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Abstract

This work presents new results for state estimation based
on noisy observations suffering from two different types
of uncertainties. The first uncertainty is a stochastic pro-
cess with given statistics. The second uncertainty is only
known to be bounded, the exact underlying statistics are
unknown. State estimation tasks of this kind typically
arise in target localization, navigation, and sensor data
fusion. A new estimator has been developed, that com-
bines set theoretic and stochastic estimation in a rigorous
manner. The estimator is efficient and, hence, well-suited
for practical applications. It provides a continuous tran-
sition between the two classical estimation concepts, be-
cause it converges to a set theoretic estimator, when the
stochastic error goes to zero, and to a Kalman filter, when
the bounded error vanishes. In the mixed noise case, the
new estimator provides solution sets that are uncertain in
a statistical sense.

1 Introduction

Often, the state of a dynamic system has to be estimated
on the basis of uncertain measurements. Applications in-
clude vehicle or missile localization, target tracking, navi-
gation, and sensor data fusion. This paper focuses on vec-
tor measurements of the desired state for the special case,
that the dimension of the measurement vector is equal to
the dimension of the state vector. The resulting estima-
tion procedure is then used for recursively incorporating
vector measurements into a state estimate. On the other
hand, the estimation procedure can also be used for the
combination of individual estimates of the desired state,
for example provided by several different estimators.

In general, the goal of an estimation procedure is to
reduce the uncertainty about the system’s state as much
as possible. When an appropriate system model together
with noise statistics is given, the Kalman filter and its de-
scendants [1] have been successfully applied for more than
30 years. However, in the applications cited above, a de-
tailed statistical noise model is often either not available
or impractical. Special caution is in order when neglect-
ing strongly correlated noise or systematic errors. In that
case, Kalman filter estimates tend to be overoptimistic
[10], i.e., the covariance estimate becomes unrealistically
small. Several heuristics have been suggested for coping
with this problem, ranging from artificially increasing the
covariance from time to time to employing nonlinear pre–
filters. Of course, these techniques do not provide optimal
estimators.

In some situations, although a statistical noise descrip-
tion cannot be given, bounds for the noise can be provided.
This may be the case for unmodeled dynamics, unmodeled
nonlinearities, correlated noise, and systematic errors. In
that case, set theoretic estimation can be applied [12],
which often leads to good results [4]. However, when ad-
ditional uncorrelated noise is present, the error bounds
become unnecessarily conservative.

In [5, 8], a concept for estimation in the presence of
both bounded and stochastic uncertainties has been in-
troduced. The proposed algorithm for the case of a scalar
state is exact, but computationally complex. In [6, 7],
an approximate solution for the case of a scalar state has
been derived, that is computationally attractive.

This paper presents a unification of set theoretic and
stochastic estimation for arbitrary dimensional states and
measurements, when state and measurement vector are
of the same dimension. The new estimator bridges the
gap between both estimation schemes, because it be-
comes a set theoretic estimator, when the stochastic error
goes to zero, and it becomes a Kalman filter, when the
bounded error vanishes. When both types of uncertainty



are present, the new estimator provides solution sets that
are uncertain in a statistical sense.

In Sec. 2, a formulation of the estimation problem with
a mixed stochastic and set theoretic uncertainty model is
given. In Sec. 3, the estimation concept is presented. In
Sec. 4, the estimation problem is solved on the basis of a
sum approximation. Section 5 then presents a simulative
example that demonstrates the performance of the new
estimator.

2 Problem Formulation

We consider two uncertain observations of an unknown
state z given by

x̂ = z + ex + cx,

ŷ = z + ey + cy .
(1)

x̂ and ŷ suffer from two types of additive noise [2, 3]:
1) Uncertainties ex, ey bounded by the sets

Ex =
{
ex : eT

x E−1
x ex ≤ 1

}
Ey =

{
ey : eT

y E−1
y ey ≤ 1

} ,

where the only prior knowledge is their boundedness and
2) Gaussian noise sources cx, cy, with cx ∼ N(0,Cx),
cy ∼ N(0,Cy), which are assumed to be uncorrelated.

3 The Estimation Concept

First, assume that x̂, ŷ can be observed without stochas-
tic uncertainty. Then, since there is no prior information
about ex, ey besides their boundedness, we make the worst
case assumption that ex, ey are fully correlated. In that
case, a set theoretic estimator is appropriate for fusing the
information sources. An efficient form of a set theoretic
estimator, which is based on the convex combination of
the original sets, is given by the ellipsoidal set [12]

Z = {z : (z − ẑ)TE−1
z (z − ẑ) ≤ 1} .

The midpoint of the ellipsoid is given by

ẑ = Wx x̂ + Wy ŷ

with weighting factors

Wx = (0.5 − λ)Pz E−1
x ,

Wy = (0.5 + λ)Pz E−1
y ,

where Wx + Wy = I. The appropriate selection of the
parameter λ ∈ [−0.5, 0.5] will be discussed later. The set
theoretic uncertainty is given by

Ez = dPz

with

d = 1 − (
0.25 − λ2

)
(x̂ − ŷ)T E−1

y Pz E−1
x (x̂ − ŷ) ,

Pz =
{
(0.5 − λ)E−1

x + (0.5 + λ)E−1
y

}−1
.

It is important to note that the set theoretic uncertainty
Ez depends on the actual observations x̂, ŷ. From now
on, we will use the outer bound of Ez given by setting
d = 1. The so obtained ellipsoid always contains the true
set. Most importantly, Ez does not depend on the ac-
tual observations, which simplifies some of the following
derivations. Hence, we obtain the ellipsoid

Z = {z : (z − ẑ)T E−1
z (z − ẑ) ≤ 1} ,

with midpoint

ẑ = Wx x̂ + Wy ŷ (2)

and weighting factors

Wx = (0.5 − λ)Ez E−1
x ,

Wy = (0.5 + λ)Ez E−1
y ,

(3)

for λ ∈ [−0.5, 0.5]. The set theoretic uncertainty is given
by

Ez =
{
(0.5 − λ)E−1

x + (0.5 + λ)E−1
y

}−1
. (4)

However, x̂, ŷ cannot be observed directly, but are cor-
rupted by Gaussian noise. Hence, ẑ is a random variable
with statistics that can be obtained from (2). Since Ez in
(4) does not depend on the actual observations, it is not
a random variable.

The remainder of this paper is concerned with calculat-
ing the density of ẑ. Since the exact density is not useful
for practical applications, it is approximated by a weighted
sum of Gaussians. This approximate density approaches
the exact density for an infinite number of terms. A finite
approximation is useful for data–recursive estimation.

The total uncertainty of the estimate is then given by
the set theoretic uncertainty in (4) and the stochastic
uncertainty described by the density of ẑ.

4 Approximate Solution
for the Density

For nonsingular Wx, the density fz(ẑ) of ẑ is given by

fz(ẑ) =
1

|Wx|

∞∫
−∞

. . .

∞∫
−∞

fxy

(
W−1

x (ẑ − Wyŷ), ŷ
)

dŷ .

From (1) we deduce, that x̂ and ŷ are not noisy estimates
of z, but of z+ex and z+ey, respectively. Hence, we bound
the difference x̂− ŷ by the Minkowski sum of Ex and Ey,



which is not an ellipsoidal set. However, the Minkowski
sum can easily be bounded by an ellipsoid according to
[12]

(x̂ − ŷ)TB−1(x̂ − ŷ) ≤ 1 ,

where B is given by

B =
1

0.5 − κ
Ex +

1
0.5 + κ

Ey ,

for κ ∈ (−0.5, 0.5). κ is selected in such a way, that the
volume of the resulting bounding ellipsoid for the exact
Minkowski sum is minimized. This leads to

fxy(x̂, ŷ) =
{

cxy fx(x̂) fy(ŷ) for (x̂ − ŷ)T B−1(x̂ − ŷ) ≤ 1
0 elsewhere

(5)

with normalizing constant cxy. Defining an indicator func-
tion

I(x̂, ŷ) =
{

1 for (x̂ − ŷ)T B−1(x̂ − ŷ) ≤ 1
0 elsewhere ,

(5) simplifies to

fxy(x̂, ŷ) = cxy fx(x̂) fy(ŷ) I(x̂, ŷ) .

The key idea to finding an approximate solution for the
probability density function is to approximate the indi-
cator function by a weighted sum of Gaussians according
to

I(x̂, ŷ) ≈
N∑

i=1

exp
{
− 1

2
(
x̂ − ŷ − mg,i

)T
C−1

g,i

(
x̂ − ŷ − mg,i

) }
,

with mg,i and symmetric, positive definite matrices Cg,i

appropriately chosen. After a lot of manipulation, the
approximate density of ẑ can be written as

fz (ẑ)

≈ c

N∑
i=1

gi exp
{
− 1

2
(ẑ − z̄i)

T C−1
z,i (ẑ − z̄i)

}

with normalizing constant c, weighting terms

gi = exp
{
− 1

2
(
x̂ − ŷ − mg,i

)T (Cx + Cy + Cg,i)
−1

(
x̂ − ŷ − mg,i

) }
, (6)

the individual means

z̄i = (Cy + Wx Cg,i) (Cx + Cy + Cg,i)
−1

x̂

+ (Cx + Wy Cg,i) (Cx + Cy + Cg,i)
−1ŷ

+ (Wx Cx − Wy Cy) (Cx + Cy + Cg,i)
−1

mg,i

(7)

Observation
Vehicle 1

Observation
Vehicle 2

Target
Vehicle

x

y

1

2

Figure 1: Setup for simulative verification of the proposed
estimator: Estimating the position of a target vehicle with
two observation vehicles.

and

Cz,i = Wx Cx (Cx + Cy + Cg,i)
−1 Cy

+ Wy Cy (Cx + Cy + Cg,i)
−1 Cx

+ Wx Cx (Cx + Cy + Cg,i)
−1 Cg,iWT

x

+ Wy Cy (Cx + Cy + Cg,i)
−1 Cg,iWT

y .

(8)

Using this approximate probability density function, we
can easily calculate the approximate moments of ẑ up to
second order according to

E[ẑ] ≈

N∑
i=1

giz̄i

N∑
i=1

gi

(9)

and

E
[
ẑ2

] ≈
N∑

i=1

gi

(
Cz,i + z̄iz̄

T
i

)
N∑

i=1

gi

.

The covariance matrix of ẑ is given by

Cz = E
[
ẑ2

] − E[ẑ]E[ẑ]T . (10)

5 Simulative Results

For demonstrating the performance of the proposed esti-
mator, we consider the problem of estimating the position
of a target vehicle with two observation vehicles, Fig. 1.

The two observation vehicles are equipped with radar
sensors for measuring range and bearing. These sensors



are used for estimating the relative position of the tar-
get vehicle with respect to the observation vehicles. Fur-
thermore, the observation vehicles can determine their
ego–positions, which are used for transforming the rela-
tive position estimates to absolute position estimates with
respect to an inertial coordinate system.

The radar measurements are subject to random noise in
both range and bearing. The noise sources are assumed
to be white, Gaussian random processes with zero mean.
For the setup depicted in Fig. 1, the resulting noises in
the relative position estimates are two–dimensional ran-
dom processes with the following statistics. For the first
observation vehicle, the standard deviation is assumed to
be σ1,r = 1.0 in the range measurement, and σ1,o = 4.0
orthogonal to the range measurement. Hence, the mea-
surement covariance matrix is given by

C1 = T1

[
σ2

1,r 0
0 σ2

1,o

]
TT

1

with the rotation matrix

T1 =
[

cos (α1) − sin (α1)
sin (α1) cos (α1)

]
, α1 = 45o .

For the second observation vehicle, we have σ2,r = 1.0,
σ2,o = 4.0 and hence the covariance matrix is given by

C2 = T2

[
σ2

2,r 0
0 σ2

2,o

]
TT

2

with the rotation matrix

T2 =
[

cos (α2) − sin (α2)
sin (α2) cos (α2)

]
, α2 = 120o .

The nominal positions of the observation vehicles used by
the filter are given by

m1 =
[

150
150

]
,

m2 =
[

753.55
70.54

]
.

The true positions of the observation vehicles are given by

m̃1 =
[

150 − 0.3
150 − 0.5

]
,

m̃2 =
[

753.55− 0.3
70.54− 0.5

]
,

which are unknown to the filter. The bounds for the un-
certainties in the positions of the observation vehicles are
assumed to be ellipsoids defined by

E1 =
[

1.02 −(0.42)
−(0.42) 0.82

]
,

E2 =
[

0.62 0.22

0.22 1.42

]
.

The best possible estimate even without random noise
would be the set given by intersecting these two ellipsoids.
The true position of the target vehicle is given by

m̃T =
[

503.55
503.55

]
,

and is unknown to the filter. At each time step k,
k = 1, . . . , 10000, one of the observation vehicles measures
the position of the target vehicle. For k odd, observation
vehicle 1 performs a measurement, for k even, observa-
tion vehicle 2 performs a measurement. The proposed
estimator recursively incorporates the individual position
estimates from the observation vehicles. This is performed
by first calculating the set of mean values according to (7),
the set of covariance matrices according to (8), and the set
of weights according to (6). Subsequently, the mean value
E[m̂T ] and the covariance matrix CT of the position of
the target vehicle are calculated according to (9), (10). In
addition, the set theoretic part of the total uncertainty is
calculated according to (4). At each recursion step, the
parameter λ in (3) is chosen such that

det(ET + CT )

is minimized. The evolution of the resulting confidence
set is depicted in Fig. 3. The confidence set has been
calculated as the Minkowski sum of ET and 9 times CT

centered at E[m̂T ]. Note: The confidence set for k → ∞
bounds the exact set (the intersection of the set theoretic
uncertainties due to the uncertain positions of the obser-
vation vehicles) from above, and hence contains the true
state.

To compare these results with standard Kalman filter-
ing, the position uncertainties of the observation vehi-
cles are treated as additional independent white Gaussian
noise with zero mean and variance E1, E2, respectively.
This results in a total measurement covariance of C1+E1,
C2 +E2, respectively. The evolution of the resulting con-
fidence set is depicted in Fig. 3. The confidence set has
been calculated based on 9 times the Kalman filter covari-
ance matrix centered at m̂Kalman

T . Note: The confidence
set for k → ∞ does not contain the true position of the
target vehicle.

6 Conclusions

Many estimation problems can be approached as a mixed
noise problem, i.e., the arising uncertainties can be mod-
eled as being additively composed of both 1) noise with
known bounds and 2) noise with known statistics.

A new estimator for fusing data subject to mixed noise
has been derived for arbitrary dimensional states and mea-
surements, when state and measurement vector are of the
same dimension. The proposed estimator unifies stochas-
tic and set theoretic filtering. It converges to a stochas-
tic estimator, when only noise with known statistics is
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Figure 2: Results of applying the new estimator: Evolution of confidence set over time. The true position is marked
by a small circle. Additionaly, the set theoretic uncertainties due to the uncertain positions of the observation vehicles
are shown.

present. On the other hand, it converges to a set theoretic
estimator, when only noise with known bounds is present.
When both types of uncertainty are present simultane-
ously, the new estimator provides estimates comprising
a mean value, an ellipsoidal bound for the set theoretic
uncertainty, and a weighted sum of Gaussian densities
quantifying the stochastic uncertainty.

The proposed estimator is efficient and, hence, well–
suited for practical applications.
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