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Abstract—Nonlinear filtering is the most important aspect in
state estimation with real-world systems. While the Kalman filter
provides a simple though optimal estimate for linear systems,
feasible filters for general systems are still subject of intensive
research. The previously proposed Progressive Gaussian Filter
PGF42 marked a new milestone, as it was able to efficiently
compute an optimal Gaussian approximation of the posterior
density in nonlinear systems [1]. However, for highly nonlinear
systems where true posteriors are “banana-shaped” (e.g., cubic
sensor problem) or multimodal (e.g., extended object tracking),
even an optimal Gaussian approximation is an inadequate rep-
resentation. Therefore, we generalize the established framework
around the PGF42 from Gaussian to Gaussian mixture densities
that are better able to approximate arbitrary density functions.
Our filter simultaneously holds approximate Gaussian mixture
and Dirac mixture representations of the same density, what
we call coupled discrete and continuous densities (CoDiCo). For
conversion between discrete and continuous representation, we
employ deterministic sampling and the expectation–maximization
(EM) algorithm, which we extend to deal with weighted particles.

I. INTRODUCTION

Context: We consider the filter step in general state
estimation. It fuses given prior knowledge with additional
information provided by measurements. In concrete terms,
the prior state density as obtained from the last prediction
step is fused with the likelihood from the measurement
equation. Ideally, this is done according to Bayes’ rule, i.e., by
multiplying the prior state density with the likelihood function.
Then the resulting normalized density is the true posterior state
density.

Considered Problem: However, for most nonlinear sys-
tems, recursive application of said ideal filter step and the ideal
prediction step is not feasible. The resulting true state density
representations may require more and more memory with every
step or the necessary computing power may increase as the
algorithm proceeds. In most cases, the true state densities do
not even exist in closed form. To avoid this problem, we aim
at approximating the true posterior density in such a way that
computational demands remain within certain bounds over time.
By doing so, the approximated density should still contain the
essential information from the true density, of course.

State-of-the-art: Due to the importance and difficulty of
nonlinear state estimation, the available literature on this topic
is vast [2]. Only for linear systems, the first two moments

Fig. 1: Example of a “banana-shaped” true posterior (black)
resulting from Bayesian fusion of a Gaussian prior (yellow)
and the likelihood function from a cubic sensor problem (blue).
Grey lines show intermediate results during progression. Red
line is the posterior approximation obtained with the proposed
nonlinear filtering scheme. Shown are contour lines enclosing
95 % of the probability mass.

can be exactly propagated, which corresponds to the well-
known Kalman filter [3]. Real systems are always nonlinear,
though. The Extended Kalman Filter (EKF) therefore linearizes
the models around the current estimated state using Jacobian
matrices [4]. This works well for nonlinearities that are “mild”
within the current range of uncertainty. Instead of tangents, the
Unscented Kalman Filter (UKF) uses secants for linearization,
where the intersection points are selected according to the
current state covariance [5], [6]. To improve accuracy, such
a stochastic linearization can be performed also with larger
numbers of reference points carefully selected based on the
Localized Cumulative Distribution (LCD) [7], [8], [9], resulting
in the Smart Sampling Kalman Filter (S2KF) [10], [11].
However, the best result that any of these methods can yield is
merely an estimate based on a linearized measurement model,



i.e., a joint Gaussian approximation of the joint distribution of
state and measurement.

For truly nonlinear filtering, early approaches used Gaussian
mixture (GM) approximations of the prior [12] that were then
processed in separate EKF filter steps [13], [14] with individual
local linearizations. Conversely, a GM approximation of the
likelihood can be used to directly perform a nonlinear filter step
on GM priors [15]. Of course, the number of GM components
would grow exponentially when repeating this procedure, which
makes a reduction [16] indispensable.

An alternating procedure involving Gaussian mixtures and
particles has been proposed with the Gaussian Sum Particle
Filter (GSPF) [17]. In the default setup, it keeps the associ-
ations between particles and Gaussian mixture components
constant. An optional use of the expectation–maximization
(EM) algorithm is briefly discussed as a means to prevent the
mixture from collapsing.

Most of the advanced state-of-the-art nonlinear filtering
methods are implemented with some kind of iteration and/or
recursion inside each update step. Hence, they can be seen
as numerical solvers to obtain the parameters of a “good
approximation” of the true posterior state density.

First of all, we will discuss filter steps based on a homo-
topy continuation. That is, the measurement information is
introduced gradually, in infinitesimally small sub-update steps.
In concrete terms, an ordinary differential equation (ODE) is
formulated that smoothly transforms the parameters of the
prior (such as mean and variance, or sample locations) into
parameters that represent the posterior. These ODEs require
some assumptions to ensure a unique solution. For example,
they can be based on incompressible particle flow [18], [19], or
on an additional Gaussian assumption that allows to compute
an exact particle flow [20], [21], [22]. This concept has also
been transferred to the world of particle filters, where special
particle flow filters provide reliable proposal densities for the
particle filter [23], [24].

The first publication introducing continuously executed filter
steps via ODEs [25] instead employed distance measures
such as the L2-norm between true density and desired GM
approximation to define and track the optimal solution. This
can similarly be done also for Dirac mixture (DM) approx-
imations [26]. The mathematical formulations of the ODEs
though include some integral operations that are available in
closed form only for special cases like separable nonlinear
measurement models [27]. When no closed form expression is
available, a sampled version of the current intermediate density
can serve as proposal density, enabling efficient numerical
integration in this sub-step [28].

Instead of formulating the problem as an ODE and employing
an off-the-shelf solver, the continuous progressive update
procedures can be stated in as recursive algorithm with discrete
progression steps as well. This also allows for more flexibility
in the design and can help to reduce computational cost.
For example, purely sample-based algorithms of this class
would progressively re-weight a prior unweighted DM with
suitable “flattened” versions of the likelihood. The resulting

Fig. 2: Visualization of the proposed progressive filtering
strategy. In each progression step, we switch back and forth
between GM and DM. This produces approximation errors,
indicated by red arrows. The first two progression steps are
shown here, where R progression steps yield one complete
filter step (e.g. in Fig. 1, R = 7). Note that two approximate
representations of the same density are held simultaneously
during the update, hence the name CoDiCo.

weighted DM must then be re-approximated by an unweighted
DM before the next progression step. This can be done
through minimization of the Cramér–von Mises distance of
the corresponding LCDs [29], but that works well only if
the reference DM has more samples than the approximating
one. Therefore, an adaptive up-sampling should be performed
before the re-approximation step [30]. Alternatively, an “energy”
penalty term can provide proper regularization [31]. It exploits
the assumption of an underlying smooth density. A similar idea
has been pursued in the regularized particle filter (RPF), where
identical Epanechnikov kernels are placed on each particle for
a stochastic resampling step [32], [33].

Once more, a Gaussian assumption of the posterior allows
for the fastest progressive filters – for arbitrary measurement
equations [1] or arbitrary likelihoods [34], [35]. Note that even
though the posterior is assumed Gaussian, it does not require
the additional joint Gaussian assumption of the measurement
model like UKF or S2KF do. Instead, this filter provides a
faithful estimate of the true posterior’s first two moments, no
more, no less. One of lots of possible application scenarios is
extended object tracking [36], [37].

However, especially in extended object tracking, densities
can become multimodal due to symmetries [38], [39]. The
same holds for multi-target tracking [40] or estimation with
so-called negative information [41].

Therefore, we propose an efficient “assumed Gaussian
mixture density” progressive filter that can provide faithful
state estimations for problems with multimodal state densities
as well.

II. KEY IDEA

We use GM densities as a universal approximator for
arbitrary density functions. To perform the Bayesian update, we
draw unweighted samples from the prior GM and subsequently



re-weight these samples with the likelihood function. After-
wards, we re-approximate the now weighted samples with a
new GM. These steps thus transform a prior GM into a posterior
GM using an arbitrary continuous likelihood function.

In order to avoid sample degeneration, we apply said update
procedure progressively with “flattened” versions of the original
likelihood function. We choose the exponents (between zero
and one) in such a way that the loss of information arising
from the re-weighting is bounded.

For re-approximation of weighted samples with GMs, we
use the EM algorithm that is known to be reliable and fast. By
doing so, we can conveniently initialize the EM with the GM
from the respective previous progression step.

We repeatedly switch back and forth between GMs and
DMs by 1) deterministic sampling and 2) EM. After such
a transformation, both densities contain approximately the
same information, even though they belong to different classes
of functions. Therefore, we call them coupled discrete and
continuous densities (CoDiCo). We make use of their individual
properties, i.e., 1) it is easy to re-weight a DM with a continuous
function, and 2) it is easy to obtain unweighted samples from
a Gaussian density. See Fig. 2 for an overview of the method.

III. METHOD DERIVATION

Our method provides nonlinear Bayesian filtering under quite
general assumptions. Required inputs are

I1 prior density fp, given as GM or DM, and
I2 likelihood Λ, given as a continuous function.

Based on these, we compute another GM density f e that
approximates the true posterior density f̃ e. State space is the
Dx-dimensional Euclidean, with state vector x ∈ RDx

.

A. Prior Density

The prior density is given as a GM fGM p(x) with Mp

components

fGM p(x) =

Mp∑
m=1

wGM p
mN (x− µGM p

m
, CGM p

m) , (1)

N (x− µ, C) =
exp

{
− 1

2

(
x− µ

)>
(C)

−1 (
x− µ

)}√
(2π)

Dx

det(C)
, (2)

with positive weights wGM p
m > 0 that sum up to one,∑Mp

m=1 wGM p
m = 1, mean vectors µGM p

m
∈ RDx

, and
potentially non-diagonal positive definite covariance matrices

CGM p
m ∈ RDx×Dx

for the individual GM components
m ∈ 1, 2, . . . ,Mp, respectively.

In a first step, Lp deterministic samples are drawn from the
prior, yielding a DM

fDM p(x) =

Lp∑
i=1

wDM p
i δ(x− xDM p

i ) , (3)∫
RDx

δ(x) · f(x) dx = f(0) , (4)

again with positive sample weights xDM p
i that sum up to one,

and sample locations xDM p
i ∈ RDx

for the individual samples
i ∈ 1, 2, . . . , Lp, respectively.

The prior may alternatively be given as a DM instead of
a GM from the last prediction step, then we can skip the
sampling procedure and directly continue with fDM p(x).

B. Likelihood

The likelihood Λ(x) = f(ŷ |x) maps the information from
measurement ŷ ∈ RDy

to the state space x ∈ RDx

. It is usually
derived from a generative measurement model. A general
formulation for an arbitrary measurement model with arbitrary
measurement noise vvv is

yyy = h(xxx,vvv) , vvv ∼ fv(v) . (5)

Hereby yyy denotes the measurement’s random variable, whereas
ŷ, the actual measurement, is a realization of (5). With the
definition of conditional probability density functions as well
as marginalization, we can derive the likelihood function Λ for
this measurement model

f(ŷ |x, v) = δ(ŷ − h(x, v)) (6)

f(ŷ, v |x) = δ(ŷ − h(x, v)) fv(v) (7)

Λ(x) = f(ŷ |x) =

∫
RDy

δ(ŷ − h(x, v)) fv(v) dv . (8)

The integral can be solved for arbitrary noise densities fv(v)
when the equation ŷ = h(xxx,vvv) can be solved for vvv. This
includes, for example, additive arbitrary noise

ŷ = h(xxx,vvv) = hx(xxx) + vvv (9)

⇒ Λ(x) = fv(ŷ − h(x)) , (10)

or multiplicative arbitrary noise, here for scalar measurements
(Dy = 1)

ŷ = h(xxx,vvv) = hx(xxx) · vvv (11)

⇒ Λ(x) =
1

|hx(x)|
· fv
(

ŷ

hx(x)

)
. (12)

C. Bayes’ Theorem

In the end, we are interested in the posterior density f e(x),
that is, the density of xxx given ŷ as well as all information from
previous measurements ŷ

past
that is included in the prior fp(x)

fp(x) = f(x | ŷ
past

) , (13)

f e(x) = f(x | ŷ, ŷ
past

) . (14)

Again with the definition of conditional density functions, we
obtain

f e(x) = f(x | ŷ, ŷ
past

) (15)

=
f(x, ŷ | ŷ

past
)

f(ŷ | ŷ
past

)
(16)

=
f(ŷ |x, ŷ

past
) · f(x | ŷ

past
)

f(ŷ | ŷ
past

)
. (17)



Fig. 3: Ten prior samples (black vertical lines) are to be re-
weighted by the likelihood (blue line) or some “flattened”
version of it (other colors). The likelihoods are normalized
in such a way that intersections with the black vertical lines
(sample locations) directly indicate the sample weights. Note
that the smaller the likelihood exponent γ gets, the more
equally-weighted the samples become. For γ = 0 (green line),
samples are actually equally weighted.

According to the measurement equation (5), the density of yyy
is fully described when xxx is given,

f(ŷ |x, ŷ
past

) = f(ŷ |x) = Λ(x) . (18)

Therefore, the measurement update step is given by

f e(x) =
1

c
· Λ(x) · fp(x) , (19)

where c is a scalar normalization constant that ensures that∫
RDx f e(x) dx = 1 .

Inserting the prior (3) into (19), we have

f e(x) (20)

=
1

c
· Λ(x) ·

(
Lp∑
i=1

wDM p
i · δ(x− xDM p

i )

)
(21)

=
1

c
·

 Lp∑
i=1

wDM p
i · Λ( xDM p

i )︸ ︷︷ ︸
new sample weights

· δ(x− xDM p
i )

 . (22)

This means that the posterior sample weights wDM e
i are

obtained by multiplication of the prior sample weights wDM p
i

with the value of the likelihood function Λ at the respective
sample locations xDM p

i

wDM e
i =

1

c
· wDM p

i · Λ( xDM p
i ) , (23)

c =

Lp∑
i=1

wDM p
i · Λ( xDM p

i ) , (24)

where the posterior sample locations xDM e
i are just the same

as the prior ones,

xDM e
i = xDM p

i . (25)

Fig. 4: Blue: Entropy, relative to entropy of equally weighted
samples. Red: ratio of smallest and largest sample weight.
Abscissa γ1 is the likelihood exponent for the first progression
step. γ1 = 1 would be the full Bayesian update in a single
step, i.e., without any progression steps.

This sounds simple, but there is a problem. Consider for
example the 400 prior samples (yellow dots) in Fig. 1. Simply
re-weighting them by the likelihood function (blue) would,
also after normalization, assign a negligible weight to most of
the samples, thus effectively reducing the number of samples
drastically. The few remaining samples would not contain
enough information (locations and weights) to give an adequate
approximation to the true posterior. This effect is called sample
degeneration.

D. Progressive Update

We realize that re-weighting of samples can come with
information loss. Therefore, we propose to split up the
measurement update step (19) into two steps

f e(x) =
1

c
·
√

Λ(x) ·
√

Λ(x) · fp(x) (26)

or an arbitrary number R of so-called progression steps

f e(x) =
1

c
·
R∏
r=1

[Λ(x)]
γr · fp(x) , (27)

where γr > 0 and
∑R
r=1 γr = 1 . That is, we do not directly use

the full likelihood Λ(x) for re-weighting, but rather [Λ(x)]
γr ,

where 0 < γr < 1 . In the example of Fig. 3, only two
samples would “survive” a weighting with the full likelihood
Λ1, whereas after a re-weighting with Λ0.05, about eight out
of ten samples can still contribute information.

But how should γr be chosen in each progression step? On
the one hand, it must be small enough to prevent the majority
of samples from starvation. On the other hand, too many pro-
gression steps for a single measurement step should be avoided
as each progression step introduces approximation errors from
re-approximating a GM with a DM and vice versa, see also
Fig. 2. The easiest choice would be predefined exponents like
{γ1, γ2} = {0.5, 0.5} or {γ1, γ2, γ3} = {0.05, 0.15, 0.8}. An
adaptive and still computationally cheap choice is to limit the
ratio τ between the largest and the smallest sample weight
to, say, τ = 10 %. The corresponding γr can be calculated in



Algorithm 1: Fast LCD-based deterministic sampling
of a GM.

Function fDM p ← samplePrior( fGM p, L̃p)
Input: fGM p: GM weights, means, and covariances{

wGM p
m, µGM p

m
, CGM p

m

}Mp

m=1
,

L̃p: target number of samples
Output: fDM p: DM samples and weights{

wDM p
i , xDM p

i

}Lp

i=1
, where Lp ≈ L̃p

i← 0 ;
for m← 1 to Mp do

N ← round(L̃p · wGM p
m) ;{

xDM std
j

}N
j=1
← stdNormalSamples(Dx, N)

;
LGM p
m ← chol( CGM p

m) ;
for j ← 1 to N do

i← i+ 1 ;
xDM p
i ← LGM p

m xDM std
j + µGM p

m
;

wDM p
i ← N

/
wGM p
m ;

end
end{

wDM p
i

}Lp

i=1
← normalizeL1(

{
wDM p
i

}Lp

i=1
) ;

closed form from the maximum and minimum of Λ( xDM p
i )

[34]

τ =
mini

[
Λ( xDM p,r

i )
]γr

maxi

[
Λ( xDM p,r

i )
]γr , (28)

⇒ γr = ln(τ)

/
ln

(
mini Λ( xDM p,r

i )

maxi Λ( xDM p,r
i )

)
. (29)

A different way to quantify the loss of information introduced
by re-weighting is based on the information entropy of Claude
Shannon,

ν(γr) = − 1

log2(Lp)

Lp∑
i=1

wDM e,r
i · log2

(
wDM e,r
i

)
, (30)

wDM e,r
i =

[
Λ( xDM p,r

i )
]γr

∑Lp

i=1

[
Λ( xDM p,r

i )
]γr . (31)

The maximum of ν(γ) is normalized to one and occurs for
equal weighting (γ = 0). The function decreases the more
different the weights become. An optimal γ can be obtained
with a simple bisection algorithm that solves for example
ν(γ) = 0.97. Other than (29), this approach includes not only
two but all available samples into the consideration. See Fig. 4
for a plot of the two measures.

E. Expectation–Maximization

After re-weighting fDM p,r with Λγr yielding the sub-
posterior fDM e,r, a re-approximation with unweighted samples

Algorithm 2: Conduct one progression step for a
progressive Bayesian update scheme.

Function
[

fGM e, γ
]
← progrStep( fGM p, Λ, γp)

Input: fGM p: GM weights, means, and covariances{
wGM p
m, µGM p

m
, CGM p

m

}Mp

m=1
of prior density,

Λ: likelihood function,
γp: likelihood exponent accumulated in previous
progression steps, or 0

Output: fGM e: GM weights, means, and covariances{
wGM e
m, µGM e

m
, CGM e

m

}Me

m=1
of estimated

posterior density{
wDM p
i , xDM p

i

}Lp

i=1
← samplePrior( fGM p, L̃p) ;{

wDM e,full
i

}Lp

i=1
←
{

Λ( xDM p
i )
}Lp

i=1
;

γ ←getLikelihoodExponent( wDM e,full
i ) ;

γ ← min(γ, 1− γp) ;{
wDM e
i

}Lp

i=1
←
{

wDM p
i ·
[

wDM e,full
i

]γ}Lp

i=1
;{

wDM e
i

}Lp

i=1
← normalizeL1(

{
wDM e
i

}Lp

i=1
) ;

if M e 6= Mp then

fGM e ← emRand(
{

wDM e
i , xDM p

i

}Lp

i=1
) ;

else

fGM e ← emInit(
{

wDM e
i , xDM p

i

}Lp

i=1
, fGM p) ;

end

fDM p,r+1 must be performed before the samples can also
be re-weighted with Λγr+1 and so on (until

∑
r γr = 1).

Therefore, we re-approximate the weighted DM fDM e,r with a
GM fGM p,r+1, and after that, we can proceed from Sec. III-A
again.

For re-approximating a DM with a GM we propose the
EM algorithm [42], [43]. It requires some GM as initial
guess and iteratively improves it by executing expectation
step and maximization step alternately. In the expectation step,
likelihoods of associations between DM samples and GM
components are determined. The maximization step calculates
new GM weights, mean vectors, and covariance matrices from
the DM samples. For doing so, the association likelihoods are
used as weights.

In general, even though the EM algorithm has better
global convergence properties than Newton-based optimization
methods, it may, depending on the initial value, converge to any
local or global maximum or stationary point of the underlying
likelihood [44], [45]. Therefore, in case the initial guess is
randomly chosen, it should be repeated several times, and the
result with maximum likelihood should be selected in the end.
Fortunately, this is rarely the case. As a rule, we can fall back
on the last sub-posterior and use it as initial guess.



Algorithm 3: Performs a complete progressive up-
date/filter step involving several progression steps.

Function fGM e ← progrFilter( fGM p, Λ)
Input: fGM p: GM weights, means, and covariances{

wGM p
m, µGM p

m
, CGM p

m

}Mp

m=1
of prior density,

Λ: likelihood function
Output: fGM e: GM weights, means, and covariances{

wGM e
m, µGM e

m
, CGM e

m

}Me

m=1
of

approximated posterior density
fGM e,0 ← fGM p ;

γp ← 0 ;
r ← 0 ;
while γp < 1 do

r ← r + 1 ;
fGM p,r ← fGM e,r−1 ;[
fGM e,r, γr

]
← progrStep( fGM p,r, Λ, γp) ;

γp ← γp + γr ;
end
fGM e ← fGM e,r ;

IV. IMPLEMENTATION

In this section, we will detail how the proposed progressive
filtering algorithm is implemented.

A. Deterministic Gaussian Samples

To make sampling from the sub-prior GM fGM p,r in
Sec. III-A as efficient as possible, we draw samples from the
individual Gaussian components, where the number of samples
is derived from the respective component weight wGM p

m. For
that purpose, we use deterministic Gaussian sampling that is
obtained by minimizing the Cramér–von Mises distance of the
LCDs of a single Gaussian component and a DM [8], [46], [11].
The implementation in [47] maintains a “sample cache“ (folder
of .sample files) with deterministic samples from standard
normal distributions for each dimension and each number of
samples, respectively. To avoid delays during filtering, this
sample cache should be populated with the necessary sample
files for all possible numbers of samples {1, 2, . . . , Lp} in Dx

dimensions beforehand.
As samples are drawn for the GM components individually

with the numbers of samples determined by the mixture com-
ponent weight, a rounding error is involved when translating
the component weight into the number of samples. This can
be optionally compensated by introducing a slightly different
weighting for the individual groups of samples, see Alg. 1.

B. Progressive Update

Alg. 2 details the actions necessary for a single progression
step. The complete progressive filter step (Alg. 3) finally
consists of several of these progression steps.

Fig. 5: Filtering with up to three progression steps. γ1, γ2,
γ3 are the likelihood exponents, where γ1 + γ2 + γ3 = 1.
Thus, each point in the area corresponds to a specific choice of
likelihood exponents during a progressive filter step. Points are
colored by the L2-norm of the difference between ground truth
posterior density and its approximating GM. In this example, it
seems to be important that γ1 is chosen close to 0.05 for good
results, compare also Fig. 4. The rightmost column shows the
results obtained without any progression, i.e., γ1 = 1. Setup
and filter parameters are detailed in Sec. V.

V. EVALUATION

For evaluation, illustration, and to highlight the strengths of
the proposed nonlinear filtering method, we define two difficult
filtering problems. The first one is shown in Fig. 1, featuring
a unimodal but “banana-shaped” true posterior. The second
example, depicted in Fig. 5 and Fig. 6, will be described in
full detail now.

We have a Gaussian prior (Mp = 1) with

µGM p
1

=

[
−0.7
0.1

]
, CGM p

1 =

[
3 0
0 1.2

]
. (32)

Furthermore, we define an uncertain distance measurement
with additive Gaussian noise

5 = ŷ = ‖xxx‖2 + vvv , fv(v) = N (v − 0, 0.52) , (33)

and hence the likelihood function (10)

Λ(x) = N (‖x‖2 − 5, 0.52) . (34)

We choose Lp = 400 samples for deterministic sampling
from the posterior, see Alg. 1 and (3). The re-weighted
posteriors are re-approximated with GMs with always M e = 5
components. For this purpose, 50 expectation and maximization
steps are performed in the EM approximation at the end of each
progression step. Thereby the EM routine usually converged



(a) contour lines enclosing 95% probability mass (b) full density functions

Fig. 6: Example with multimodal posterior true density. (a) contour lines of prior density (yellow), intermediate densities during
progression (grey), and the proposed posterior approximation (red); for the latter also individual mixture components in dashed
lines. Likelihood is blue, ground truth is black. (b) top: ground truth density, contour line from (a) is indicated. (b) bottom:
proposed approximate posterior density, contour line from (a) is indicated. L2-norm of the difference between both density
functions is 0.025, compare also Fig. 5.

such that the component means changed by less than 0.01
in the 50th EM step. Because the initial prior is a single
Gaussian (1 = Mp 6= M e = 5), following Alg. 2 we use
random initialization of the expecation-maximization in the
first progression step (r = 1). For this random initialization, we
draw 30 random choices for fGM e,1, perform 50 EM iterations
on each, and continue with the result yielding the maximum
likelihood. In the next progression steps, we always have
(5 = Mp = M e = 5), so we simply use fGM p,r as initial
guess for fGM e,r and perform 50 EM iterations on that.

In Fig. 5, a grid search is performed to study the effect
of choosing various combinations of the γi. The number of
progressions is limited to a maximum of three, such that the
results can easily be plotted. Then in Fig. 6, the progression
step sizes γi are automatically determined based on (30) with
the constraint ν(γr) ≥ 0.97. This results in four progression
steps: γ1 ≈ 0.06, γ2 ≈ 0.11, γ3 ≈ 0.24, and γ4 ≈ 0.59.
Interestingly, the first two of these step sizes are somehow
connected to Fig. 5, as they lie in the “yellow area” there.

VI. CONCLUSION

We propose a novel nonlinear filtering algorithm. It takes
nonlinear GMs or DMs as prior densities, gradually introduces
an arbitrary likelihood function through a few progression steps,
and returns a nonlinear GM approximation of the posterior.
The relatively high error at the right border (γ1 = 1) in Fig. 5
demonstrates that the conventional full update performs inferior
to the progressive update (yellow area).

Especially the EM part has been kept very simple yet, and we
plan to include an adaption of the number of GM components
that facilitates automatic merging [48], [49] or splitting [50],
[51] where necessary. We also plan to integrate this filter into
the nonlinear estimation toolbox [47] in order to allow for a
comparison with other nonlinear filters in terms of accuracy
and computational complexity.
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