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Abstract

A novel fuzzy network controller is introduced which is interesting from both a theoretical and a practical viewpoint.
It is similar to a radial basis function neural network, contains structured information and may be characterized by a
few parameters only. For training of these networks with experiments or by examples, a nonstandard genetic algorithm
is applied, using a real-valued parameter encoding scheme and an appropriate cross-over. The adaptation of a direct
fuzzy controller for a simple system illustrates the procedure. In a second example the integrated design and optimization
approach is shown for a typical industrial controller stabilizing a laboratory size magnetic levitation system. It includes
nonlinear components for fuzzy anti-windup.
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1. Introduction

For many real-world control problems, it is possible to find a working fuzzy controller by formulating
heuristic knowledge and by using a “‘trial and error™ approach for fine-tuning. This may not, however, always
yield the anticipated results and is undoubtedly a tedious task because of the huge number of tuning parameters
involved. To overcome this problem, a number of advanced approaches have been reported in the literature.
In [6], fuzzy rules are generated from training data by what is called product-space clustering, in [7] a
fuzzy plus PD controller with look-up table adaptation is introduced, and in [9] the rules are changed to
increase performance. This paper presents an approach for adapting the membership functions of a given
initial fuzzy controller by supervised or unsupervised training. After introducing the concept of fuzzy networks
(FNs) in Section 2, Section 3 focuses on approximating a desired mapping by a fuzzy network and on the
on-line adaptation of a fuzzy network to a given system by using a performance evaluator as the only
information source. In both cases, structured information is stored in the network together with a linguistic
explanation component. For fast and robust guidance of the optimization procedure with respect to problem-
related performance criteria, an appropriate form of a genetic algorithm is introduced in Section 4. It employs
a real-valued parameter encoding scheme, suitable cross-over, and provides valid fuzzy controller parameters
without the need for penalty functions. Scaling evolves as a by-product. In Section 5 a simple experiment
demonstrates how to proceed, and a second example qualifies the proposed method for real-world applications.
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2. Fuzzy networks
2.1. Theoretical background

To formulate heuristic knowledge about a mapping x — y,x € R,y € R™, we may use rules like

IF input vector x is in region 4,
THEN output vector y should be in region B.

Regions 4 and B are defined by multidimensional membership functions (MFs)
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with W,, W, symmetric, positive-definite matrices and ¥, y the centroid vectors.

The grade of membership y of a given x in region A4 is used to multiply the MF for region B. After
performing this for all (implicitly OR-connected) rules, the resulting output MFs are summed up and a crisp
output value is obtained by calculating the center of gravity. For the uncorrelated case, i.e. W, W, are
diagonal matrices, Egs. (1) and (2) may be separated into one-dimensional MFs

pa(x) = p§(x0) - phCxr) -+ - 1y " ew-n), (3)
ta(¥) = 13(¥o) - up(¥1) - 1y = (var—1). (4)

One rule for N inputs and M outputs may now be written as
IF xo in A° AND x; in 4' AND ... xy_, in AV,
THEN yg in BY AND y; in B' AND ... yy_, in BML,

This leads to multiplication as the natural implementation for the AND-operator. Now, let us consider a fuzzy
network with N inputs, M outputs, Gaussian MFs ,uj.'j, i =0,1,..., N;—1, for linguistic input variable x;, and
Gaussian MFs pj described by mj, v} with index k for each output variable y;. The user-defined connections
between input and output MFs are stored in multidimensional connection arrays /;, i = 0,1, ... ,M — 1.When
indexed with a combination of input labels, J; returns the index of the resulting MF of output i. The AND-
operator as well as the implication are implemented via multiplication. Addition is used to perform the com-
position of the single rules. Defuzzyfication is done by calculating the center of gravity. Analytical expressions
for the output vector y = (yo, V1,..., Yar—1)' given the input vector x = (xp,xj,...,xy_1)" are obtained with
the following steps. For simplicity, a fully connected fuzzy system is first assumed, i.e. every combination of
input MFs is connected to output MFs.

Fuzzyfication:
e i NI 1 0
i’(t{]slls-" !IN“|)_‘ .Iur'.v_,(xN—l) i ﬂi,(x])iufio(xﬂ) (5)
i;=0,1,....,Nj—1, j=0,1,...,N— 1.
Implication:
Bimpl.Ci0s 1, - AN =13 Y0, V1o os Yir—1) = Yios it vuin—) DI (var=1) -+ a1, ()%, (v0) (6)

ij=0,1,....Nj=1, j=0,1,...,N = 1.
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Fig. 1. Example rule base in control matrix form.

Composition:
Ny.—1 Ni—1Ny—1
UComp. (Yo V15w s Yar—1) = 2 = 30 > MimplLi0s 15 ey IN— 15 Y0s Visenvr YM—1)- (7
in_1=0 =0 ip=0
Defuzzyfication:
Num;
;= , i=0,1,....M -1, 8
i Den i 8)
[e o] o0 [e o]
Numy; :/ / / Yibicomp.(Y0s Y1s- - yu—1)dyg dyy -+ dyy_y, )
Yy == =—00 v Yo=—00
o0 o0 [e o]
Den — [ T e O ) o i (10)
Yy == N=—00 v Yp=—00

After some calculations, the result is

Ny-1—1 N —1Ny—1 Nel 1 0 CM-=1
Num; = 37 -+ 37 30 {ug Gevor) o gy ) g (o) my, T 07 ), (11)
ino1=0 (=0 ig=0 j=0 "
Ny-i—1 Ni—1 Ny—1 Nel | 0 M-1
Den= 3. --- 3 3 iy Gev—1) -y () i, (x0) II vf,» - (12)
in_=0 =0 ip=0 j=0

[f the user does not specify an appropriate action for all situations, some combinations of input MFs are
not connected to output MFs. In this case the respective terms in Egs. (11), (12) are skipped. Though the
proposed algorithm is computationally light, it may be cast into hardware if required. The structure is similar
to a radial basis function neural network. It contains structured information and, in general, only needs a small
number of parameters. The MFs are normalized to the range [—1, 1]; actual ranges are obtained by scaling.
To save computing time, a MF p(x) = e~(*=m/" ghould not be evaluated for u(x) < ¢ < 1, which is

equivalent to |x — m] > v- \/—In(e).

2.2. An example of a fuzzy network

Fig. 1 shows the rule base in control matrix form. The number of inputs is N = 2, the number of outputs
is M = 1, the number of MFs for each input Ny = Ny = 3. The linguistic labels N, Z, P are mapped to real
numbers with N — 0, Z — 1, P — 2. There are 5 output MFs NG, N, Z, P, PG and they are referred to
with NG -0, N —»1,Z — 2, P — 3, PG — 4. From Egs. (11), (12), analytical expressions for the output
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Fig. 2. Example of the fuzzy network processing scheme including scaling.
Yo given input values xo, x| are as follows:
LI | 0 0.0
Numy = _Zﬂ ‘Zo (i, Cer )Hfo(XU)MJQUfo) ; (13)
Hh=0ip=
2 3 1 0 0
Den= 3 > (u}(x)ud,(xo)e}) s (14)
i1=0i5=0
01 2
Ip(io,i)=1|1 2 3], (15)
2 3 4
Numy
= . 1
W= Do (16)

As a straightforward implementation, we obtain the network depicted in Fig. 2. Of course, it may be simplified
to reduce the computational burden.

3. Optimization methodologies

Here we focus our attention on problems that are difficult to solve with the standard design approaches
used in control. To systematically adapt systems to their assigned task, two approaches are presented: learning
by experience, which is performed through systematic trials, and learning by example, which is achieved by
observing a human operator already mastering the task.
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Fig. 3. Optimization schemes: (a) “Learning by experience” and (b) “Learning by example”.

3.1. Learning by experience (unsupervised)

Fig. 3 illustrates the basic procedure. A certain trajectory »(¢) including all interesting set-point changes is
presented in a repetitive fashion. The controller’s behaviour is evaluated with prespecified performance criteria
which may be of integral or nonintegral type. No a priori information about the system is needed. With every
iteration a genetic algorithm supplies a new parameter set for the controller.

3.1.1. Direct optimization

The system is used directly for evaluating controller performance. There are no modelling errors and, of
course, plant uncertainties and noise are taken into account. This scheme is ideally suited for repetitive control
tasks such as pick & place operations in robotics. It is easily applied since no modelling phase is required.

3.1.2. Indirect optimization

If a system model is available, it can be used for evaluating controller performance concurrently with sys-
tem operation. The system follows arbitrary trajectories; only the model is evaluated repetitively. It may be
continuously adapted to track system parameter variations. Controller parameters for the actual system are
changed only when a better performing parameter set is available from the optimization procedure. Speeding
up the search process is possible by exploiting the parallel processing capabilities of a genetic algorithm
and by running several instantiations of the system model at the same time. This is in contrast to the direct
optimization approach, where the search process may only be accelerated by the parallel evaluation of several
physical models.

3.2. Learning by example (supervised)

By observing a human operator controlling the system under consideration, we obtain input/output pairs.
These define a mapping to be approximated by an initial fuzzy controller specified by the user, Fig. 3.
The structure of the proposed fuzzy networks permits the use of gradient techniques — in particular error
backpropagation — for controller fine-tuning in conjunction with exploring promising parameter regions by
means of a genetic algorithm.

4. Genetic algorithms for adaptation of fuzzy networks

Genetic algorithms (GA) are optimization procedures inspired by natural evolution. They combine robustness
with the ability to explore vast search spaces quickly. Detailed introductions may be found in [1-3]. Here
parameters are represented as strings of real numbers. Selection is performed with a probability proportional to
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Fig. 4. One-point weighted average cross-over.

the individuals’ fitness. After selecting two individuals, recombination and mutation take place with probability
Pc and Py, respectively, and the two members with the lowest fitness of the old population are replaced.
Recombination is done via weighted average crossover. For the two strings 4 and B, both of length L, the
realization y of a random variable Y equally distributed in [0, L] is used to define one cross-over point. Define
k as the largest integer contained in y. The string positions 0 to k — | stay in place and the elements & + 1
to L — 1 are exchanged. The remaining elements of the new strings C and D are calculated as a weighted
average with W =y — £

Clk)=W - A(k) + (1 — W) - B(k), (17)
D(k)y=W - B(k) + (1 — W) - A(k), (18)

as shown in Fig. 4. Mutation is performed by adding a random number to the chosen string position such
that the allowed range is not exceeded. In analogy to simulated annealing, global mutations are preferred at
the beginning of the optimization procedure and small changes at the end. For this purpose we map a random
variable X equally distributed in [—1,1] via

(Smax — 5) - (I —~x('_ﬁ;)z) x>0,
h(x) = (19)
(s =smn)- (1= (-0'"ma")  x <0

to a random variable ¥ = A(X) with the desired distribution [8]. symin and sm.x define the allowed range,
Nmax 18 the maximum number of iterations. In order to avoid implicit change of the rule base, the MFs for
one linguistic variable should stay ordered during the optimization. For gaussian MFs this is equivalent to
my < m < -+ < mp_;. An elegant approach which avoids penalty functions is to map the variables u;
provided by the GA

O<uy <1, i=01,..,L-1 (20)
to the ordered variables m; with upper and lower bounds U;, L;

my<m <---<m_, Ly <m < U (21)
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where
mg = Uy — Lo) - up + A4y, m=(U;—L;)- (i +(ug—1)- ll[“j) + L i= 12,006 —1. (22)
j=1

To optimize correctly all degrees of freedom, we need an appropriate input and output scaling. Input scaling
maps the input ranges to ranges that include [—1,1]. Values that fall outside of this interval are mapped to
the border values. Output scaling helps to exploit the permitted output range. This is achieved by preferring
pérameter sets that produce valid scaling. Here is a vantage point for hybridization: In the beginning of the
optimization a GA is used alone for quick exploration of optimal parameter regions; a hill-climbing routine
would get stuck. In the following iterations the procedure of Hooke-Jeeves [5] is used to optimize the scaling
for each parameter set provided by the GA. The third phase is used for locally fine-tuning all parameters
provided by the GA by means of the Hooke-Jeeves procedure.

5. Experimental results

Let us constrain our discussion to experiments illustrating some sort of self-organization. For optimization,
we use the direct approach introduced in Section 3.1.1. A GA with cross-over probability Pc = 0.9, mutation
probability Py = 1/(number of parameters), and a 10 member population is assumed. The parallel processing
capabilities of a GA have not been used in this context.

3.1. Synthetic system

The unstable, discrete-time system
Xps1 + 1.1 - xx = arsinh(ug) (23)
may be feedback linearized to exactly track the desired output wy with
ug = sinh(wg + 1.1 -x¢) = [ (Wi, X¢ ). (24)

The goal is to achieve the system response x;;; = wy. For this purpose, f(wy,x;) in Eq. (24) is ap-
proximated with a fuzzy controller only by performing experiments and evaluating the following performance
measure:

Nyjm—1
G= Z% Wi — Xiqa]. (25)
i=

There exists no further information source. With xj = x;, x| = wy, yy = 1 the fuzzy network from Section 2.2
is used as a direct controller. Fig. 6 depicts the MFs of the user-specified fuzzy controller and the controller’s
performance for a certain trajectory. The starting population consists of 3 prespecified parameter sets and 7
random sets. The optimization takes place in three phases: 95 iterations with the GA alone; 200 iterations with
the Hooke-Jeeves procedure for local optimization of the scaling factors; and 30 iterations with Hooke-Jeeves
for the local optimization of all parameters provided by the GA. This results in 660 parameter sets to be
evaluated. Fig. 6 shows the MFs of the optimized controller and its performance for the desired trajectory.
The scaling factors are Cyp = 1.0046, C,; = 1.0012, and C,q = 4.00597. Fig. 7 shows the resulting control
surface and the evolution of performance measure G of the best parameter set so far.

5.2. Magnetic levitation system

A schematic overview of the experimental set-up is depicted in Fig. 5. An iron mass (160 g) is to be held
free-flying at a certain distance r by the magnetic field of a coil. An optical sensor measures the actual distance
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Fig. 6. (a) Initial and optimized MFs. Experiment with (b) initial fuzzy controller (c) optimized fuzzy controller.

x from the normal operating point. The system is unstable and nonlinear. A transputer network controls the
system with a sampling interval of 1 ms. The converters have a resolution of 12 bit. The controller is chosen
to be of PID type with an adapted integral action:

T k

Uy ZK;;'{EI:+?E'(€&-€&—1]}+ Y. Ki(lex|) - en. (26)
A n=0

The conditional integrator is based on ideas presented in [4]. The adaptation rule base is

IF the absolute error |e| is small, THEN K; large,
IF the absolute error |e| is large, THEN K; small,
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Fig. 7 (a) Control surface of the optimized fuzzy controller. (b) Evolution of performance index G.

with the following MFs:

jef = 122l
el’ lgl.! 2 olf , (Ie‘: 1) 2
Webely = exp ( - [?a - itiery = o (- [4LZD]),
4 ! K; 2 ’ ; K; _ 1 2
‘ufr:'lall(Ki) =exp| — [—] ; #:E‘rge(K; y=exp| — {(v’(—)]
0 i
With the methodology of Section 2.1 an analytic expression
1
i = > - Ki=Ci(K/(le') - K/(1))
XK le|’ (le|' = 1)
l+uv/yexp| || - [——
U] v

(27)

(28)

(29)

(30)

for the adaptation of K;(|e;|) is obtained. The optimization is started with a random population. uf, v§, v /vf,
the scaling factors C,, C;, and the controller parameters K,, T, are optimized with respect to the following

performance index:
Nearlles] Mt
G = =t ————
ﬂgﬂ mm + ngu 1000mA
The allowed ranges are defined to
500mA/mm < K, < 1500mA/mm,
0.01s < T, < 0.1s,

0.5 < v < 1.2,
0.5 < v < 1.2,
0.5 < ok < 1.5,
OmA/mm < C; < 120mA/mm,
03mm < C < 1.2 mm.

(1)

If a parameter set leads to instability, it is instantaneously exchanged with the current best one. Due to plant
uncertainties and noise, same parameter sets lead to rather different values of G. Thus, hybridization is of no
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Fig. 8. Experiment with the optimized fuzzy anti windup PID controller.

advantage in this case and the GA is used alone. After 150 iterations, equivalent to 310 experiments, the best
parameter set is K, = 983.108 mA/mm, 7, = 0.0447895s, v§ = 0.638417, vf = 0.57288, v§ /vf = 1.16908,
C; = 106.064 mA/mm, C, = 1.05207 mm. Experimental results with the parameter set are shown in Fig. 8.

6. Conclusion

A flexible type of fuzzy network is introduced. Optimization of user-specified initial fuzzy controllers is
achieved via learning by experiments, i.e. systematic controller evaluations during system operation, or via
learning by example, i.e. approximating a mapping given by desired input/output pairs. Genetic algorithms
are employed in both cases. Compared to conventional search strategies they locate regions of satisfactory
performance very quickly and are insusceptible to noisy and even discontinuous performance measures. The
approach allows the user to choose more realistic performance criteria, i.e. others than the usual quadratic ones.
For performance enhancement, genetic algorithms are hybridized with proven classical optimization schemes.
Two nontrivial examples demonstrate the applicability of the proposed scheme in real-world applications.
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