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Abstract—The control of brushless DC motors requires high-
resolution angular position and accurate speed information.
However, available sensor-based solutions only measure either
the position or the speed directly, and then approximate the
other numerically. In this work, a novel technique is presented to
estimate both of these values simultaneously by sensing the stray
magnetic field of the internal permanent magnets of the motor.
However, achieving this requires the following two challenges
to be addressed. First, the relationship between the magnetic
field and the motor position is distorted by the rotational
speed in a non-intuitive way, requiring careful modeling of
these dependencies. Second, the derived model needs to consider
that the angular position data is periodic by nature, but the
magnetic field data and the angular speed data are linear
(i.e., non-periodic). To achieve this, we introduce two different
multidimensional regression models based on the Fourier series.
Both models are first trained offline using reference data, and
then used as a measurement function in a nonlinear estimator
such as the EKF for online estimation. Evaluations show that
both models outperform state-of-the-art techniques.

I. INTRODUCTION

Brushless DC(BLDC) motors are a variant of Perma-
nent Magnet Synchronous Motors (PMSM) that have found
widespread applications because of their low maintenance,
high efficiency, and lower susceptibility to mechanical wear.
For efficient commutation under variable speed drive, this
type of motors is operated using the Field-Oriented Control
(FOC) algorithm [1], which requires both high-resolution
angular position and accurate speed information for smooth
operation [2]. However, available sensor-based solutions only
provide either the position or the speed [3], [4] directly.

One of these sensor-based solutions consists of sensing the
stray magnetic field of the BLDC motor [5] to obtain an
estimate of the angular speed. This is achieved, for example,
by counting the number of zero crossings [6], [7] of the signal.
Although the speed information obtained from this method has
some drawbacks [8], the underlying concept is still promising,
especially because its only requirement is a low-cost magnetic
sensor.

The stray magnetic field not only can be used for the speed
estimation but also can be used for the position estimation of
the BLDC motor. We propose to model the stray magnetic
field measurement data obtained from a low-cost magnetic
sensor and use it as a measurement function in a stochastic
nonlinear filter to simultaneously estimate both the angular

position and speed of the BLDC motor. However, this is not a
straightforward task, in particular because we have to deal with
three challenges. For illustration, we will use the example data
taken from a real motor shown in Fig. 1. First, the observed
shape of the magnetic field (Fig. 1a) cannot be described
using a simple sinusoidal signal, as would be expected. These
perturbations are caused by the winding coils and the motor
housing (Fig. 1a, orange with coils, blue without). Second,
the stray magnetic field is not only dependent on the angular
position, but also on the operating speed of the motor. This is a
sensor-related effect, and manifests both without coils (Fig. 1b)
and with coils (Fig. 1c). Third, the mapping needs to consider
that the angular position data is periodic by nature, whereas
both the magnetic field data and the angular speed data are
not.

A common approach for periodic signal regression is to use
Fourier series [9], [10], which compactly express a given pe-
riodic signal with a set of harmonics in the frequency domain.
The coefficients or the amplitudes of these harmonics can be
stored in a vector of finite (and relatively small) size [11]. If
the signal is non-periodic, then the Fourier transform can be
applied instead of the Fourier series. However, the frequency
domain representation of the non-periodic signal is continuous,
and it cannot be expressed by a vector of finite size [11].
As we are dealing with a mapping that is periodic in one
dimension and non-periodic in the other, regression approaches
like multidimensional Fourier series [12], [13] cannot be used,
because they require all the underlying data to be circular (i.e.,
periodic on a manifold). Furthermore, while there are several
parametric multivariate linear-circular regression models in
literature [14]–[18], these models make assumptions about the
underlying distributions of the data, and furthermore, they are
application-specific. Hence, they are not suitable for modeling
the considered stray magnetic field.

To address these issues, we propose a hybrid model for
the angular position (periodic) and speed (non-periodic) as
follows. First, for a given set of support points in the speed
domain, we model the relationship between the magnetic field
signal and the positions with standard Fourier series. Then, for
the speeds inbetween, we interpolate the values from nearby
support points. This can be achieved using inverse distance
weighting scheme [19], polynomial regression of the mag-
netic field values, or by interpolating the Fourier coefficients
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(a) Example of magnetic field strengths measured on a real motor, with and
without coils at 500 RPM.
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(b) Magnetic field dependency on different angular speeds of a BLDC motor
without coils and housing.
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(c) Magnetic field dependency on different angular speeds of a BLDC motor
with coils and housing.

Fig. 1: Stray magnetic field measurements of a real reference
motor.

instead. The hybrid model is implemented in two steps. First,
the Fourier coefficients and the interpolation parameters are
trained offline, using experimental data consisting of known
magnetic fields, positions, and speeds. Then, during online
operation, the model parameters are assumed to be known,
and the positions and speeds are estimated from the magnetic
fields instead.

This paper is structured as follows. The next section for-
mulates three important problems related to modeling and
estimation. Sec. III proposes a two-stage approach for online
estimation of the position and speed of BLDC motor. Sec. IV
discusses the stray magnetic field modeling, which is the core
part of this paper. The last two sections Sec. V and Sec. VI

give an overview of the experiment setup and the evaluations.

II. PROBLEM FORMULATION

In the following, we provide formulations for the three key
problems we aim to solve. The first problem is to describe the
physical issues responsible for the shapes in Fig. 1, to ensure
that the results are reproducible. The second problem is to
derive a parametric regression model that accurately describes
the dependencies of the magnetic field. The third problem
deals with the online estimation of the angular position and
speed of the motor based on the derived model.

A. Shape and Dependencies of the Magnetic Field

As a motivating example, the stray magnetic field of a
BLDC motor measured at 500 RPM is shown in Fig. 1a.
The orange line is observed under normal operation of the
motor. Then, we remove the coil and the housing of the
motor, and drive it externally as shown in Fig. 6. The resulting
magnetic field strength is drawn in blue. We observe that the
shape of the magnetic field is sinusoidal if the coil and motor
housing are absent. There are two similar cycles present in one
complete mechanical rotation of the motor, indicating that the
motor has four magnetic poles. Under normal operation of the
motor, however, it can be easily seen that the magnetic field
deviates from the sinusoidal shape with dips and surges at
zero-crossings. This perturbation is attributed to the combined
effect of the coil winding profile and the motor housing on
the stray magnetic field of the rotor’s permanent magnets.

Further experimental observations reveal the speed-
dependent behavior of the magnetic field. In the absence of the
motor housing and coils, only the speed-dependent phase shift
occurs, as presented in Fig. 1b. Note that the shift is different
for positive and negative speeds. This could be attributed to the
combined frequency response of the magnetic sensor and the
amplifier board. In the presence of housing and coils, a speed-
dependent form change is observed in addition to the phase
shift, shown in Fig. 1c. Overall, the magnetic field strength is
not only dependent on the angular position but also on speed.
Furthermore, the dependency is nonlinear.

B. Modeling the Dependencies

Based on the nonlinear dependencies of the magnetic field
strength B on angular position θ and speed ω, the second
problem that needs to be formulated is an adequate function
that relates the three values. The first predictor variable θ is
circular by nature and the second, ω, is linear. In the event
of no speed-dependency, the Fourier series alone would be
sufficient to model the magnetic field. However, in order
to include the speed-dependent behavior, either an entirely
different approach such as Gaussian Processes (GP) [20] or
an extension to Fourier series is necessary. GPs are capable
of modeling complex multivariate relationships but are com-
putationally expensive, making approaches that extend Fourier
series preferable due to their low computational cost. There-
fore, we extend the series to accommodate ω, and provide a
model function B(θ, ω).



C. Online Estimation of Position and Speed

Using the modeled function B(θ, ω), we will now describe
the rotation system and measurement models. For the online
estimation, we define the state of a running motor at the
timestep k as xk = [θk, ωk]

T ∈ R2, and assume that it evolves
with each time-step following

xk+1 = Ak · xk + w , (1)

where w ∼ N (0,R) represents system noise. Assuming a
constant velocity model, the system matrix Ak is given by

Ak =

(
1 ∆Tk
0 1

)
, (2)

where ∆Tk represents the timestep.
At a timestep k, the sensor placed near the motor measures

the stray magnetic field bk, which is mapped to the current
state of the motor xk using the measurement equation

bk = h (xk) + v , (3)

where v ∼ N (0, σ2
v) represents the measurement noise. The

modeled function of the magnetic field defines the nonlinear
function h (xk) = B(θ, ω). If the sensor provides multiple
measurements at one time step, e.g. different components of
the magnetic field vector, they can be stacked into a vector.

III. PROPOSED APPROACH

We now describe our two-stage solution to estimate the
angular position and speed of the electric motor in detail. This
two-stage approach, combined with the experiment setup, is
shown in Fig. 2. The experiment generates magnetic measure-
ments Bx and By , but can also provide a reference angular
position θr as a ground truth.

In the first stage, the relationship between Bx/y , θr, and
ω is modeled offline by accumulating experimental data and
training over them using regression techniques. For regression,
two approaches are proposed. Both of the approaches are
based on a Fourier series for the position variable and are
extended for the speed variable. More details about modeling
are provided in Sec. IV.

In the second stage, the learned model B(θ, ω) is used as
a nonlinear measurement function h (xk) in (3) in order to
estimate both the position and speed of the BLDC motor
online. In this stage, the position and speed information
are estimated every time step with the arrival of magnetic

Fig. 2: Block diagram describing regression and filter.

measurements. For online estimation, the Extended Kalman
Filter (EKF) is used.

IV. MODELING APPROACH

In general, a Fourier series is applied to one-dimensional
periodic signals and spherical harmonics to multidimensional
periodic signals. As described in Sec. II-B, the form of the
magnetic field is not only dependent on θ but also on ω. The
angular position is circular while the angular speed is linear.
On that account, the application of a Fourier series is not
straightforward. The modeling approach should consider this
mixture of circular-linear data and should be computationally
inexpensive. In addition, the experimental data is obtained only
for a discrete set of speeds to reduce the size of the dataset.
The proposed approach should be able to deal with such data
sets.

To account for the experimental data, using a Fourier series
for its simplicity, and modeling the magnetic field data such
that computational cost is minimal, we propose two different
approaches. The first approach couples Fourier series and the
inverse distance weighting [19] interpolation technique. It is
referred to as Fourier-Weighted Interpolation (FWI) in this
paper. The second approach applies a Fourier series for θ
and polynomial regression for ω on the experimental data.
This approach is referred to as Fourier-Polynomial Regression
(FPR) in this paper. In this section, we will first introduce the
Fourier series, followed by FWI and FPR.

A. Fourier Series

Fourier analysis deals with the decomposition of a periodic
signal into a weighted sum of sine and cosine functions,
and their harmonics. Consider a periodic signal B(θ) of
fundamental frequency λ

B(θ) = a0 +

N∑
n=1

{an cos(λnθ) + bn sin(λnθ)} , (4)

where a0 is the mean of the signal and n is the harmonic
number. For a given input-output datapair of size Q, {θq, Bq}
where q = 1, 2, . . . , Q, the estimation of Fourier coefficients
is done using the linear least-squares technique provided that
the parameter λ is pre-determined.

B. Fourier-Weighted Interpolation (FWI)

The dataset from the experiment setup is partitioned into
multiple subsets with each of the subsets corresponding to a
single speed. For each subset, then the magnetic field intensity
for each of the subsets can be modeled using Fourier series as

B(θ, ω1) = f1(θ)

B(θ, ω2) = f2(θ)

...
B(θ, ωM ) = fM (θ) .

(5)

From the dataset, an M−tuple list is created{
(ω1, f1), (ω2, f2), · · · , (ωM , fM ))

}
. To find the interpolated



value at a given speed ω, the inverse distance weighting
rule [19], suggests

B(θ, ω) =

∑M
i=1 gi(ω) · fi(θ)∑M

i=1 gi(ω)
.

The weight gi is an inverse of the absolute distance |d| between
ω and ωi raised to power l

gi(ω) =
1

|d(ω, ωi)|l
.

In this paper, we use the special case of inverse distance
weighting with l equals one and two neighboring tuples such
that ωi < ω < ωi+1. This simplification leads to a standard
weighted averaging technique. For a given speed ω that falls
between the boundaries ωi and ωi+1, the magnetic field is a
weighted sum of fi and fi+1 given by

B(θ, ω) = gi · fi + gi+1 · fi+1 . (6)

And the weights are defined as

gi =
ωi+1 − ω
ωi+1 − ωi

,

gi+1 =
ω − ωi

ωi+1 − ωi
.

It is possible to use more than two tuples for the interpo-
lation. This has higher computational cost and the application
of the derivative chain-rule to be used in the EKF setting.

C. Fourier-Polynomial Regression (FPR)

As the name suggests, this method interlinks the Fourier
series and polynomial regression independently. The combi-
nation is done heuristically as a two-step approach at the
beginning but leads to an analytic closed-form solution.

As the first step of the two-step approach, the Fourier
series technique is applied to each subset and the coefficients
are generated. The number of generated coefficients for each
subset is equal as shown in Fig. 3. In the second step,
polynomial regression of chosen degree p is applied to the
Fourier coefficients. Denote a Fourier coefficient as aωm

n ,
where n corresponds to the harmonic number and ωm to a
particular speed.

Fig. 3: Fourier-Polynomial fit illustration.

Applying Fourier series for the angular position θ and
polynomial regression for the angular speed ω gives the
Fourier-polynomial model in the following analytic form

B(θ, ω) = a0(ω)+

N∑
n=1

{an(ω)·cos(nλθ)+bn(ω)·sin(nλθ)} .

(7)
A set of Fourier coefficients representing the same harmonic
number across different speeds is represented with pth degree
polynomial in the following form

an(ω) = c0n + c1nω + c2nω
2 + · · ·+ cpnω

p ,

bn(ω) = d0n + d1nω + d2nω
2 + · · ·+ dpnω

p ,

where cjn and djn represent the jth polynomial coefficient of
the nth Fourier harmonic for an(ω) and bn(ω) respectively.
Please note that for a given speed, i.e., if ω is constant, (7) is
equivalent to (4).
cjn, djn, and λ are the model parameters that need to be

estimated. If the parameter λ is fixed, then the estimation
reduces to a linear least-squares problem. The parameter λ
corresponds to the fundamental frequency and it is fixed to
2π
360 for our dataset.

In order to calculate the model parameters cjn and djn, either
a heuristic approach can be applied, or a Bayesian approach
can be employed with the analytic form of (7).

V. EXPERIMENT SETUP

For evaluating the proposed approach, we use the hardware
setup schematically shown in Fig. 4. The main part of the
setup is a 24 V BLDC motor [21] run with a corresponding
controller board. The stray magnetic field of the motor is
measured at the back of the motor with a two-axis Anisotropic
MagnetoResistive (AMR) sensor HMC1052 [22]. The AMR
sensor detects two orthogonal components of the magnetic
field Bx und By . For a good Signal to Noise Ratio (SNR),
the sensor was placed at an appropriate axial distance from
the motor. Then, a suitable radial position was determined
for the sensor where the field intensity produced from the
internal permanent magnets is significant and measurable with
the existing instrumentation amplifier. This corresponds to the

Fig. 4: Schematic illustration of hardware setup.



(a) BLDC motor with magnetic sensor and resolver.

(b) Hardware components of the experiment setup.

Fig. 5: Hardware setup used for magnetic field measurements
of a BLDC motor.

sensor being placed at a non-centered radial position between
the axis of rotation and the circumference of the motor
housing. For modeling, the ground truth angular position is
obtained using a magnetic resolver [4]. Due to a lack of space,
a speed sensor was not mounted, but instead, the angular
speed was calculated on the basis of the measured angular
position using a numerical differentiation [8]. The experiment
setup is shown in Fig. 5 and all used hardware components
are listed in table I. Using the experiment setup, magnetic
field data were collected for different operating speeds of the
motor. The measured field value in both directions is non-
sinusoidal and dependent on the speed as well. The shape

TABLE I: Components of the experiment

Component Hardware
Controller Board Nucleo-F746ZG [23] and IHM07M1 [24]
Magnetic Sensor HMC1052 Honeywell [22]
Magnetic Resolver AS5047P [4]
Motor 24V Brushless DC Motor [21]

deformation and phase lag changes due to speed have been
already described in Sec. II. As the used BLDC motor has a
four-pole rotor, the observed magnetic field has two sinusoidal-
like cycles. Referring to Fig. 1 it can be clearly observed that
the two cycles are not identical. This might be caused by either
production inaccuracies of the rotor or the presence of non-
identical magnets in the four-pole motor. These differences
between the two cycles are even advantageous for the proposed
approach as they lead to a reduction of ambiguity.

It is also important to consider the fact that by choosing
a non-centered position of the sensor, the measured magnetic
field components Bx and By are not 90◦ shifted versions of
each other. In this manner, more information is available for
estimating the angular position and speed.

Also, an additional experimental setup was created to ob-
serve the shape of the magnetic field without housing and
coils as shown in Fig. 6. The motor housing and the coils
were separated from the BLDC motor keeping the permanent
magnets intact. This BLDC motor was driven externally at
different speeds using another motor. The magnetic sensor
was placed at the same location in order to compare the
measurements from the other setup. The observed shape of
the magnetic field for both experimental setups are shown in
Fig. 1b.

In the next section, the data collected from the experiment
is evaluated with our proposed approach.

VI. EVALUATION

The proposed approach is evaluated using data generated
with the hardware setup presented in Sec. V. As mentioned
before, the angular position is measured with a magnetic
resolver and the angular speed is calculated based on the
position measurements. The corresponding magnetic field
measurements consist of two orthogonal components Bx

Fig. 6: Hardware setup used for magnetic field measurements
of a BLDC without housing coils.
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(a) Position estimation error for negative speeds.
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(b) Position estimation error for positive speeds.
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(c) Speed estimation error for negative speeds.
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(d) Speed estimation error for positive speeds.

Fig. 7: Error of estimation for different operating motor speeds.

and By . For the evaluation, three separate individual data
sets are recorded, one each for training, validation, and
testing, respectively. In all sets, the magnetic field mea-
surements are standardized by subtracting the mean and
dividing by the standard deviation. The training set con-
tains data for several constant speeds, more specifically for
[−4000,−3800, ...,−200,−50, 50, 200, ..., 3800, 4000] RPM.

Using the training set, the function B(θ, ω) is modeled. As
the first step, for each speed, the magnetic field is modeled
by applying the Fourier series with seven harmonics taken
into account. In the second step, the two methods proposed
in Sec. IV-B and Sec. IV-C are applied. The FWI method
was implemented with two neighboring speed data sets. FPR
was applied with a heuristic approach as it is straight-forward
and simple to calculate. The modeled function served as a
measurement function in the EKF for online estimation. For
the EKF, we used the framework provided in the Nonlinear
Estimation Toolbox [25]. The measurement function h(xk)
and the corresponding Jacobian matrix calculation are custom
implementations that are plugged into the EKF framework.

The measurement noise is determined experimentally. For a
given speed, the data is segmented into multiple bins with 0.5◦

width. The width is chosen small as the sinusoidal signal has
high gradients at zero crossings. The calculation of the mean
and standard deviation for each bin show a dependence of the
measurement noise on both the angular position and speed.
Nevertheless, to avoid further calculation expenses, the mea-
surement noise is approximated by its mean over all angular
positions and speeds. The determined measurement noises for
the two magnetic field components are σ2

v,Bx
= 0.0073 Gs2

and σ2
v,By

= 0.0060 Gs2 respectively. The system noise matrix
R was adjusted manually for every model employing the
validation data set. The obtained values are given in table II.

For testing, we used two data sets with stepwise changing
speeds, one from -1000 to -100 RPM and the other from
100 to 1000 RPM. The estimation quality was evaluated sep-
arately for each speed. The results are presented in Fig. 7. For
both the angular position and speed, the Root Mean Square
Error (RMSE) between the estimated values and the ground
truth is given in the graphs.



TABLE II: System noise used in evaluation.

Model R in[
rad2 rad2/s; rad2/s rad2/s2

]
Fourier - Polynomial Regression (FPR),
degree 2

diag(0.0162, 0.192)

Fourier - Polynomial Regression (FPR),
degree 3

diag(0.0212, 0.232)

Fourier - Polynomial Regression (FPR),
degree 4

diag(0.0032, 0.382)

Fourier - Polynomial Regression (FPR),
degree 5

diag(0.0302, 0.632)

Fourier - Polynomial Regression (FPR),
degree 6

diag(0.0112, 0.802)

Fourier - Polynomial Regression (FPR),
degree 7

diag(0.0042, 0.782)

Fourier - Weighted Interpolation (FWI) diag(0.2902, 0.762)

The results of the position estimation are shown in Fig. 7a
for the negative speed range and in Fig. 7b for the positive
speed range. For negative speeds FPR tends to perform better
using higher polynomial degrees. FWI shows similar results
to FPR with degree five and six. Only FPR with degree
seven outperforms FWI over the whole negative speed range.
Positive speeds using FPR with higher polynomial degrees also
show mostly better performance. FWI performs significantly
better than all FPR models for positive speeds up to 750 RPM.
Evaluating the regression quality we see that FWI models the
magnetic field better than FPR for lower positive speeds. The
reason is a faster magnetic field change in those speed ranges,
as do some of the Fourier coefficients. These fast changes
are modeled better with FWI as it takes only the neighboring
speed data sets into account. FPR is not able to follow those
local changes due to its smoothing property.

For speed estimation, Fig. 7c and Fig. 7d, FWI performs
best. The estimation using FPR gets more accurate with
increasing polynomial degree. All models show a nearly
constant quality over the complete speed range. In addition,
we compare our results with the zero-crossings method pre-
sented by Liu et al. [5]. The error of the estimation using
the zero-crossings method increases with speed. The reason
might be a lower resolution in detecting the zero-crossings at
higher speed. Beyond 200 RPM all of our models and above
150 RPM some of our models show better performance than
the zero-crossings method. Especially for higher speeds, our
approaches are much more accurate.

Overall, Fourier-Weighted Interpolation (FWI) produced the
best results for both position and speed estimation over the
range of operating speeds. In Fourier-Polynomial Regression
(FPR) higher polynomial degrees resulted in better perfor-
mance.

VII. SUMMARY, CONCLUSION AND FUTURE WORK

In this paper, position and speed of a BLDC motor were
estimated by harvesting the stray magnetic field produced
from the permanent magnets of the BLDC motor. This was
achieved via a two-stage approach, namely offline stage and
online stage. The offline stage dealt mainly with the modeling
problem that established mapping between the magnetic field,

the angular position, and the angular speed of the BLDC using
Fourier-Weighted Interpolation (FWI) and Fourier-Polynomial
Regression (FPR). The online stage uses the model developed
in the offline stage as a measurement function in a nonlinear
stochastic filter setting such as the EKF to simultaneously
estimate both the position and speed of the BLDC for every
magnetic sensor measurement.

Both approaches, FWI and FPR, are based on Fourier series
due to the periodic nature of angular position but require
extensions due to the non-periodic nature of speed. FWI
consumes more memory space compared to FPR that com-
presses Fourier coefficients through polynomial regression.
The evaluation of experimental data showed that FWI is in
general better than FPR, unless a higher-degree polynomial
is used for regression. Higher-degree polynomials are not
recommended due to overfitting problems. In general, both
approaches estimate high-resolution position information and
accurate speed information. The speed estimation is much
more accurate than the current state-of-the-art approach [5].

In the future, we would like to test FWI for multiple tuples
to evaluate its performance against the existing two-tuple local
approach. Furthermore, we plan to expand the existing data
set to increase speed granularity and check the performance
of FPR against FWI. For dense speed data sets, the number
of coefficients to be stored is higher, and therefore FPR plays
a key role in the reduction of the total number of coefficients
and memory space.
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