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Abstract— Adaptive sampling methods have been widely used
for meta modeling, when dealing with expensive-to-evaluate
experiments in practical design and optimization tasks to
approximate their performance measure. Existing methods try
to minimize the global model error in various ways. However,
there is still no general method for the denser sampling of
regions with high performance. In this work, we introduce a
new adaptive sampling approach that samples regions of high
performance more densely, while also exploring unseen regions.
A Gaussian process is used as meta model and a variance-
based measure is defined for computing the adaptive sample
points. Furthermore, Voronoi tessellation is used to reduce the
complexity for application in high-dimensional design spaces.
The proposed approach allows for higher model accuracy in
regions of high performance by efficiently placing the available
samples.

I. INTRODUCTION

In many engineering applications [1], [2], performance
measures are not given in closed form [3]. Instead, com-
puter experiments (e.g., numerical simulations) or physical
experiments are used to obtain the performance subject to
a given set of design parameters [4]. These experiments are
often expensive or time-consuming, making it impossible to
evaluate any number of parameter combinations in design
space [5]. Consequently, easy to evaluate meta models are
often created based on samples of the real experiments as an
approximation.

For example, in the ROBDEKON project [6], expensive
and time-consuming sampling of contaminated sites with
subsequent laboratory evaluation have to be carried out in
order to reconstruct the pollutant distribution in the soil. To
ensure that the pollutants can be removed precisely, regions
with high concentration values are to be sampled more
densely and the meta model is to become more accurate
there.

However, the accuracy of the model depends decisively
on the choice of the points in the design space [7], [8]
to obtain corresponding samples. Design of Experiments
(DoE) methods provide points in the design space such that
parameter changes are reflected in the variable of interest
over the whole design space [9] under consideration of an
objective function. In the context of meta modeling, the
objective function usually requires maximizing the global
model accuracy using the least number of samples.
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One-shot approaches like fractional designs, latin hyper-
cubes, and orthogonal arrays [10], [11] try to achieve this
goal by evenly covering the design space [11]. The advantage
of these methods is their simplicity. Since the points are
predefined, too many or too few samples might be taken
[12] and it is not clear what needs to be done if the desired
model accuracy after sampling is not sufficient [9].

In many cases, one-shot methods are used to create a
few points as a basis for more sophisticated sequential
design approaches [9], [11], [13], which determine one or
more next points per iteration based on the already existing
samples. Thus, they also allow for a termination criterion
(e.g., reaching a desired estimated model accuracy) and
hence, a variable number of samples adapted to the specific
setting.

Meta models based on Gaussian processes are among the
most frequently used [1]. For example, in [9], an information
maximization criterion based on the covariance matrix of a
Gaussian process is used to select the next points in the
design space. A similar approach is followed in [1] by
selecting the next point where the prediction variance of the
Gaussian process is maximized.

All adaptive sampling methods (also called hybrid se-
quential designs [11]) need to perform a trade-off between
exploration and exploitation [10], [12], where exploitation
increases the local model accuracy and exploration ensures
that no relevant regions of the design space are omitted.

A popular way to choose the next point is cross-validation,
where the meta model is constructed on a subset of the gath-
ered samples followed by the evaluation of the model on the
remaining points to obtain a measure of the corresponding
model errors. In the CV-Voronoi approach [12], leave-one-
out cross-validation is applied to existing samples where the
sample furthest from the model is used for choosing the next
sample. A Voronoi tessellation is constructed on all existing
samples and the next sample is sequentially chosen as the
furthest corner of the associated Voronoi cell.

The LOLA-Voronoi algorithm [11] estimates the local
nonlinearity of the unknown function at each sample point.
Just like in the CV-Voronoi method, the next sample point
is then chosen to be the furthest corner of the Voronoi
cell corresponding to the largest estimated nonlinearity. The
advantage of this method is its independence from the
applied meta model. However, it has been shown that CV-
Voronoi outperforms LOLA-Voronoi [12].

Existing methods are either space-filling [10] or try to
minimize the global model error in different ways [9], [11],
[12], [14]. However, in parameter optimization tasks with a
positive performance measure that is to be maximized, as



well as in the earlier mentioned decontamination scenario,
more samples in regions of large function values are desired.
Consequently, a better resolution in relevant regions can be
achieved with the same number of samples.

This paper proposes a sampling algorithm for meta mod-
eling of positive continuous functions that generates more
samples in regions of large function values than in regions
of low function values, while executing the trade-off between
exploration (space-filling) and exploitation (sampling at high
function values), in a deterministic and adaptive manner.
This leads to a higher resolution and thus to an improved
robustness of the model in these regions. As a result, the
optima of the underlying function are modeled accurately
and serve for optimization as well as a replacement of the
experiment. Two versions of the algorithm are presented.
The first version computes an optimal next point in the
continuous design space. To reduce the search space, the
second version uses Voronoi tessellations to obtain a finite
number of discrete points in the design space to optimally
choose the next point from.

The paper is structured as follows: Sec. II provides a
formal description of the considered problem. The key idea
to solve the problem is presented in Sec. III. Sec. IV in-
troduces our adaptive sampling approach, which is adjusted
for reduced computational complexity based on Voronoi
tessellation in Sec. V. Finally, we present our evaluation in
Sec. VI and conclusions in Sec. VII.

II. PROBLEM FORMULATION

An unknown continuous function f : Rn → R+
0 is to

be approximated within the bounded set X ⊂ Rn based on
noisy samples yi ∈ R taken at points xi ∈ X for 1 ≤ i ≤ m,
where m is the number of existing samples, n is the number
of design parameters, and X is the design space. The samples

yi = f(xi) + vi (1)

are given by the value of the true function f(x) at points
xi disturbed by additive, zero-mean noise approximated by
a Gaussian noise term vi ∼ N (0, σ2

i ). Furthermore, the ap-
proximation should be “more accurate” (according to a given
metric) where the true function f(x) takes large function
values and should hence be sampled more densely in the
corresponding regions of the design space. To allow for an
adaptive sampling approach, the samples yi are taken sequen-
tially. Given the existing samples (y1, x1), . . . , (ym, xm), the
task is to find the optimal choice of xm+1.

III. METHODOLOGY

Our approach to solving the problem stated in Sec. II is
to construct a meta model f̂(x) using the existing samples
(yi, xi), i = 1, ...,m. As a meta model we choose a Gaussian
process (GP) model [15] as it is well suited for approx-
imation of continuous functions, can be trained on little
data, and the model prediction variance can be computed
easily. A GP is a non-parametric regression approach that
can be considered a multivariate Gaussian distribution over

functions. The joint distribution[
y
f∗

]
∼ N

(
0,

[
K(X,X) + Σ K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(2)

of the samples y = [y1, . . . , ym]> and the distribution of
the predictive model function values f∗ using the kernel (or
covariance) function k(·, ·) can be conditioned as follows to
obtain the predictive distribution

f∗|X, y,X∗ ∼ N
(
f̂∗, cov(f∗)

)
, (3)

where X = [x1, . . . , xm]> are the training inputs, X∗ are
the test points,

f̂∗ = K(X∗,X)
(
K(X,X) + Σ

)−1
y (4)

is the predictive mean,

cov(f∗) =K(X∗,X∗) (5)

−K(X∗,X)
(
K(X,X) + Σ

)−1
K(X,X∗)

is the predictive covariance, K(·, ·) is a batch evaluation of
the kernel function and Σ = diag

(
[σ2

1 , . . . , σ
2
m]>

)
contains

the sample noise variances. As a kernel function, we use the
squared exponential kernel

k(a, b) = β2 exp

(
−1

2
a>L−1b

)
(6)

with hyperparameters β and l, where L = diag(l).
In order to obtain the next point xm+1 in the design space,

we need to first define an objective function for it. The most
naı̈ve approach is to select the point that maximizes the
prediction variance σ2

pred(x) of the GP as the next point.
In this way, the global model uncertainty is minimized.
However, this does not guarantee the model error to be
smaller in regions of large function values of f(x) than in
regions of small values. To achieve this goal, we weight the
prediction variance with the function value of f(x), leading
to

J(x) = f(x) · σ2
pred(x) (7)

as the objective function. Since f(x) takes non-negative
values, (7) becomes maximal in regions of the design space
where the model uncertainty is large and f(x) takes large
values. Thus, the prediction variance provides exploration
and prevents sample clustering. On the other hand, weighting
the prediction variance with f(x) ensures more samples
in regions of large function values (exploitation). But the
formulation of the objective in (7) poses the following
challenges:

C1 The evaluation of (7) requires the true function f(x) to
be known on the entire design space. Since this is not
possible, we use the meta model f̂(x) ≈ f(x) instead,
which approximates the true function.

C2 In unexplored regions of the design space the model
values f̂(x) ≈ 0 vanish. Hence, those regions are not
getting explored, even though the true function might
take significant values there.

C3 J(x) generally exhibits local maxima, which prohibits
global optimization, especially in case of a high-
dimensional design space.



IV. WEIGHTED MAXIMUM VARIANCE
ADAPTIVE SAMPLING APPROACH

In this section, we propose our novel weighted maximum
variance adaptive sampling (WMVAS) approach that in each
iteration computes the optimal next point in the design space
for evaluation of the true function based on a weighted
variance measure similar to (7), given the samples of the
former iteration. For its derivation, we need to gradually
tackle the challenges C1 – C3 in Sec. III.

As mentioned in C1, the true function is unknown and
can therefore not be evaluated in the objective function.
Hence, we need to approximate the true function f(x) in
(7) by constructing a meta model using the already existing
samples. Consequently, we select

xm+1 = argmax
x

(
f̂(x) · σ2

pred(x)
)

(8)

as the next point in the design space for evaluation of the true
function f . The model f̂ is trained on the existing samples
in each iteration of the algorithm.

In unseen regions, the model predicts values according
to the prior distribution of the GP, which are set to zero
according to (2). Corresponding to challenge C2, this causes
a vanishing objective function and therefore hinders explo-
ration in the associated regions.

In order to ensure exploration of unseen regions, we
clamp the model function value to the lower bound
α · f̂max, where α ∈ [0, 1] is the exploration parameter and
f̂max := max

x
{f̂(x)} is the largest value taken by the model

function within the design space. This results in weighting
the prediction variance of the GP model with the lower
bound in regions where the mean of the GP model falls
below the lower bound. Although low sample values can
cause the model value to fall below the lower bound as well,
these regions are not getting further explored, since the GP
variance is not clamped. Taking the clamping of the model
function value to the lower bound into account, the next point
in the design space for sampling the true function is selected
by

xm+1 = argmax
x

J(x) , (9)

where J(x) = f̂clamp(x) · σ2
pred(x) , (10)

and f̂clamp(x) = max
(
α · f̂max, f̂(x)

)
. (11)

The algorithm is executed until a termination criterion is
met, which depends on the concrete requirements of each
particular scenario. Besides limiting the number of iterations,
a common criterion is cross-validation (CV), where each
measurement yi is left out once, the meta model f̂CV

i (xi) is
constructed on the remaining samples, and the error between
the left out sample and the meta model at the point of the left
out sample is calculated (see e.g., [12]). Since our method
emphasizes large function values, we introduce the weighted
root mean square error for CV ecv

wrms that weighs the errors
calculated during CV by adding them up. Relative function
values are used as weights in order to reflect the lower

required accuracy at lower function values. We propose the
termination condition

δ(ecv
wrms) =

{
true, ecv

wrms < ε

false, otherwise
(12)

that outputs true if ecv
wrms is smaller than some ε > 0 and false

otherwise. The weighted root mean square error for CV

ecv
wrms =

√∑m
i=1 |yi| ·

(
yi − f̂CV

i (xi)
)2∑m

i=1 |yi|
(13)

can be computed by the CV error according to each sample
and the largest sample value ymax = max

i
(yi) in the sample

set. The pseudo code for the WMVAS approach can be found
in Algorithm 1.

Algorithm 1 WMVAS
1: Take M0 initial samples (yi, xi), i = 1, ...,M0 according to a

space-filling sampling scheme
2: Set α ∈ [0, 1], m =M0, ε > 0
3: while Termination criterion not met do
4: Train meta model f̂(x) on (yi, xi), i = 1, ...,m
5: xm+1 ← argmax

x

(
f̂clamp(x) · σ2

pred(x)
)

6: Obtain ym+1 by evaluating the true function f(x) using
parameters xm+1

7: m← m+ 1
8: end while

In each iteration, the proposed WMVAS algorithm needs
to perform global optimization on the design space to select
the optimal next parameter combination. This becomes com-
putationally complex or even intractable (challenge C3) for
high-dimensional design spaces. A solution of this problem
is presented in Sec. V.

V. VORONOI-BASED WEIGHTED MAXIMUM VARIANCE
ADAPTIVE SAMPLING APPROACH

The reason for the use of a meta model is its fast evalua-
tion. This property also allows several evaluations of the meta
model to be carried out per iteration of the algorithm in order
to determine the optimal parameter combination for eval-
uating the true function. Nevertheless, global optimization
of the meta model in (9) for high-dimensional, continuous
design spaces also becomes challenging. The maximization
in (9) can be simplified if the objective function in (10) is
evaluated at discrete points of the design space only. The best
next point of the N candidates X cand ⊂ X is then obtained
according to

xm+1 = argmax
xcand
j

J(xcand
j ) (14)

with X cand = {xcand
1 , . . . , xcand

j , . . . xcand
N } by computing the

maximum of N values using J(x) from (10). Selecting these
candidate points is is crucial for discretization of the design
space, as they should be close to the optimal point.

By computing the Voronoi tessellation [16], [17] of X
around the m existing samples, the design space is divided
into cells. Each cell is assigned to one sample point con-
taining all points in design space that are closer to this



sample than to all the other samples (Fig. 1). Consequently,
the edges of the cells are constructed of all the midpoints of
the neighboring samples. The corners of the cells are the mid
points of at least n+1 samples, when n is the dimension of
the design space.

Since the prediction variance σ2
pred(x) of the meta model

is the basis of the objective function and increases with
distance to the samples, we choose the corners of the Voronoi
tessellation as candidates for the optimal point. In addition,
we limit the Voronoi tessellation to the boundaries of the
design space and add the resulting corners to the set of
candidate points (see Fig. 1). Finally, in each iteration of
the algorithm, the corner leading to the largest value of
J(x) is selected as the next point for sampling. The pseudo
code for the Voronoi-based weighted maximum variance
adaptive sampling (WMVAS-Voronoi) approach is provided
in Algorithm 2.

Algorithm 2 WMVAS-Voronoi
1: Take M0 initial samples (yi, xi), i = 1, ...,M0 accord-

ing to a space-filling sampling scheme
2: Set α ∈ [0, 1], m =M0, ε > 0
3: while Termination criterion not met do
4: Train meta model f̂(x) on (yi, xi), i = 1, ...,m
5: Construct voronoi tessellation on xi, i = 1, ...,m
6: Limit voronoi tessellation to the design space
7: X cand ← corners of resulting voronoi cells
8: xm+1 ← argmax

xcand
j

(
f̂clamp(x

cand
j ) · σ2

pred(x
cand
j )

)
9: Obtain ym+1 by evaluating the true function f(x)

using parameters xm+1

10: m← m+ 1
11: end while

Fig. 1: Voronoi tessellation of existing sample points xi, i = 1, . . . ,m
(red crosses) and candidate points xcand

j , j = 1, . . . , N (blue dots) in
a 2D design space. The candidate points are located at the corners of the
Voronoi cells.

VI. EVALUATION

In this section, we evaluate our proposed adaptive sam-
pling algorithm WMVAS (Sec. IV) and its Voronoi-based
version WMVAS-Voronoi (Sec. V). The proposed algorithms
are compared against regular grid sampling (RGS) and the
CV-Voronoi approach [12].

A. Experiment Setup
The function f : X → R+

0 is to be approximated on the
two-dimensional design space X = [0, 1]× [0, 1] ⊂ R2. For
this, we model f(x) as the weighted sum

f(x) =
∑5

i=1 cihi(x) (15)

of five squared exponential basis functions

hi(x) = exp
(
−1

2

(
x− µ

i

)>
S−1i

(
x− µ

i

))
, (16)

where ci ∈ [0, 1] are the weights, µ
i
∈ X defines the

location of the basis function in design space, and Si is a
covariance matrix. The covariance matrix is constructed by
choosing on-diagonal elements within [0.003, 0.05], followed
by computing the off-diagonal elements dependent on a
correlation coefficient ρ ∈ [−0.3, 0.3]. For example, f(x)
can be considered a function of concentration, where we are
interested in regions of high concentration values (e.g., to
decontaminate pollutants or mining of valuable material).

As described in Sec. III, a GP is used as a meta model
for the approximation of f(x). The change of f(x) in this
concrete case is similar in both considered dimensions of
the design space, so that the corresponding hyperparameters
are equated. Accordingly, the matrix L in (6) is reduced
to the scalar value l. In order to compare the performance
of the sampling algorithms, both the meta model f̂(x) and
the true function f(x) are evaluated on a regular grid of
N eval = 10000 evaluation points. Based on these evaluations,
the root mean square error

RMSE :=

√∑N eval

i=1

(
f̂(xi)− f(xi)

)2
N eval (17)

and the weighted root mean square error

WRMSE :=

√√√√∑N eval

i=1 f(xi) ·
(
f̂(xi)− f(xi)

)2∑N eval

i=1 f(xi)
(18)

are computed. While the RMSE indicates the mean global
error, the WRMSE weights deviations where high function
values occur more strongly and is therefore suitable for test-
ing our proposed algorithms. In the performed simulations,
the exploration parameter is set to α = 0.010 for WMVAS
and to α = 0.025 for WMVAS-Voronoi. In addition, no
sampling noise is applied, which translates to yi ≡ f(xi).

B. Results
First, a true function f eval(x) is created by randomly

choosing function parameters according to their specification
in Sec. VI-A. An illustration of the function can be found in
Fig. 2. Then, each algorithm samples the function to obtain
49 samples. The adaptive sampling algorithms are initialized



with 16 grid samples and then perform 33 adaptive sampling
iterations, whereas the grid samples are pre-calculated. In
Fig. 3 the results of the simulation are displayed. Both
the WMVAS and the WMVAS-Voronoi algorithm place the
adaptive samples in regions of high functional values. Thus,
the corresponding regions can be better approximated than
with the comparison methods. If further samples are taken,
the prediction variance of the meta model in regions of
high function values become close to zero, and consequently,
regions of low function values will also get explored due to
the lower bound based on the exploration parameter in (9) –
(11).

In order to evaluate the methods quantitatively, 100 runs
are performed on the true function f eval(x) in Fig. 2 with
16 random initial points per run. The same 16 initial points
are used for all adaptive algorithms in a run. In addition,
another 100 runs of the algorithms were performed, where
a random function was generated in each run according to
the specifications in Sec. VI-A. The 16 initial points were
distributed on a 4 by 4 grid, indicated by the red dots in
Fig. 3.

For each run, algorithm and iteration, the errors between
the meta model and the true function are calculated according
to (17) and (18). These errors are then averaged over the runs
separately for the simulations with f eval(x) from Fig. 2 and
the simulations with different random functions. The error
graphs are shown in Fig. 4.

With 100 runs of the algorithms on the function in Fig. 2,
the adaptive sampling methods initially have similar RMSE
and WRMSE. As the number of samples increases, the error
variance of the WMVAS and WMVAS-Voronoi methods
decreases significantly and their errors converge. At the
beginning, the errors of the method CV-Voronoi show a
similar course as those of WMVAS-Voronoi. From about 45
samples on, the error of method CV-Voronoi is then higher
than the errors of the other methods and the variance is
also larger than that of the other adaptive methods. RGS
guarantees a better coverage of the design space than random
initial points and consequently has a smaller RMSE and
WRMSE at first. From 36 samples, the RMSE of RGS
follows that of WMVAS, being slightly higher. However,
the WMVAS and WMVAS-Voronoi methods achieve a good
approximation of the regions of high function values starting
from 60 samples, as can be seen from the small WRMSE
and small corresponding variance. In particular, the WMVAS
and WMVAS-Voronoi methods exhibit a significantly lower
WRMSE than CV-Voronoi and RGS from about 50 samples.

When the algorithms are applied to 100 randomly gen-
erated functions, the RMSE and associated variances are
similar for the proposed methods. The RMSE of RGS fol-
lows their course, always being slightly higher. CV-Voronoi
initially exhibits the same RMSE as RGS. In the range
from about 40 to 80 samples, the RMSE of CV-Voronoi
is significantly lower than that of the other methods. The
WRMSE shows that the regions of high function values are
best approximated by the WMVAS and WMVAS-Voronoi
methods. RGS, on the other hand, has the largest WRMSE.
CV-Voronoi shows the same behavior as RGS up to 25

Fig. 2: Function f eval(x) evaluated on the design space. Low function values
are represented in blue and high function values in yellow.

samples, then falls below and reaches the WRMSE of
WMVAS-Voronoi in the range of 50 to 60 samples. After
that, it is significantly above the WRMSE of WMVAS and
WMVAS-Voronoi and approaches the error of RGS.

VII. CONCLUSION

This paper introduced an adaptive sampling approach for
meta modeling of expensive-to-evaluate functions and real
world experiments, with a positive performance measure.
Furthermore, a Voronoi-based version of the algorithm with
reduced computational complexity for high-dimensional sce-
narios was presented. A Gaussian process was used as a
meta model and to formulate the optimization problem to
determine the adaptive sample points. The performance of
the proposed algorithms was illustrated. It was shown that
our proposed approaches lead to better approximation results
than grid sampling and the adaptive sampling approach
cross-validation-Voronoi where the function of interest takes
large values. Future work includes alternative objective func-
tions for computing the adaptive sample points, to allow
the applicability to a wider class of functions. In the ROB-
DEKON context, real robots must be moved to new sample
points and additional costs (e.g., the way to go) for choosing
the sample points will also be considered.
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