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Abstract—We present a novel sample reduction scheme for
random variables belonging to the SE(2) group by means of Dirac
mixture approximation. For this, dual quaternions are employed
to represent uncertain planar transformations. The Cramér–von
Mises distance is modified as a smooth metric to measure the
statistical distance between Dirac mixtures on the manifold of
planar dual quaternions. Samples of reduced size are then ob-
tained by minimizing the probability divergence via Riemannian
optimization while interpreting the correlation between rotation
and translation. We further deploy the proposed scheme for non-
parametric modeling of estimates for nonlinear SE(2) estimation.
Simulations show superior tracking performance of the sample
reduction-based filter compared with Monte Carlo-based as well
as parametric model-based planar dual quaternion filters.

I. INTRODUCTION

Estimation of planar motions is ubiquitous and play a
fundamental role in many application scenarios, such as
odometry and scene reconstruction, object tracking as well
as remote sensing, etc [1]–[5]. Planar motions, incorporating
both rotations and translations on a plane, are mathematically
described by elements belonging to the two-dimensional spe-
cial Euclidean group SE(2). Conventionally, elements of the
SE(2) group are parameterized by the 3 × 3 homogeneous
matrices. However, with nine elements used to represent the
three DoF, they contain a large degree of redundancy, resulting
in numerical instabilities and memory inefficiencies. Dual
quaternions, defined as x = xr + εxs, combine quaternion
and dual number theory. The real part xr is a quaternion
representing the rotation and xs denotes the dual part encoding
the translation. ε is the dual unit and satisfies ε2 = 0.
In contrast to matrix representations, dual quaternions can
parameterize planar motions in the form of four-dimensional
vectors with only one degree of redundancy. Conciser ways
are thereby enabled for modeling the uncertainty and recursive
estimation of planar transformations.

Therefore, we employ planar dual quaternions to parameter-
ize SE(2) states in this paper. Due to the underlying nonlinear
group structure, stochastic modeling of uncertain SE(2) states
is usually done in a locally linearized space using Gaussian
distributions [6]. Nonlinear estimation approaches can then be
proposed by using popular Bayesian filtering schemes such
as the extended Kalman filter (EKF) [7] or the unscented
Kalman filter (UKF) [8]. However, such a probabilistic model
is established under the assumption of local perturbations,

Figure 1: Examples of the proposed sample reduction tech-
nique for planar rigid motions. Here, 2000 random samples
(yellow) drawn from different underlying distributions are
optimally approximated by 20 samples (blue) on the manifold
of planar dual quaternions.

which can be easily violated under large noise levels (e.g.,
due to low-cost sensors or strong nonlinearities).

Dual quaternions representing rigid transformations natu-
rally form a nonlinear manifold and its nonlinearity mainly
results from the rotation component. Thus, in order to stochas-
tically model uncertain dual quaternions directly on the mani-
fold without linearization, novel probabilistic density functions
(PDFs) have been proposed based on directional statistics.
In [9], the Bingham distribution was employed to model the
real part of dual quaternions while the translation part was
assumed to be Gaussian-distributed. A corresponding filtering
scheme was established using the unscented transform [10]
and successfully deployed for stereo visual odometry [9].
However, the approach lacks probabilistic interpretation of
correlations between the real and dual part, resulting in over-
optimistic estimates. Another probabilistic framework, the so-
called projected Gaussian distribution (PGD), was introduced
in [11] based on hyperspherical geometry. Further, a mixture
model was established for addressing multimodality. But its in-
ference scheme requires approximations under the assumption
of small rotation uncertainties. In [12], a new distribution was
proposed based on the Bingham distribution to directly model
uncertain planar dual quaternions while considering correlated
real and dual part. Corresponding Bayesian filters [13], [14]



were established based thereon by exploiting the unscented
transform as well as the progressive filtering scheme [15]
and were further applied to simultaneous localization and
mapping [16].

Though stochastic modeling approaches relying on specific
PDFs provide effective solutions for dual quaternion estima-
tion, several shortcomings exist. In practice, the information
geometry of the uncertainty is rather arbitrary on the manifold
of dual quaternions, meaning parametric forms can be largely
violated. Also, there is no closed-form solution for computing
the normalization constant of such distributions (e.g., for PGD
or Bingham-based distributions). Thus, corresponding filters
often rely on samples, generated by either deterministic or
Monte Carlo-based sampling schemes, for recursive estima-
tion. The posterior estimate is essentially a re-approximation
of the updated samples via model fitting. Though the sampling
schemes contribute to handling nonlinear dynamics [8], the re-
fitting step still imposes the parametric form of the underlying
distribution.

Sample-based modeling approaches provide an intuitive
way to represent arbitrary probability distributions in a non-
parametric manner. Components of a Dirac mixture can be
located on the samples for discrete probabilistic modeling.
Corresponding Bayesian filtering schemes, e.g., the particle
filter [17], have been established based thereon for nonlinear
estimation. However, naively exploiting empirical samples
to represent stochastic dynamics typically suffers from in-
efficiency issues w.r.t. representativeness and runtime. Also,
random samples cannot guarantee reproducible results. There-
fore, some works introduced deterministic schemes for non-
parametric modeling of estimates in the context of planar mo-
tion estimation. In [18], a grid-based approach was proposed
on the circular domain for modeling random angular vari-
ables and further extended via Rao-Blackwellization for SE(2)
estimation [19]. However, the performance of such schemes
depends highly on the grid resolution, since grid points are
generated equidistantly on the circle and not adaptive to the
shape of the underlying distribution [20]. A high resolution of
the grid is usually required for the desired tracking accuracy,
resulting in both runtime and memory inefficiencies.

Thus, using fewer but more representative samples is ap-
pealing for discrete stochastic modeling. In [21], a sample
reduction scheme was established for reducing the number of
components of a Dirac mixture by minimizing a multivariate
generalization of the Cramér–von Mises distance. For that,
the so-called localized cumulative distribution (LCD) of Dirac
mixtures was proposed for smoothly characterizing discrete
probabilistic models. While this technique has been success-
fully deployed for Euclidean spaces and was further extended
to the spherical domain [22], there exists no counterpart for
states belonging to the group of planar rigid body motions.

In this work, we develop an LCD-based sample reduction
scheme for random SE(2) states represented by dual quater-
nions (see examples in Fig. 1). A geometry-aware metric
is proposed for measuring the statistical distance of Dirac

mixtures on the manifold of planar dual quaternions. It is es-
tablished by synthesizing the von Mises and Gaussian kernels
that measure the probability mass around the real and dual
part, respectively. Components of the approximating Dirac
mixture are then located to on-manifold supports minimizing
its statistical divergence to the target Dirac mixture by means
of Riemannian optimization. The proposed approximation
approach is deployed to a sample-based planar dual quaternion
filter for nonlinear SE(2) estimation. As the reduced samples
are deterministic and more representative, the novel approach
shows improved sample efficiency than a plain particle filter.
Also, in contrast to parametric modeling approaches, the pro-
posed scheme enables (approximated) modeling of arbitrary
distributions and considers the correlation between the real
and dual part.

The remainder of this paper is structured as follows. Prelim-
inaries about the dual quaternion representation of SE(2) states
will be given in Sec. II. The novel sample reduction scheme
on the manifold of planar dual quaternions will be proposed
in Sec. III. Based thereon, we will give the proposed sample
reduction-based SE(2) estimator in Sec. IV, which is followed
by the evaluation in Sec. V. The work will be concluded in
Sec. VI.

II. PRELIMINARIES

For the sake of conciseness, we formulate dual quater-
nions parameterizing planar motions into the vector form
x = [x>r ,x

>
s ]> ∈ R4, with

xr = [ cos(θ/2), sin(θ/2) ]> ∈ S1 ,

xs =
1

2
t⊗ xr ∈ R2 ,

(1)

being the real and dual part, respectively. It denotes a rotation
around z–axis through angle θ followed by a translation of
t ∈ R2 on the xy-plane. The real part is formulated as a
quaternion for denoting the rotation and the dual part encodes
the translation by composing the real part via the Hamilton
product ⊗. Therefore, planar dual quaternions naturally form
a manifold consisting of the circular domain and the two-
dimensional Euclidean space, i.e., x ∈ S1 × R2 ⊂ R4.

Aggregating two arbitrary planar dual quaternions can be
formulated into a regular matrix–vector multiplication. For
instance, ∀x = [x0, x1, x2, x3 ]

>,y = [ y0, y1, y2, y3 ]
> ∈

S1 × R2, the aggregation x� y = Qx
x y = Qy

y x, with

Qx
x =

[
x0 −x1 0 0
x1 x0 0 0
x2 x3 x0 −x1
x3 −x2 x1 x0

]
, Qy

y =

[
y0 −y1 0 0
y1 y0 0 0
y2 −y3 y0 y1
y3 y2 −y1 y0

]
.

Any vector s ∈ R2 can be transformed by the planar dual
quaternion x ∈ S1 × R2 according to

s′ = (x � [ 1, 0, s> ]> � x� )3:4 , (2)

with x� = [x0,−x1,−x2,−x3 ]> being the conjugate of x.
Here, s is expressed in the form of a planar dual quaternion
and the last two elements of the vector after the operation are
taken out to recover the transformed location. A more detailed



introduction about the arithmetic and manifold structure of
dual quaternions can be found in [14], [23].

III. DUAL QUATERNION-BASED
SE(2) SAMPLE REDUCTION

A. Problem Formulation
Given a set of random planar dual quaternion samples X̃ =

{x̃i}mi=1 ⊂ S1×R2, a Dirac mixture is employed to represent
its underlying distribution as

fX̃(x) =

m∑
i=1

ω̃i δ(x− x̃i) , (3)

with ω̃i being the weights, which satisfy
∑m

i=1 ω̃i = 1. We aim
to approximate the target Dirac mixture above using another
Dirac mixture of reduced number of components given by

fX(x) =

n∑
i=1

ωi δ(x− xi) . (4)

Here,
∑n

i=1 ωi = 1 and X = {xi}ni=1 ⊂ S1 ×R2 denotes the
set of approximating planar dual quaternion samples.

In [21], an optimal sample reduction technique was pro-
posed to approximate multivariate Dirac mixtures in Euclidean
spaces. However, this approach cannot be trivially extended to
planar dual quaternions due to the underlying nonlinear man-
ifold structure. In the remainder of this section, a geometry-
aware kernel will be proposed for quantifying the on-manifold
probability mass in the sense of the LCD [24]. Based thereon,
the Cramér–von Mises distance will be modified as the metric
measuring the statistical distance between Dirac mixtures on
the manifold of planar dual quaternions.

B. On-Manifold Localized Cumulative Distribution (M-LCD)
We propose the so-called on-manifold localized cumulative

distribution (M-LCD) to quantify the probability mass of a
discrete density on a smooth manifold. More specifically, the
M-LCD of distribution g :M→ R+ is defined as

G(ν, τ) =
∫
M

g(x)κ(x;ν, τ) dx ,

with κ(x;ν, τ) being the kernel function located at ν ∈ M
with a dispersion of τ ∈ R+. A smooth kernel is preferable as
it leads to simpler optimization problems of maintaining the
probability mass for approximation [21]. Consequently, the M-
LCD of the approximating Dirac mixture in (4) can be derived
as

FX(ν, τ) =
∫
S1×R2

n∑
i=1

ωi δ(x− xi)κ(x;ν, τ) dx

=

n∑
i=1

ωi κ(xi;ν, τ) ,

(5)

with the kernel function being evaluated at each Dirac support
xi ∈ S1 ×R2. Similarly, the target M-LCD can be derived in
the following form

FX̃(ν, τ) =
m∑
i=1

ω̃i κ(x̃i;ν, τ) . (6)

The reason of employing such a cumulative distribution for
defining the statistical distance lies in the fact that two Dirac
mixtures do not share common supports, thus cannot be
compared directly. The standard cumulative distribution is gen-
erally asymmetric and only defined for scalar PDFs. Therefore,
the localized cumulative distribution was established in [24]
for PDFs in higher-dimensional spaces by incorporating the
kernel function.

Synthesizing a smooth kernel function for dual quaternion
sample reduction is non-trivial. Since the manifold S1 × R2

exhibits a nonlinear and partially periodic geometric structure,
the kernel function should be designed in a geometry-aware
manner. For that, we define an isotropic and separable kernel
in the form of κ(x;ν, τ) = κr(xr;νr, τ)κs(xs;νs, τ), with

κr(xr;νr, τ) = exp(τ ν>r xr) ,

κs(xs;νs, τ) = exp
(
−τ(xs − νs)

>(xs − νs)
)
,

(7)

measuring the uncertainty at x = [x>r ,x
>
s ]> ∈ S1 × R2.

The kernel consists of a von Mises-like component centered at
νr ∈ S1 evaluating the real part and a Gaussian-like component
at νs ∈ R2 the dual part. The two kernel components share
the dispersion parameter τ . Thus, uncertainties can be quan-
tified adaptively to the manifold structure. Further, the shared
dispersion parameter τ allows considering the dependency
between the real and dual part. We will further show in the
next subsection that such a synthesis also guarantees a unique
and closed-form solution for computing the Cramér–von Mises
distance in the M-LCD sense.

C. Statistical Distance of Dirac Mixtures on the Manifold of
Planar Dual Quaternions

We further propose the M-LCD-based Cramér–von Mises
distance to measure the statistical divergence between Dirac
mixtures at the approximating set X and the target set X̃. It
is defined as

D(X) =

∫
R+

W(τ)

∫
S1×R2

(
FX(ν, τ)−FX̃(ν, τ)

)2
dν dτ .

The measure is computed by integrating the M-LCD deviation
over all possible locations ν ∈ S1×R2 and dispersions τ of the
kernel defined in (7). The weighting function W(τ) controls
the contribution of the M-LCD deviation w.r.t. the dispersion
τ . Minimizing such a distance measure essentially denotes
optimally maintaining the probability mass of the target Dirac
mixture on the manifold. The approximating samples can
thereby be obtained by solving the following optimization
problem under the constraint of the manifold structure, namely

X∗ = argminXD(X) , X = {xi}ni=1 ⊂ S1 × R2 . (8)



Computation of D(X) boils down to the aggregation of three
integrals, i.e., D(X) = D1 − 2D2 +D3, with

D1 =

∫
R+

W(τ)

∫
S1×R2

FX(ν, τ)2 dν dτ ,

D2 =

∫
R+

W(τ)

∫
S1×R2

FX(ν, τ)FX̃(ν, τ) dν dτ ,

D3 =

∫
R+

W(τ)

∫
S1×R2

FX̃(ν, τ)
2 dν dτ .

Next, we incorporate the M-LCD equations of the approximat-
ing and target samples in (5) and (6) into the formulae above.
We then obtain

D1 =

∫
R+

W(τ)

·
∫
S1×R2

n∑
i=1

n∑
j=1

ωiωjκ(xi;ν, τ)κ(xj ;ν, τ) dν dτ ,

D2 =

∫
R+

W(τ)

·
∫
S1×R2

n∑
i=1

m∑
j=1

ωiω̃jκ(xi;ν, τ)κ(x̃j ;ν, τ) dν dτ ,

D3 =

∫
R+

W(τ)

·
∫
S1×R2

m∑
i=1

m∑
j=1

ω̃iω̃jκ(x̃i;ν, τ)κ(x̃j ;ν, τ) dν dτ .

The double integration can be first applied in a sample-wise
manner, yielding

D1 =

n∑
i=1

n∑
j=1

ωiωj

∫
R+

W(τ)

·
∫
S1×R2

κ(xi;ν, τ)κ(xj ;ν, τ) dν dτ ,

D2 =

n∑
i=1

m∑
j=1

ωiω̃j

∫
R+

W(τ)

·
∫
S1×R2

κ(xi;ν, τ)κ(x̃j ;ν, τ) dν dτ ,

D3 =

m∑
i=1

m∑
j=1

ω̃iω̃j

∫
R+

W(τ)

·
∫
S1×R2

κ(x̃i;ν, τ)κ(x̃j ;ν, τ) dν dτ .

(9)

The individual distance components above share the same
integration over the kernel parameters. The general form of
the inner-layer integral can be formulated as

A(x,y; τ) =
∫
S1×R2

κ(x;ν, τ)κ(y;ν, τ) dν ,

with the product of kernel values being integrated over
all kernel locations on the manifold S1 × R2. The kernel
function in (7) is separable for the real and dual part, we

thereby decompose the whole integral into A(x,y, τ) =
Ar(xr,yr, τ)As(xs,ys, τ) and obtain

Ar(xr,yr, τ) =

∫
S1
κr(xr;νr, τ)κr(yr;νr, τ) dνr

= 2πI0
(
τ
√

2 + 2x>r yr

)
,

As(xs,ys, τ) =

∫
R2

κs(ys;νs, τ)κs(xs;νs, τ) dνs

=
π

2τ
exp

(
−τ
2
(xs − ys)

>(xs − ys)
)
.

Here, I0 denotes the modified Bessel function of the first kind
of order zero. A detailed derivation can be found in Appendix
A. For conciseness, we further substitute the metric for the
real part on the circular domain and the dual part in the
Euclidean space as ζxy = x>r yr and ξxy = (xs−ys)

>(xs−ys),
respectively. Then, we have

A(x,y, τ) = π2

τ
I0
(
τ
√
2 + 2 ζxy

)
exp

(
−τ
2
ξxy

)
.

Further, the integral over the dispersion τ is given by

B(x,y) =
∫
R+

W(τ)A(x,y; τ) dτ . (10)

As discussed in [21], the weighting function W(τ) controls
the impact of the integrated kernel values on the distance
measure w.r.t. the dispersion. In theory, there are many pos-
sible functions for W(τ). In practice, however, it is ap-
pealing to introduce a carefully crafted weighting function
such that a closed-form solution of B(x,y) can be obtained.
The optimization-based sample reduction procedure can then
benefit therefrom regarding convergence efficiency. Thus, we
propose the following weighting function

W(τ) = τ exp(−5τ/2) . (11)

The integral in (10) can then be derived as

B(x,y) = 2π2

(17− 8 ζxy + 10 ξxy + ξ2xy)
1/2

. (12)

We further substitute the denominator with J (x,y) such that
B(x,y) = 2π2/J (x,y). A detailed derivation of the integral
is given in Appendix B. The each individual component of the
distance measure in (9) can be computed as

D1 = 2π2
n∑

i=1

n∑
j=1

ωiωjJ (xi,xj)
−1 ,

D2 = 2π2
n∑

i=1

m∑
j=1

ωiω̃jJ (xi, x̃j)
−1 ,

D3 = 2π2
m∑
i=1

m∑
j=1

ω̃iω̃jJ (x̃j , x̃j)
−1 .

(13)

As stated previously, the overall distance measure is then
obtained with D(X) = D1 − 2D2 +D3.



(a) n = 5,m = 2000 (b) n = 9,m = 2000 (c) n = 25,m = 2000 (d) n = 35,m = 2000

(e) n = 5,m = 4000 (f) n = 9,m = 4000 (g) n = 25,m = 4000 (h) n = 35,m = 4000

Figure 2: Reduction of equally weighted planar dual quaternion samples using the proposed approach. To visualize the poses,
the planar dual quaternion samples are shown as arrows. Random poses (yellow, quantity denoted by m) are approximated
by fewer deterministic samples (blue, quantity denoted by n). The proposed approach works reliably for different underlying
distributions with various reduction scales.

(a) n = 6,m = 2000 (b) n = 6,m = 2000 (c) n = 6,m = 2000 (d) n = 6,m = 2000

Figure 3: Reduction of the same target planar dual quaternion samples with varying nonuniform weights. (a) shows the
reduction result of equally weighted target samples. In (b)-(c), we shift the sample weights (indicated by the size of the purple
disk) clockwise. The proposed reduction scheme gives effective approximation results in all cases.

D. Optimal Reduction via Riemannian Optimization

As pointed out in Sec. II, the manifold of planar dual quater-
nions is the product of unit circle S1 and two-dimensional
Euclidean space R2. During the reduction, samples are thereby
confined to the Riemannian manifold S1×R2. Instead of treat-
ing the approximation task formulated in (8) as a constrained
optimization problem and applying classic approaches, e.g.,
the Lagrange multiplier, we utilize the Riemannian optimiza-
tion scheme [25]. It is geometry-aware and shows improved
convergence behavior provided that the manifold structure
is well investigated. The derived distance measure in (13)

is smooth and twice continuously differentiable. Thus, we
apply the Riemannian trust-region method given in [26]. Each
iterative step is first computed on the tangent plane and then
retracted back to S1 × R2 to preserve the manifold structure.
For that, the gradient of the objective function in the ambient
space is essential, which is provided in Appendix C.

By minimizing the proposed distance measure, the prob-
ability mass of the random samples is optimally preserved
while considering the geometric structure of the planar dual
quaternion manifold. We show a few representative examples
in Fig. 2 and Fig. 3 to illustrate the proposed pose reduction



Algorithm 1: Sample Reduction-Based Filter (SRF)
Input: Xk−1 = {xi,k−1}ni=1 , measurement zk
Output: Xk = {xi,k}ni=1

1 Xk|k−1 ← ∅ ;
2 for i← 1 to n do
3 {xj,k|k−1}

np
j=1 ← propagate (xi,k−1) ;

4 Xk|k−1 ← {Xk|k−1, {xj,k|k−1}
np
j=1} ;

5 W← ∅ ;
6 for l← 1 to n · np do
7 W← {W, fL(zk |xl,k|k−1) } ;

8 Xk ← sampleReduction (Xk|k−1,W, n) ;
9 return Xk = {xi,k}ni=1

technique. For target pose samples of various randomness as
well as weights, the approach works reliably for different
reduction scales. It can be also observed in the figures that
the approach can preserve the correlation between the real
and dual part of the target samples.

IV. SAMPLE REDUCTION-BASED SE(2) ESTIMATION

The proposed approximation approach is then integrated
into a sample-based Bayesian filtering scheme for planar
motion estimation. The system model is formulated as

xk = a(xk−1,wk−1) , (14)

with xk−1,xk ∈ S1 × R2 being the system state and wk−1
the system noise of domain W. a : S1 ×R2 ×W→ S1 ×R2

is the transition function. The measure model is given as

zk = h(xk,vk) , (15)

with zk ∈ Z and vk ∈ V representing the measurement and
measurement noise, respectively. Further, h : S1 ×R2 ×V→
Z denotes the observation function. Planar dual quaternion
samples of uniform weight are exploited as a non-parametric
representation of the posterior distribution.

As shown in Alg. 1, the set of n equally weighted sam-
ples Xk−1 representing the posterior at time step k − 1 is
fed through the system dynamics in (14). Each planar dual
quaternion sample xk−1 is propagated by np random samples
from the system noise distribution (Alg. 1, line 1–4). A sample
set Xk|k−1 of size n · np is thereby obtained to represent
the prior distribution. Then, each prior sample is reweighted
according to the likelihood fL(zk |xl,k|k−1) derived from (15)
given the measurement zk (Alg. 1, line 5–7). The prior sample
setXk|k−1 with nonuniform weights can then be approximated
using the proposed sample reduction approach (Alg. 1, line 8).
The obtained samples {xi,k}ni=1 are again equally weighted
and deterministic, representing the posterior distribution of the
current time step.

V. EVALUATION

The proposed sample reduction-based planar dual quater-
nion filter is then evaluated in the following nonlinear SE(2)

Figure 4: Exemplary trajectory segment of the evaluation run.

estimation task. The system model is xk = xk � w2
k, with

xk,wk ∈ S1×R2 denoting the system state and system noise,
respectively. wk is synthesized by composing a von Mises
mixture-distributed rotation angle and a Gaussian-distributed
translation according to (1). w2

k := wk � wk is defined as
the squared system noise and has a multimodal distribution,
as evident from the yellow arrows in Fig. 2 (a). Further, the
measurement model is given as zk = (xk � [ 1, 0, z>0 ]> �
x�k )3:4 + vk according to (2). It measures the position of a
point transformed by the planar dual quaternion state xk from
its initial location z0. The additive measurement noise vk is
assumed to follow a zero-mean Gaussian distribution.

We compare the sample reduction-based filter (SRF) pro-
posed in Sec. IV with a plain particle filter (PF) and the SE(2)-
Bingham filter (SE2BF) with a progressive update step [14],
[27]. As the SE2BF relies on the SE(2)-Bingham distribu-
tion [12], we exploit 105 random samples for fitting the para-
metric model offline. Moreover, 100 random samples are used
by the PF to model the estimate, whereas the proposed SRF
uses 5 deterministic samples via the optimal approximation.
The evaluation is performed for 100 Monte Carlo runs with
10 time steps each. To quantify the tracking accuracy, we
compute the orientation and position error w.r.t. the quaternion
arc length and the Euclidean distance, respectively.

As shown in Fig. 5, the sample reduction-based filter gives
more accurate tracking results than the particle filter. Consid-
ering that the SRF deploys much fewer samples than the PF,
this shows that the proposed approximation method is effective
and improves the sample efficiency considerably compared
with the Monte Carlo scheme. The SE2BF fails for all runs
because the parametric modeling of the uncertainty is largely
violated by the multimodal noise and strong nonlinearity. We
further show an exemplary run of the tracking result in Fig. 4.
At each time step, we sample the system noise to propagate
the state for illustrating the uncertain dynamics (depicted by
yellow arrows). Though much more samples are used by the
PF, its estimates are still prone to be at wrong modes as the
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Figure 5: Results of the simulated evaluation. The proposed sample reduction-based filter gives more accurate tracking results
than the particle filter. The SE(2)-Bingham filter totally fails due to its parametric modeling of estimates.

random samples are less representative than the deterministic
ones given by the optimal approximation.

VI. CONCLUSION

In this paper, a novel sample reduction scheme is proposed
for random planar dual quaternion samples by means of Dirac
mixture approximation. A geometry-aware distance measure
is proposed on the manifold of planar dual quaternions, based
on which the new Dirac supports are obtained to preserve the
probability mass via Riemannian optimization. Furthermore,
we propose a sample reduction-based planar dual quaternion
filter for SE(2) estimation. It performs better than the plain
particle filter as well as the state-of-the-art dual quaternion
filter using the parametric model.

There still remains much potential to exploit from the
proposed methods. The current reduction approach can be
further extended to the manifold of unit dual quaternions
that represent spatial poses belonging to the SE(3) group [9].
Applying the sample-based approximation scheme to system
identification and control-related tasks is also of great value.
Moreover, extensive applications of the proposed filter can be
done for real-world scenarios such as visual odometry and
scene registration [9], [16].

APPENDIX

A. Integral over the Kernel Location

The integral of the von Mises kernel product over S1 is

Ar(xr,yr, τ) =

∫
S1
κr(xr;νr, τ)κr(yr;νr, τ) dνr

=

∫
S1
exp

(
τ ν>r (xr + yr)

)
dνr .

By normalizing xr+yr = ‖xr+yr‖x̂r + yr, the integral can be
obtained as the normalization constant of a scaled von Mises
density, i.e.,

Ar(xr,yr, τ) =

∫
S1
exp

(
τ‖xr + yr‖ν>r x̂r + yr

)
dνr

= 2π I0 (τ‖xr + yr‖) ,

with I0 being the zero-order modified Bessel function of
the first kind. Therefore, the integral of the kernel product
over S1 only depends on the geodesic arc length between
the two points in consideration and we obtain A(x,y, τ) =
2πI0(τ

√
2 + 2x>r yr).

The integral of the kernel over the two-dimensional Eu-
clidean space for the dual part can be derived by applying the
Gaussian identity given in [28, Appendix D], yielding

As(xs,ys, τ) =

∫
R2

κs(xs;νs, τ)κs(ys;νs, τ) dνs

=
π2

τ2

∫
R2

fN (xs ;νs ,
1

2τ
I2×2) fN (ys ;νs ,

1

2τ
I2×2) dνs

=
π2

τ2
fN (ys ;xs ,

1

τ
I2×2)

∫
R2

fN (νs) dνs

=
π

2τ
exp

(
− τ

2
(xs − ys)

>(xs − ys)
)
.

B. Integral over the Kernel Dispersion

Given two planar dual quaternions x,y ∈ S1 × R2 and
the weighting function in (11), the integral of the weighted
A(x,y, τ) over the kernel dispersion τ is given by

B(x,y) = π2

∫
R+

exp
(
− τ

2
(5 + ξxy)

)
I0(τ

√
2 + 2 ζxy) dτ .

As stated in [29, Sec. 6.611], the following closed-form
integral holds for zero-order Bessel function of the first kind∫

R+

exp(−ατ) I0(βτ) = 1/
√
α2 − β2 ,

for ∀α, β ∈ R+, α > β . When setting α = 0.5 (5 + ξxy)
and β = (2 + 2ζxy)

1/2, it can be verified that β ∈ [ 0, 2 ] and
α ∈ [ 2.5,∞ ), therefore α > β. We then have

B(x,y) = π2√
0.25(5 + ξxy)2 − (2 + 2ζxy)

=
2π2√

17− 8 ζxy + 10 ξxy + ξ2xy

.



C. Derivative of the Proposed Distance Measure

Derivatives of the point-wise distance measure in (12) w.r.t.
x = [x>r , x

>
s ]> can be obtained by applying the chain rule

as
dB
dxr

=
dB

dζxy

dζxy
dxr

=
8π2

J (x,y)3
yr ,

dB
dxs

=
dB

dξxy

dξxy
dxs

= −4π2 5 + ξxy
J (x,y)3

(xs − ys) .

Thus, the derivatives of the distance measure components
in (13) w.r.t. the approximating sample locations xi in X can

be derived. For instance, we have dD1

dxi
=
[

dD>
1

dxi,r
,

dD>
1

dxi,s

]>
, with

dD1

dxi,r
= 16π2 ωi

n∑
j=1

ωj

J (xi,xj)3
xj,r ,

dD1

dxi,s
= −8π2 ωi

n∑
j=1

ωj

5 + ξxixj

J (xi,xj)3
(xi,s − xj,s) .

Further, we have dD2

dxi
=
[

dD>
2

dxi,r
,

dD>
2

dxi,s

]>
, with

dD2

dxi,r
= 8π2ωi

m∑
j=1

ω̃j

J (xi, x̃j)3
x̃j,r ,

dD2

dxi,s
= −4π2ωi

m∑
j=1

ω̃j

5 + ξxix̃j

J (xi, x̃j)3
(xi,s − x̃j,s) .

Then, we have dD
dxi

= dD1

dxi
− 2 dD2

dxi
.
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