evaluate the proposed grid-
based quaternion filter for recursive rotation estimation with
simulations. Results show that the tracking performance of the
proposed approach is superior to Bingham-based quaternion
filters.

I. INTRODUCTION

Estimation of rigid body rotation is ubiquitous and plays
a crucial role in many control-related estimation tasks [1]–
[4]. Due to the inherent nonlinearity of the underlying group
structure, namely the special orthogonal group SO(3) , deriv-
ing robust and accurate recursive rotation estimators is non-
trivial. Also, spatial rotations can be parameterized in various
ways. Euler angles, for instance, provide a minimal represen-
tation and are among the most popular ones. However, they
suffer from the issue of ‘gimbal lock’ [5]. This ambiguity can
be overcome via overparameterization with the well-known
3 × 3 rotation matrices. However, they introduce a large
degree of redundancy (nine elements are used to represent
three DoF), leading to higher memory consumption and
potential numerical instability. As a reparameterization of the
axis-angle representation, unit quaternions can be formulated
as four-dimensional vectors, resulting in only one degree
of redundancy and no ambiguity. In this paper, we employ
unit quaternions to represent spatial rotations and propose
a recursive Bayesian filter based thereon. Recursive filtering
on unit quaternions requires handling the nonlinear manifold
structure, i.e., the three-dimensional unit hypersphere S3 ⊂
R4 . Existing approaches usually employ nonlinear filtering
techniques, e.g., the extended Kalman filter (EKF) [6] or
unscented Kalman filter (UKF) [7], in a locally linearized
space [8]–[10]. Such adaptations to the manifold structure
can often bring additional numerical issues. Further, the
adapted approaches still suffer from existing problems of
the original filters, such as divergence due to poor initial
estimates and tedious parameter tuning [11], [12]. Also, the
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Fig. 1: Example of grid-based modeling for uncertain states
on (hyper-)spheres as introduced in Sec. III. The antipodally
symmetric density on S2 shown in (a) is represented by Dirac
mixture on a MCG in (b) and a grid given by the SEP in
(c). Grid points (red) are depicted with sizes proportional to
their weights.

linearization itself relies on the assumption of local pertur-
bation, which can be violated under large initial uncertainty
and fast rotation. Direct on-manifold modeling of uncertain
rotations is enabled by employing distributions from direc-
tional statistics [13], [14]. More specifically, the antipode of a
unit quaternion represents the same rotation, thus should be
endowed with the same density. The Bingham distribution
on S3 has therefore become a popular tool for modeling
uncertain quaternions, as its probability density function
(PDF) fB = 1/Nc · exp (x>C x) inherently guarantees the
antipodal symmetry. Based on this distribution, correspond-
ing recursive quaternion estimators were proposed.

Existing Bingham-based quaternion filtering methods usu-
ally follow the sampling-approximation scheme. Samples
are propagated through system dynamics or updated via
the likelihood function. Afterward, the prior or posterior
Bingham density can be approximated from the samples
by means of moment-matching (second order). Random
sampling schemes for the Bingham distribution have been
proposed [15] and deployed in orientation as well as pose
estimation [16]–[19]. However, they cannot guarantee re-
peatable results and are computationally inefficient. In [20],
a deterministic sampling approach was proposed following
the idea of the unscented transform, which approximates
the underlying Bingham density up to the second order
for moment matching. The deterministic sampling scheme
guarantees repeatable results and has shown improved track-
ing accuracy as well as computational efficiency compared
with its random counterpart. One drawback of this deter-
ministic sampling method is the limited performance for
nonlinear rotation estimation, as samples of fixed and limited
quantity (seven sigma points of unit quaternions) can easily
degenerate when updated with a peaky likelihood function.



Therefore, flexible deterministic sampling schemes were pro-
posed in [21], [22], which approximate higher-order shape
information of the Bingham distribution with a freely given
sample size. Here, uniformly weighted samples are drawn
by minimizing certain distance metrics between the Dirac
mixture given by the samples and the underlying Bingham
density under the constraint of the unscented transform (for
moment matching of second order). With an adequate sample
size, better tracking accuracy and robustness were shown
for nonlinear rotation estimation. Generating large numbers
of samples, however, inevitably involves high-dimensional
optimizations, bringing issues regarding computational cost
and sampling stability.

The aforementioned filtering techniques, regardless of
whether they were proposed in on-manifold fashions or not,
all rely on parametric modeling of uncertain quaternions.
However, this assumption is usually violated for complex
and nonlinear systems. Another downside to employing
the Bingham distribution lies in the computation of the
normalization constant Nc as no analytic solution exists.
To avoid computationally expensive numerical integration,
precomputed and memory-intensive lookup tables [15], [23]
were used. Further, an acceleration thereof based on saddle
point approximation or the Gauss-Newton approach [24] was
proposed. However, the extra computational expense cannot
be ignored since the distribution has to be approximated
whenever an estimate is desired (e.g., in every prediction
and update step). Also, the optimization-based approach is
sometimes numerically unstable [25].

Considering that the hypersphere is compact and bounded,
a grid can be deployed to discretize the manifold of unit
quaternions and model the underlying uncertainty in a non-
parametric form. The concept of a grid-based filter was
presented first in the Wonham filter [26]. A similar mod-
eling approach and discrete Bayesian filtering scheme on
periodic and bounded domains were proposed in [27], [28].
By discretizing the circular state space with a grid, the
uncertainty of angular variables can be interpreted by either
piece-wise constant densities or the Dirac mixtures. Though
promising results were shown for planar rotation and rigid
body motion estimation, there exists no work for discrete
quaternion filtering on the hypersphere S3 . In fact, grid
generation on S3 in the context of quaternion filtering is non-
trivial. Naı̈vely discretizing high-dimensional spaces (e.g.,
equidistant grids) usually requires a high resolution to reach
the desired tracking accuracy and robustness. Also, the an-
tipodal symmetry of quaternion states should be considered
for grid generation and the design of the filtering scheme.
Furthermore, the propagated Dirac mixture needs to be fused
into the grid with consideration of the manifold structure.

In this work, we propose a novel grid-based Bayesian
filtering scheme on unit quaternion for nonlinear rotation
estimation. The grid is generated via on-tangent-space dis-
cretization w.r.t. spherical coordinates followed by the ex-
ponential map. The on-manifold uncertainty is then directly
modeled by a Dirac mixture at the grid points. Based on the
generated grid, a corresponding quaternion filter is proposed

and evaluated for SO(3) estimation. More specifically, we
highlight the following contributions.
• A mode-centric grid generation scheme is proposed

for discretization of the unit quaternion manifold with
consideration of the underlying distribution.

• On-manifold uncertainty of unit quaternions is modeled
in a non-parametric way based on the Dirac mixture at
hyperspherical grid points.

• A novel grid-based quaternion filter, which shows im-
proved robustness and accuracy for nonlinear rotation
estimation, is proposed.

The remainder of the paper is structured as follows. In
Sec. II, preliminaries about the quaternion representation of
spatial rotations and the corresponding manifold geometry
are introduced. The novel grid generation and manipulation
approaches are given in Sec. III, after which the discrete
quaternion filter is proposed in Sec. IV. The evaluation
is performed in Sec. V for nonlinear rotation estimation.
Finally, the work is concluded in Sec. VI.

II. PRELIMINARIES

A. Quaternion Arithmetics and Rotation Parameterization

By definition, quaternions parameterize spatial rotations in
the form

x = [ cos(θ/2) , n> sin(θ/2) ]> := [x0, x1, x2, x3 ]> , (1)

with the unit vector n being the rotation axis around which
a rotation of angle θ is performed. Aggregation of two
quaternions is done via the Hamilton product. It can also be
written as ordinary matrix-vector multiplications according
to x⊗ y = Qx

x y = Qy
y x , with

Qx
x =

[
x0 −x1 −x2 −x3
x1 x0 −x3 x2
x2 x3 x0 −x1
x3 −x2 x1 x0

]
, Qy

y =

[
y0 −y1 −y2 −y3
y1 y0 y3 −y2
y2 −y3 y0 y1
y3 y2 −y1 y0

]
(2)

denoting the matrix form of quaternions when being mul-
tiplied from left and right side, respectively. The norm
of a quaternion is then defined as

√
x⊗ x∗ with x∗ =

diag (1,−1,−1,−1) x being the conjugate of x . Therefore,
quaternions in (1) representing spatial rotations are of unit
norm, and are thus called unit quaternions. Also, they are of
unit length in the Euclidean space R4 , i.e., ‖x‖ = 1 .

The manifold S3 comprises all vectors in R4 of unit length.
Note the matrix form of unit quaternions as shown in (2)
thus belongs to the four-dimensional rotation group, i.e.,
Qx

x, Qy
x ∈ SO(4),∀x ∈ S3 . Also, it can be easily derived

that inverting a unit quaternion corresponds to transposing
its matrix form, e.g., Qx

x−1 = Qx>
x . Given the definition in

(1), any point s ∈ R3 can be rotated according to

s′ =
(
x⊗ [ 0, s>]> ⊗ x∗

)
2:4

. (3)

Here, we add 0 before s for adaptation to quaternion arith-
metics and take out the last three elements (·)2:4 from the
products to obtain the rotated vector s′ . The hypersphere
S3 is therefore a double covering of the SO(3) group.
As mentioned in Sec. I, the Bingham distribution can be
employed for parametric stochastic modeling of uncertain



unit quaternions as its density is antipodally symmetric by
definition. The symmetry should also be considered for non-
parametric modeling schemes with hyperspherical grids.

B. Geometric Structure of Unit Quaternion Manifold

The unit quaternion manifold is a compact Riemannian
manifold with constant curvature and its structure can be
investigated based on the hyperspherical geometry [21], [22].
Given a unit quaternion ν ∈ S3 , a tangent plane TνS3 can be
located at this point such that all on-tangent-plane elements
are orthogonal to ν . Any on-manifold x ∈ S3 can be mapped
to TνS3 via the logarithm map defined as follows

x̃ = Logν(x) = (x− cos (α)ν)α/ sin(α) ∈ TνS3 . (4)

The formula α = acos(ν>x) can be used to calculate the
arc length α between ν and x . As the inverse operation, any
on-tangent-plane point x̃ ∈ TνS3 can be mapped back to the
manifold via

x = Expν(x̃) = cos (‖x̃‖)ν + x̃ sin (‖x̃‖) /‖x̃‖ ∈ S3 . (5)

Note that both operations are geodesic-preserving. For in-
stance, the arc length (geodesic on spheres) between ν and
x equals their on-tangent-plane distance after logarithm map,
i.e., acos(ν>x) = ‖Logν(x)‖ . When considering the tan-
gent plane at the identity unit quaternion 1 = [ 1, 0, 0, 0 ]>,
the corresponding logarithm map is derived as

x̃ = Log1(x) = [ 0, θ2 n> ]> ∈ T1S3 ,

with x = [ cos(θ/2), n> sin(θ/2) ]> ∈ S3 . Furthermore, any
logarithm and exponential map can also be performed at the
identity unit quaternion according to the following rule

x̃ = Logν(x) = ν ⊗ Log1(ν−1 ⊗ x) ∈ TνS3 ,

x = Expν(x̃) = ν ⊗ Exp1(ν−1 ⊗ x̃) ∈ S3 .

The equations above essentially denote an inverse rotation of
Qx

ν followed by the desired operation on T1S3 , after which a
rotation back to ν is performed. Moreover, as the vector n is
of unit length and θ ∈ [ 0, π ] (consider antipodal symmetry),
the tangent space at a unit quaternion is essentially a ball of
radius π/2 .

III. GRID-BASED STOCHASTIC MODELING OF
UNCERTAIN UNIT QUATERNIONS

In this section, we propose to stochastically model the un-
certainty of unit quaternions with grid-based Dirac mixtures.

A. Mode-Centric Grid (MCG)-Based Stochastic Modeling

Approaches based on different principles have been pro-
posed for generating grids on hyperspheres. One popular
solution given in [29] generates a hyperspherical grid by
partitioning the hypersphere into equal-area patches, result-
ing in quasi-equidistant grid points. This spherical equal
partitioning (SEP) approach has been employed as the de-
terministic sampling scheme for a linear regression Kalman
filter in [30]. Though the generated grid points evenly cover
the hypersphere, the antipodal symmetry of unit quaternions
is not taken into consideration. More importantly, naı̈vely

Algorithm 1: Mode-Centric Grid (MCG) Generation
Input: layer L, per-layer resolution M , mode ν
Output: hyperspherical grid set B

1 B← ∅ ;
2 {β̃m}Mm=1 ←SEP

(
S2,M

)
;

3 for l← 1 to L do
4 for m← 1 to M do
5 β ← ν ⊗ Exp1

(
πl
2L [ 0, β̃>m ]>

)
;

6 B← B ∪ β ;
7 end
8 end
9 B← B ∪ ν ;

10 return B ;

employing this approach to discretize the unit quaternion
manifold usually requires a high grid resolution for an
effective modeling of hyperspherical uncertainty, leading to
unsatisfactory memory as well as computational efficiencies.
In fact, the underlying density for quaternions on S3 cannot
be uniform in reality. Considering the information geometry
of the underlying uncertainty, a mode-centric grid (MCG),
which has a higher resolution in the vicinity of the mode, is
therefore proposed.

When observed w.r.t. spherical coordinates, the ball-
shaped tangent plane can be discretized layer-wise by a range
of radii according to a certain resolution L . As shown in
Alg. 1, the SEP algorithm [29] is hereby applied, generating
M grid points at each layer (Alg. 1, line 2) . Afterward, on-
tangent-plane grid points are mapped to the hypersphere via
the exponential map at the given mode ν (Alg. 1, line 5)
such that the set of on-manifold grid points B ⊂ S3 can be
obtained. In the end, the mode is also incorporated (Alg. 1,
line 9) and the grid size (cardinality |B|) equals M ×L+ 1 .

As each spherical layer of different area is discretized
with the same resolution on the tangent plane, the grid after
the exponential map is mode-concentrating. One may argue
that the state space, namely the hypersphere, is not evenly
covered by the grid set and the mode-centric grid shape has
an implicit assumption of unimodality for the underlying
PDF. However, such a design does allow for representing
multimodal uncertainties of unit quaternions since the grid
covers the entire state space. Furthermore, there are usually
large gradients of the underlying density around the mode.
Thus, its vicinity needs to be covered by more grid points.
A mode-centric grid shape can alleviate grid degeneration
issues for strong nonlinearities. In many applications, a single
state estimate is preferable for instant decision making (e.g.,
a robot needs a certain estimate of its current orientation for
path planing). The proposed mode-centric grid (MCG) can
hereby provide a good trade-off between tracking accuracy
and computational cost.

Given the discretized state space, the Dirac delta func-
tion can be placed at each grid point such that an un-
derlying density can be represented by the Dirac mixture∑
i ωi δ (x− βi) . Here, the weights wi represent the density



at each grid point βi and
∑
i ωi = 1 holds. Fig. 1 further

illustrates the grid-based representation of a synthesized
spherical density that is antipodally symmetric. With a grid
resolution of L ×M + 1 = 20 × 40 + 1 = 801 points on
the hemisphere, the proposed MCG gives a more efficient
discrete modeling of the underlying density than the SEP-
based approach using the same resolution. Also, the SEP
was not proposed for representing antipodally symmetric
density and has to be applied for the whole spherical domain,
resulting in double memory expense (with 801 × 2 = 1602
grid points). Fig. 2 further demonstrates the MCG-based
modeling approach using different grid resolutions. With
a higher resolution, the grid-based representation tends to
retain more details of the underlying density.

B. Grid Transport
When performing recursive estimation on unit quaternion

states, the mode of the estimated density is constantly chang-
ing. The grid should then be transported and centralized
around the updated mode without distorting the grid shape.
For that, we deploy the hyperspherical geometry introduced
in II-A. When the mode is updated from ν1 to ν2 , the grid
is transported accordingly as

β′ = β ⊗ ν−1
1 ⊗ ν2 = Qy

ν2
Qy>

ν1
β := Rν2

ν1
β (6)

with Rν2
ν1

belonging to the SO(4) rotation group. As the
transportation is essentially a rigid body rotation in R4, the
grid shape is preserved. Moreover, the transporting is derived
from the Hamilton product, under which the manifold S3

is closed. Therefore, the grid points are confined to the
hypersphere after transportation.

IV. GRID-BASED QUATERNION FILTERING FRAMEWORK

Using the proposed MCG-based Dirac mixture, a Bayesian
filtering scheme for quaternion-based orientation estimation
can be established. Unlike existing quaternion filters, in
which noise distributions are required in parametric forms,
more flexible problem set-ups are hereby allowed. For in-
stance, the system dynamics can be formulated as xk+1 =
a (xk,wk) with unit quaternions xk+1, xk ∈ S3 being
orientation states and wk ∈W the system noise1. Note that
no assumption of density in parametric form is required for
the noise term and the transition function a : S3 ×W 7→ S3

can be formulated in a more intuitive way (e.g., directly from
kinematics of actuators). Similarly, the measurement model
zk = h (xk,vk) is given in a generic form with zk ∈ Z
denoting the measurement and vk ∈ V the measurement
noise. The observation function h : S3 × V 7→ Z can be
directly modeled according to the sensory modality without
density assumptions or adaptations to specific filters.

Throughout the filtering scheme, the estimate of the
quaternion state is represented by the weighted grid points.
The full MCG-based quaternion filtering approach is given
in Alg. 2. For the prediction step, the prior can be derived
as

fp(xk+1) ≈
∑n
i=1

∑nw
r=1 ω

k
i ω

w
r δ
(
xk+1 − a

(
βki ,σr

))
,

1Without loss of generality, we ignore system inputs for better readability.

(a) L = 20,M = 20 (b) L = 100,M = 20

(c) L = 20,M = 40 (d) L = 20,M = 100

Fig. 2: Grid-based modeling of hyperspherical uncertainty
using different grid resolutions. Uncertain unit quaternions
(red dots) are randomly drawn from a Bingham distribution
with mode ν and plotted on the TνS3 via logarithm map.
The underlying uncertainty is represented by weighted MCG
points (blue dots).

i.e., grid points of Bk = {βki }ni=1 are propagated by noise
particles {σr}nw

r=1 through the transition function (Alg. 2 line
1). A detailed derivation is provided in Appendix A.

Two side effects occur when propagating the grid points.
First, the hyperspherical grid is no longer centralized at the
mode. This can be fixed by transporting the grid from the
old mode to the current one as shown in (6). The mode-
centric grid can thus be updated without shape distortion
(shown in Alg. 2, lines 2–4). Second, the propagated points
almost surely do not land on the grid again, i.e., a

(
βki ,σr

)
/∈

Bk+1 . Therefore, the propagated grid points need to be
approximated by the updated grid. For that, we reset the
weights of the prior grid and reallocate the propagated weight
ωki ω

w
r to neighboring grid points {βk+1

λs
}Λs=1 according to a

metric D in relation to the distance between them (shown
in Alg. 2, lines 5–11). The weight added to the neighboring
points is thus

D
(
βk+1
λs

, a
(
βki ,σr

))∑Λ
s=1D

(
βk+1
λs

, a
(
βki ,σr

))ωki ωw
r .

Considering that the uncertain unit quaternions disperse on
the hypersphere, we use the inverse arc length as the metric
D(x1,x2) = 1/acos (|x>1 x2|) . Here, the absolute value of
the inner product is used to handle the antipodal symmetry
of unit quaternion density. The number of neighboring grid
points Λ can be flexibly adjusted when invoking the nearest
neighbor search. In practice, it is not recommended to use
small values of Λ for low grid resolutions. For example,
searching for only one nearest neighbor can be problematic



Algorithm 2: MCG-based Discrete Quaternion Filter

Input: weighted grid points {(βki , ωki )}ni=1, noise
samples {(σr, ωw

r )}nw
r=1, measurement zk+1

Output: weighted grid points {(βk+1
i , ωk+1

i )}ni=1

/* propagate grid with noise particles */

1 {(γj , ωp
j)}

np
j=1 ← prop

(
{(βki , ωki )}, {(σr, ωw

r )}
)

;
/* transport grid to the new mode */

2 νe ← computeMode
(
{(βki , ωki )}

)
;

3 νp ← computeMode
(
{(γj , ωp

j)}
)

;
4 {βk+1

i }ni=1 ← transportGrid
(
{βki },νe,νp

)
;

/* distribute weights to the shifted grid */

5 {ωk+1
i }ni=1 ← setElement (0) ;

6 for j ← 1 to np do
7 {λs}Λs=1 ← searchNearest

(
γj , {βk+1

i }, Λ
)

;
8 for s← 1 to Λ do

9 ωk+1
λs
← ωk+1

λs
+

D(βk+1
λs

,γj)∑Λ
s=1D(βk+1

λs
,γj)

ωp
j ;

10 end
11 end

/* update grid weights with likelihood */

12 for i← 1 to n do
13 li ←computeLikelihood

(
βk+1
i , zk+1

)
;

14 ωk+1
i ← ωk+1

i × li ;
15 end
16 return {(βk+1

i , ωk+1
i )}ni=1 ;

when the grid is propagated by system noise of relatively
small disturbances, leading to no or only a tiny change to
the discrete density. The mode can be obtained by calculating
the weighted mean direction or by taking the grid point of
the highest weight.

Given the measurement zk , the posterior density can be
derived according to Bayes’ rule as

f(xk | zk) ∝ f(zk |xk) · fp(xk)

=
∑n
i=1 ω

k
i f(zk |βki ) δ

(
xk − βki

)
,

(7)

with f(zk |βi) being the likelihood evaluated at each grid
point of the prior density. The grid weights are then updated
accordingly (shown in Alg. 2, lines 12–15). Usually, the
mode of the discrete density changes due to the update step.
For cases in which a high tracking accuracy is desired, it is
thus recommended to transport the grid and reallocate the
grid weights thereafter.

V. EVALUATION

We evaluate the proposed filtering approach with the fol-
lowing set-up for nonlinear rotation estimation. The system
dynamics is given as an incremental rotation of angle θw

k

around axis ζw
k . Both of the components entail uncertainty

and are modeled by distributions from directional statistics.
The rotation angle is assumed to be von Mises-distributed,
i.e., θw

k ∼ VM (µw
θ , κ

w
θ ) . Similarly, the rotation axis is

assumed to follow a von Mises-Fisher distribution with ζw
k ∼

VMF (µw
ζ , κ

w
ζ ) . The system equation can then be derived

according to the quaternion parameterization as

xk+1 = xk ⊗
[

cos (θw
k /2) , ζw>

k sin (θw
k /2)

]>
.

Given the starting position s0 , the current position via
rotation of the quaternion state is measured by

zk =
(
xk ⊗ [ 0, s>0 ]> ⊗ x∗k

)
2:4

+ vk ,

with an additive measurement noise following a zero-
mean Gaussian distribution, namely, vk ∼ N (µv,Σv).
The corresponding likelihood function for (7) is given by
f(zk |xk) = fvk

(
zk −

(
xk ⊗ [ 0, s>0 ]> ⊗ x∗k

)
2:4

)
. The

set-up above can be interpreted as rotating an object from its
starting position s0 with uncertain axis-angle input (θw

k , ζw
k )

while observing its current position. During the prediction
step of the quaternion filter, we use a constant system input
according to the mean of the uncertain axis-angle rotation,
i.e., uk = [ cos (µw

θ /2) ,µw>
ζ sin (µw

θ /2) ]> .
The proposed grid-based quaternion filter (GQF) is then

compared with existing on-manifold quaternion filtering
schemes, which all assume the underlying uncertainty to
be Bingham-distributed. Different sampling schemes can be
applied to the Bingham quaternion filter (BQF) for handling
the nonlinear set-up above. Here, we exploit the BQFs based
on deterministic (Det-BQF) [22] as well as random samples
(Rnd-BQF) [23]. Additionally, we utilize deterministic sam-
pling in a progressive filtering scheme [31], [32] (Prg-Det-
BQF) for further benchmarking the performance of nonlinear
quaternion filtering. Here, 1000 deterministic samples are
used in the Det-BQF for both prediction and update steps.
The Prg-Det-BQF also relies on 1000 deterministic samples
in the prediction step, whereas 50 deterministic samples are
used for progressive update steps. The Rnd-BQF uses 2000
random samples. Finally, the proposed GQF is based on a
grid of L = 30 layers with M = 30 layer-wise points,
leading to a grid with only 901 points. The uncertainty
of the system dynamics is fixed as κw

θ = κw
ζ = 50 , and

the aforementioned approaches are compared under different
levels of measurement noise of Σv = c · I3×3 , with c ∈
{ 0.1, 0.05, 0.001} .

The simulation is performed based on 100 Monte Carlo
runs of 50 steps. To illustrate the estimates more intuitively,
the quaternion state is mapped to the measurement space via
the observation equation ẑk = (x̂k ⊗ [ 0, s>0 ]> ⊗ x̂∗k)2:4 ,
which is then compared with the one given by the ground
truth. The errors are plotted using the boxplot function
in MATLAB. Note the measurements have the same DoF
as the quaternion states. Thus, using such a mapping for
demonstrating tracking accuracy does not conceal error.
As shown in Fig. 3, the proposed GQF shows superior
tracking accuracy and is more computationally efficient than
the other approaches. The estimation quality is improved
mainly because the underlying state uncertainty is no longer
Bingham-distributed and cannot be modeled in a parametric
form. Particularly, low measurement uncertainties (e.g., by
using an accurate sensor) lead to a peaky likelihood function.
In this case, the samples drawn from the Bingham-distributed
prior degenerate more easily when they are updated, resulting
in total failures of the other approaches as shown in Fig. 3 (c).

For the medium noise level, we evaluate the proposed GQF
with different grid resolutions of L = M ∈ {10, 20, 40, 60} .
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Fig. 3: Comparison of the proposed grid-based quaternion filter with existing on-manifold quaternion filtering approaches
under different measurement noise levels. The proposed GQF shows superior tracking performance w.r.t. accuracy and
computational efficiency as well as robustness.
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Fig. 4: (a): Illustration of a segment of a representative run using the proposed MCG-based quaternion filter. Dashed lines
only indicate the change of locations from one time stamp to the next. (b)–(c): Tracking performance comparison of the
proposed grid-based quaternion filters with different grid resolutions.

A segment of an exemplary run given by the proposed
MCG-based quaternion filter is shown in Fig. 4 (a). At
each step, weighted grid points of the posterior are also
depicted in the measurement space. As shown in Fig. 4 (b)-
(c), higher grid resolutions give better tracking accuracy
while demanding more runtime. A similar filtering scheme
without grid transport using a grid from the original SEP
algorithm is also tested. However, the SEP-based approach
with 5000 grid points still performs slightly worse and is
much slower than the MCG-based filter with 402 +1 = 1601
grid points. This is not surprising as the MCG has a more
efficient modeling of uncertainty, as shown in Sec. III .

VI. CONCLUSION

In this work, we introduce a novel discrete quaternion filter
for SO(3) estimation. A mode-centric grid is proposed based

on spherical geometry to discretize the unit quaternion mani-
fold for efficient representation of the underlying uncertainty
via Dirac mixtures. The grid-based quaternion filter does not
require the noise density to be given in parametric form and
shows superior tracking accuracy and robustness compared
with existing Bingham-based filters.

Further potential of the discrete quaternion filter can still
be exploited. For instance, the state space can be extended
to other manifolds, e.g., products of hyperspheres (for ar-
ticulated robot kinematics) or the manifold representing the
six-DoF rigid body transformations. Also, the grid can be
generated and stored in a more structured way (e.g., using
space partitioning algorithms), such that grid points can be
retrieved faster and the runtime can be further reduced.



APPENDIX

A. Derivation of the Grid-Based Prior

Based on the chain rule for the probability density func-
tion, the prior represented by grid points is formulated as

fp(xk+1) =
∫
S3

∫
W f(xk+1,xk,wk) dwk dxk

=
∫
S3 fe(xk)

∫
W f(xk+1,wk |xk) dwk dxk

=
∫
S3 fe(xk)

∫
W δ (xk+1 − a(xk,wk)) fw(wk) dwk dxk .

Here, the posterior of the previous step and the noise
density are both given in discrete form, i.e., fe(xk) =∑n
i=1 ω

k
i δ
(
xk − βki

)
and fw(wk) =

∑nw
r=1 ω

w
r δ (wk−σr) .

The prior can thus be further derived as follows

fp(xk+1) =
∫
S3

∑n
i=1 ω

k
i δ
(
xk − βki

)
·
∑nw
r=1 ω

w
r δ (xk+1 − a(xk,σr)) dxk

≈
∑n
i=1

∑nw
r=1 ω

k
i ω

w
r δ
(
xk+1 − a

(
βki ,σr

))
,

which is approximated by the propagated grid points.
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