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Abstract—Estimating orientations of objects in Euclidean space
is an omnipresent challenge in robotics and autonomous systems.
A useful representation of orientations involves unit quaternions.
While the space of all unit quaternions forms a three-dimensional
unit hypersphere, inverting the sign of a quaternion does not
change the orientation described by it. Therefore, all possible
orientations can be described by considering only a hemisphere
of the unit hypersphere. In this paper, we propose a grid filter
for arbitrary-dimensional unit hyperhemispheres and apply it to
an orientation estimation task and another evaluation scenario.
Our approach outperforms previous approaches that consider
densities on the entire hypersphere.

Index Terms—Directional estimation, grid filter, quaternion

I. INTRODUCTION

Estimating the orientation of an object in three-dimensional
space is of high practical relevance. It is particularly important
in the context of robotics, e.g., for controlling the autonomous
flight of drones [1]. There are multiple ways to represent
orientations. The representation influences the models and has
thus a massive impact on the estimation task. Filters tailored to
different representations have been developed in the literature.
Important representations for which filters have been developed
include rotation matrices and unit quaternions.

Nonlinear variants of the Kalman filter should not be directly
applied to rotation matrices as they are redundant and can be
numerically problematic. However, one can use that the rotation
matrices form the Lie group SO(3) and then apply the invariant
extended or unscented Kalman filter [2]. The specific group
structure of SO(3) was considered along with SE(3) (which
considers both the position and orientation of an object in three-
dimensional space) in [3]. While such approaches have been
applied successfully even for challenging scenarios involving
SE(3) poses, such as visual-inertial odometry [4], they are
generally not computationally cheap and it is not possible to
increase the number of parameters in the filter to obtain more
accurate solutions. Further, for such filters, the description
of the uncertainty is generally not suited to precisely model
arbitrary uncertainties. For example, problems may arise in
cases in which the probability mass is concentrated around
multiple vastly different orientations with little probability mass
in between.

In this paper, we focus on the representation based on unit
quaternions. The domain on which all unit quaternions reside
is the three-dimensional unit hypersphere S3, which can be

Fig. 1. The density of a Bingham distribution is plotted on the hyperhemisphere
and scaled by the factor 2 to ensure normalization.

seen as all points in R4 of unit norm. The quaternions q and
−q describe the same rotation, and thus, S3 is a double cover
of the group of spatial rotations. When describing uncertain
rotations using a probability density on S3, the equivalence
of the rotations described by q and −q should be taken into
account by ensuring that the probability density at each point
is the same as on its antipode.

Different filters that can be used for antipodally symmetric
densities on S3 exist in the literature. First, there is the Bingham
filter [5], [6], in which the prior and posterior densities are
assumed to be Bingham-distributed. The Bingham distribution
is well suited for this estimation task because its density is
antipodally symmetric. While the Bingham distribution can
represent densities of many shapes on the hypersphere, it has
some downsides. Some parameters, such as the normalization
constant are expensive to calculate. Further, the Bingham
distribution can have two modes or infinitely many along a
circle, however, it cannot have, e.g., 4 or 6 modes.

A different approach is to use a grid filter on the hypersphere,
which is motivated by grid filters on bounded Euclidean
spaces [7]. In [8], [9], the unit sphere and unit hypersphere
were considered. Two different approaches for generating the
grid were considered. The first is a scheme that provides points
that cover the hypersphere homogeneously. More detail on this
is provided later. The second scheme is a mode-centric grid,
which provides a high resolution around the modes. However,
it assumes there are only two modes and additional modes can
only be captured with a lower resolution.



In this paper, we provide a grid filter that explicitly considers
that q and −q describe the same rotation. We do this by
regarding only a hemisphere of S3, which we denote by H3.
This way, we avoid redundancies and prevent asymmetries,
which may arise for grids on the entire sphere due to numerical
issues and approximation errors. Our approach is provided
in a general way for arbitrary-dimensional hyperhemispheres
Hd. Thus, also densities on H2, such as the one shown in
Fig. 1, can be considered. In our novel filter, which we call
hyperhemispherical grid filter (HHGF), we use a homogeneous
grid on the hyperhemisphere that is based on subdividing the
hyperhemisphere into equally sized patches.

While non-homogenous grids can be more efficient per
grid point, such grids need to be adapted over time to be
useful in scenarios in which the state changes significantly.
Further, the underlying assumptions of the grid-generation
scheme, such as unimodality, need to be fulfilled to achieve an
accurate description of the uncertainty. In contrast, by using a
homogeneous grid, we do not make any assumptions about the
number of modes. With sufficient grid points, we can properly
represent densities whose probability mass is concentrated
around multiple vastly different quaternions. Further, using a
homogeneous grid, we avoid having large gaps in between
the grid points. Gaps can lead to high estimation errors if
the function value of the likelihood function for a given
measurement is only high in the gaps.

The paper is structured as follows. First, we describe the
grid on Hd used in the filter in the second section. The HHGF
itself is described in Sec. III. An evaluation is provided in
the fourth section and a conclusion and an outlook in the last
section.

II. A HOMOGENEOUS GRID FOR HYPERHEMISPHERES

Before describing grids for hyperhemispheres, we provide
a formal definition of the hyperhemisphere. In this paper, we
shall always consider the “upper” hemisphere along the last
dimension. To ensure the hemisphere does not contain both a
point and its antipode, we define the hyperhemisphere Hd as

Hd = {x ∈ Rd+1 : ‖x‖ = 1

∧ (xd+1 > 0 ∨ xd+1 = 0 ∧ xd > 0

∨ xd+1 = 0 ∧ xd = 0 ∧ xd−1 > 0 . . .)} ,

in which the expression in the parentheses continues until
x1 > 0 is reached. For example,

H2 = {x ∈ R3 : ‖x‖ = 1

∧(x3 > 0∨x3 = 0∧x2 > 0∨x3 = 0∧x2 = 0∧x1 > 0)} .

To obtain a grid on Hd, we subdivide the domain into
n regions A1, . . . , An. The union of all regions must be
equal to the original domain and there should be no overlaps.
Such a subdivision is called a partition. For reasons stated
in the introduction, we want our grids to cover the domain
homogeneously. To achieve the homogeneity, we enforce that
all regions in the partition are of equal size. We assign a value
to each region, which we refer to as grid value. The grid values

are stored in a vector γ = [γ1, . . . , γn]>. Further, we designate
one point in each region to represent the respective region. We
choose the centers of the regions and refer to them as grid
points β

1
, . . . , β

n
.

In the first subsection, we describe the different interpreta-
tions of the grid values (see also [8]). In the second subsection,
we outline an equal area partitioning approach for hyperspheres,
describe its shortcomings, and explain a modification that makes
the approach applicable to hyperhemispheres.

A. Interpretations of the Grid Values

In the first interpretation, we interpret our state space to
be discrete. Each discrete state corresponds to one of the n
regions and each grid value describes the probability of being
in the respective state. The grid values are function values
of a probability mass function, which sums up to one. One
can derive a filter that is reminiscent of a Wonham filter [10]
for this discrete domain. Transforming a system model for a
continuous domain into one for a discrete domain is nontrivial
and may involve integrals [11].

In the second interpretation, the grid values describe a
probability density function defined on the original continuous
state space. The grid values can be seen as the function values of
the density at the grid points, and an interpolation could be used
to obtain the function values for points that are not on the grid
(spherical harmonics were used for S2 in [8]). If an interpolation
may yield negative function values, the square roots of the grid
values can be interpolated instead. Squaring the function values
of this interpolation then provides an interpolation for the actual
density [8], [12]. As an alternative, we can define a function
on the continuous domain by setting the function values in
each region to the respective grid value. We focus on this
interpolation to obtain a continuous density because it simplifies
our derivations and we believe it is easy to comprehend.

The grid values used by the two interpretations differ but
can be transformed into one another. To obtain the function
values of a probability density function from the values of the
probability mass function used in the first interpretation, one
can distribute the probability masses equally in the respective
regions. Each grid value for the second interpretation then
corresponds to the grid value for the first interpretation divided
by the size of the region. To convert a probability density
function into a probability mass function, we integrate over the
individual regions. Assuming the density function is constant
in each region, the grid value for the second interpretation only
has to be multiplied by the size of the region to obtain the
probability mass for the first interpretation.

B. Equal Area Partitioning for Hemispheres

As we have specified, we aim to partition the hemisphere
into regions of equal size. Importantly, our filter will only
provide one piece of information on each region. To make
statements that are useful and easy to interpret, it makes sense
to ensure that each region covers some part of the domain
that is easy to comprehend and is small according to some
metric other than its total size. Such a metric could be the



largest Euclidean distance between two points in the region.
One approach to obtain small regions could be to adapt Lloyd’s
algorithm [13] to hemispherical domains. However, it is an
iterative heuristic to solve a problem that is NP-hard and its
convergence rate can be slow [14].

The approach we propose is based on the recursive zonal
equal area partitioning algorithm [15] for hyperspheres. In
the following paragraphs, we provide a simplified explanation
of [15] to give the reader the degree of understanding that is
required to comprehend our changes to the algorithm. There is
a closed-form formula for subdividing a unit hypersphere into
equally sized regions along one axis. We choose the last axis
of the Euclidean space in which the hypersphere is embedded.
We thus obtain a partitioning comprising n regions (see Fig. 2
for an example) of size |Sd|/n. The uppermost and lowermost
regions are called the polar caps. The other regions shall be
referred to as collars.

Merge
8 caps
into 1

Merge
6 caps
into 1

Merge
6 caps
into 1

Fig. 2. Naïve subdivision of S2 into 22 regions of equal size and sketch how
they could be joined. We adopted code from [15] to visualize the regions.

If we use the maximum Euclidean distance between two
points in a region as an additional measure of size, this naïve
subdivision scheme produces rather large regions, as is evident
in Fig. 2. Further, even if the probability mass in every region
was known, no information could be derived about the azimuth
angle. To obtain smaller regions, we consider how collars can
be subdivided. This can be achieved by subdividing the upper
and lower borders into m equally sized regions while ensuring
that the subdivisions of both borders are aligned. The borders
of the collars are manifolds with the topology of Sd−1. The
subdivision can be done recursively until the unit circle S1 is
to be subdivided. The unit circle can be trivially subdivided
into m parts by splitting it into regions of size 2π/m.

In the approach in [15], collars of the size of an integer
multiple of the region size are generated and subdivided
afterward. The result of the subdivision, which is illustrated
in Fig. 3a, could also be obtained by joining some collars of
the naïve subdivision, which are then split up (see Fig. 2). No
changes are done to the polar caps, and thus, the approach
in [15] uses the same polar caps as the naïve subdivision.
While the algorithm provides all information that is required
for a good subdivision (the number of collars and the number
of regions in each collar), it is geared toward partitioning
the entire hypersphere. In our novel subdivision scheme, we

(a) Partition of S2 with 22 regions
and the respective centers obtained
via the original equal area partition-
ing.

(b) Partition obtained when consid-
ering only the 15 regions that at
least partially located on the upper
hemisphere. The new centers are
shown in red and the centers of the
original partition in yellow.

Fig. 3. Illustration of a partition of H2 based on a partition of S2 according
to [15] with 22 regions.

subdivide only the upper hemisphere. If we cut the sphere in
half and maintained the region borders of [15], the regions in
the central collar would be cut in half, as illustrated in Fig. 3b.
Thus, the regions in that collar would not be of the same size
as the other regions. Further, the centers, which we use as grid
points, would move (see Fig. 3b).

To prevent this issue, we adjusted the algorithm so that it
yields the best even integer number of collars. Then, when
subdividing from top to bottom, the boundary of one collar will
run along the equator of the hypersphere. The subdivision can
then be stopped to obtain a partition of Hd (see Fig. 4a for an
example). Based on this partition, a symmetric partition of the
entire hypersphere can be obtained by mirroring all grid points
and regions at the center point of the full hypersphere (see
Fig. 4). This yields a different partition than the one obtained
before, as can be seen when comparing the partitions in Figs. 4b
and 3a. If grid values describing a density were assigned to
the grid points, the grid values can be copied for the mirrored
points. However, all grid values then need to be divided by 2
to ensure the normalization of the density represented by the
grid values. In general, determining suitable grid values for the
lower hemisphere is not trivial when generating the grid on
the lower hemisphere differently, e.g., by mirroring it on the
plane through the equator. However, as can be seen in Fig. 4,
partitions obtained by mirroring the grid on the center point
of the full hypersphere can also be plane symmetric when the
number of regions is even for all collars.

III. HYPERHEMISPHERICAL GRID FILTER

In this section, we introduce the HHGF. The approach is
conceptually similar to the spherical grid filter (SGF) published
in [8]. To be able to also use the filter based on models for
the entire hypersphere, we start by regarding the relationship
between symmetric densities on the hypersphere and densities
on the hyperhemisphere. Then, we introduce how the grid-
based representation can be generated for a continuous density,
which is important for initializing the filter. Afterward, we
explicate the update and prediction steps.



(a) Partition of the hemisphere com-
prising 11 regions obtained using
our novel partitioning scheme.

(b) Symmetric partition of S2 with
22 regions obtained by mirroring the
partition of the hemisphere on the
center of the full sphere.

Fig. 4. Illustration showing a partition of H2 with equally sized regions and
a partition of S2 obtained by mirroring the partition of the hemisphere.

A. Relationship between Symmetric Densities on Sd and
Densities on Hd

Symmetric densities on hyperspheres, such as densities of
Bingham distributions, are normalized on the hyperspherical
domain Sd. In other words, integrating them over Sd always
yields one. If we merely considered the upper hemisphere of
a density on Sd, it would not integrate to one. Due to the
symmetry of the density, the upper and lower hemispheres
contain the same probability mass, and thus, the integral would
be 1

2 . Hence, to derive a normalized density f hemi(x) on the
hyperhemisphere Hd based on the symmetric density f symm(x)
defined on Sd, we can use f hemi(x) = 2f symm(x). This will
then yield a normalized density on the hyperhemisphere.

One can see that no information is lost by only considering
the upper hemisphere by providing a formula for the opposite
direction. A symmetric density on the entire hypersphere
f sphere(x) can be derived from a density on the upper hemi-
sphere f hemi(x) by returning 1

2f
hemi(x) if x is on the upper

hemisphere and returning 1
2f

hemi(−x) otherwise. Stated more
formally,

f sphere(x) =

{
1
2f

hemi(x) if x ∈ Hd

1
2f

hemi(−x) if x 6∈ Hd .

If f hemi(x) was generated from f symm(x) according to the
formula in the first paragraph, then f sphere(x) = f symm(x).
Thus, the mapping from symmetric densities on Sd to densities
on Hd is invertible and a bijection.

B. Density Approximation

We first generate the grid points for the partition of the
hyperhemisphere with n regions. The grid values for the
first interpretation explained in Sec. II-A can be obtained by
determining the probability mass in each region via an integral.
By dividing each grid value by the size of the corresponding
region, the grid values for the second interpretation can be
obtained. These values would ensure that the interpolation that
is constant in each region is normalized. However, integrals

are often costly, particularly for high-dimensional manifolds.
Therefore, we assume that the function we approximate is
already constant. Under this assumption, we can simply evaluate
the density on the grid points and use the function values as the
grid values. With the number of grid points going to infinity, this
grid-based approximation converges to a normalized density
due to the convergence of the Riemann sum to the Riemann
integral of a function. However, for a fixed number of grid
points, the density described by the grid values is generally
not normalized. We denote such an unnormalized density by
f̆ and the corresponding grid values by γ̆.

To obtain a normalized density, we calculate the integral
of the function f̆ described by γ̆. We use that the function
is constant in each region and that the integral of a function
over a domain is equal to the sum of the integrals over each
element in a partition of the domain to obtain∫

Hd

f̆(x) dx =

n∑
i=1

∫
Ai

f̆(x) dx =

n∑
i=1

γ̆i

∫
Ai

1 dx

=
|Hd|
n

n∑
i=1

γ̆i = |Hd|mean(γ̆) ,

(1)

with |Hd| being the size of the manifold (e.g., 2π for H2 or 2π2

for H3). By scaling all grid points, the entire function can be
scaled. Via γ = γ̆/(|Hd|mean(γ̆)), a new vector γ is obtained
that ensures that the integral over the function it represents is
equal to one. If the mean of γ̆ is zero, the normalization step
will fail. However, in this case, the grid values do not contain
any usable information about the density, and the user should
consider using a higher grid resolution to resolve this issue.

C. Update Step

For the update step at time step t, we require a measurement
model in the form of a likelihood function fL

t (ẑt|xt) that
provides the probability density that the specific measurement
ẑt is obtained when the actual state is xt. A conversion to a
likelihood function is required when the measurement model
is given as an equation zt = h(xt,vt), which involves the
random variables describing the measurement zt, the state xt,
and the measurement noise vt at time step t. Note that only
the sample space of xt needs to be Hd . The sample space of
the measurement and the measurement noise can be arbitrary
(e.g., Ru or Su (u ∈ N\0)). Thus, as long as a formula for the
likelihood can be provided, arbitrary measurement noises, even
ones that are defined on other manifolds, are supported. Since
the likelihood is considered for a fixed measurement ẑt in
every time step, the likelihood can be seen as a function of xt
that maps from Hd to R+

0 . Because the variable we condition
on changes, the function is not a density in general.

Based on the likelihood, Bayes’ rule allows us to derive
the posterior density f e

t (xt|ẑ1, . . . , ẑt) that incorporates the
information of all measurements until time step t. The posterior
density is proportional to (∝) the unnormalized posterior
f̆ e
t (xt|ẑ1, . . . , ẑt), which is obtained by multiplying the likeli-

hood fL
t (ẑt|xt) with the prior density f p

t (xt|ẑ1, . . . , ẑt−1) that
only considers the measurements until time step t− 1, i.e.,



f e
t (xt|ẑ1, . . . , ẑt) =

fL
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1)∫

Hd f
L
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1) dxt

∝ fL
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1)︸ ︷︷ ︸

f̆ e
t(xt|ẑ1,...,ẑt)

.

To provide an update step for our novel filter, we thus need
to be able to multiply two densities and normalize the result
afterward. With γp

t
describing the grid values (i.e., the function

values of the prior density at the grid points) at time step t,
we obtain the function values of the unnormalized posterior
density at the grid points by multiply the grid values with the
function values of the likelihood at the grid points. Thus, we
obtain the formula

γ̆e
t

=
[
γp
t,1f

L
t (ẑt|β1

), · · · , γp
t,nf

L
t (ẑt|βn

)
]
.

The normalization can be implemented as described in
Sec. III-B. It should be noted that while the values in γ̆e

t

correspond to the actual function values of f̆ e
t (xt|ẑ1, . . . , ẑt),

the normalized values are not identical to the values of the
true normalized posterior density. The reason for this is that
the probability mass may not be distributed as assumed in
our normalization step. Thus, the grid values are only an
approximation of the function values of the true posterior
density. However, the grid values at least describe a normalized
density.

For the multiplication, the likelihood function has to be
evaluated n times. Both the multiplication and normalization
have a complexity in O(n), and thus, the overall complexity
of the update step is in O(n).

D. Prediction Step

For the prediction step, we require the system model in
the form of a transition density fT

t (xt+1|xt). A formula for
the transition density has to be derived when we have a
model xt+1 = a(xt,wt), which involves the random variables
describing the state xt and the system noise wt at time step
t and the state xt+1 at time step t + 1. While the sample
space of xt+1 and xt is Hd, the sample space of the noise can
be arbitrary. Thus, as long as we can compute the transition
density, the system noise may have an arbitrary distribution on
an arbitrary domain.

For our filter, we see the transition density as a function
of xt+1 and xt that maps from Hd ×Hd to R+

0 . To obtain a
partition of Hd ×Hd, we generate the Cartesian product of a
partition of Hd with itself. We evaluate the transition density
on the Cartesian product of the grid points and store the values
in the matrix ΓT

t . The entry in the irow and jth column of ΓT
t

is set to fT
t (β

i
|β

j
).

Using the Chapman–Kolmogorov equation, the prior density
f p
t+1(xt+1|ẑ1, . . . , ẑt) for the next time step t + 1 can be

provided based on the transition density and the posterior

density at time step t. We subdivide the formula on the
right-hand side of

f p
t+1(xt+1|ẑ1, . . . , ẑt) =

∫
Hd

fT
t (xt+1|xt)f e

t(xt|ẑ1, . . . , ẑt)︸ ︷︷ ︸
f j
t(xt+1,xt|ẑ1,...,ẑt)

dxt

into two steps. The first is to determine the joint density
f j
t(xt+1, xt|ẑ1, . . . , ẑt) of the states at the current and next

time step. The second step is to marginalize out xt to obtain
the prior density for the time step t+ 1.

We now consider how to implement these two steps in our
grid-based filter. The operations presented in this subsection can
only be employed if the grid used for the transition density is the
Cartesian product of the grid used for the posterior density. First,
we determine the matrix of grid values Γj

t for the joint density,
which contains the function values of f j

t(βi
, β

j
|ẑ1, . . . , ẑt) for

all combinations of grid points β
i

and β
j
. We denote the jth

column of Γj
t, which describes fT

t (xt+1|βj
), by γT

t,[:,j]
. Using

this notation, Γj
t can be determined according to

Γj
t =

[
γT
t,[:,1]

γe
t,1, · · · , γT

t,[:,n]
γe
t,n

]
.

To perform the marginalization, we use the formula for the
integral (1) for every grid point on xt+1 to obtain

∀i ∈ {1, . . . , n} : γp
t+1,i = |Hd|mean

(
γj
t,[i,:]

)
as the formula for the grid values of the prior density for the
next time step.

While subdividing the formula in the Chapman–Kolmogorov
equation into two steps allowed for an easy explanation, better
computational performance can be achieved by combining the
two steps. To combine the operations, we start by writing out
the formula for the mean

γp
t+1,i =

|Hd|
n

n∑
j=1

γj
t,[i,j] ,

in which γj
t,[i,j] denotes the element in the ith row and jth

column of Γj
t. Then, we write γj

t,[i,j] as the product of the
grid values of the transition density γT

t,[i,j] and of the posterior
density γe

t,j to obtain

γp
t+1,i =

|Hd|
n

n∑
j=1

γT
t,[i,j]γ

e
t,j .

From this formula, we can see that all grid values of the pre-
dicted density can be determined using the scaled matrix–vector
product

γp
t+1

= |Hd|
n ΓT

t γ
e
t
.

The transition density has to be evaluated n2 times to
generate the matrix ΓT

t . However, if the transition density is
time invariant, the matrix can be determined once in advance
and then used in all time steps. However, the computational
complexity of the prediction step is always in O(n2) due to
the matrix–vector multiplication.



IV. EVALUATION

In our evaluation, we considered a two-dimensional and a
three-dimensional scenario. We compare our implementation
of the HHGF, which is available in the GitHub repository
of [16], with filters for the entire hypersphere. In the version
implemented in [16], the particle filter (PF) supports arbitrary-
dimensional hyperspheres. The Bingham filter (BF) does not
support two-dimensional scenarios, and thus, we only consider
it for the three-dimensional scenario. While the SGF was
presented only for S2 in [8], we have generalized it to arbitrary
dimensions for the evaluation in this paper. We refer to the
generalized version of the SGF as hyperspherical grid filter
(HSGF).

In the first subsection, we describe the scenarios that we
consider in our evaluation. The second subsection deals with
how we quantify the quality of the filter results. In the last
subsection, we provide and discuss the evaluation results.

A. Scenario Descriptions

For both scenarios, we simulated the system behavior from
time step 1, the initialization, to time step 10. In each of
the 10 time steps, a measurement is obtained. The system
model was applied 9 times to get from time step 1 to 10.
For both scenarios, we used initial prior densities, transition
densities, and likelihood functions that are unimodal on the
hyperhemisphere and bimodal on the hypersphere. While it is
not guaranteed that the true prior and posterior densities are
unimodal (or bimodal) in all time steps, they are in most cases.
This facilitates providing point estimates and evaluating the
filter results, as explained in the next subsection.

For the PF, SGF, and HSGF, models involving symmetric
densities on Sd were used. The models ensure that all true
prior and posterior densities are symmetric. For the HHGF, the
corresponding densities for the hyperhemisphere were derived
as described in Sec. III-A.

In our description, we provide the models for Sd. The models
used for the two scenarios are similar. Hence, we describe both
of them at once and highlight the differences. All uncertainties
are distributed according to mixtures of von Mises–Fisher
(VMF) distributions [17, Sec. 9.3.2] with two components,
which are weighted 0.5 each. The mean direction of the second
component is at the antipode of the mean direction of the
first component. The concentration parameter is identical for
both components. Thus, the mixture is antipodally symmetric.
The system and measurement models can be seen as simple
identity models with a perturbation according to a rotationally
symmetric noise term.

The initial prior density is

f p
1(x1) =

1

2

(
VMF(x1;µ

1
, 10) + VMF(x1;−µ

1
, 10)

)
,

in which the concentration parameter of the VMF distributions
is 10 and µ

1
is [0, 0, 1]> in the two-dimensional scenario

and [0, 0, 0, 1]> in the three-dimensional scenario. The mea-
surement noise is also an antipodally symmetric mixture of

two VMF distributions with concentration parameter 10. The
corresponding likelihood function is

fL
t (zt|xt) =

1

2

(
VMF(zt;xt, 10) + VMF(zt;−xt, 10)

)
.

The system noise is distributed according to the same parame-
ters. Thus, the transition density is

fT
t (xt+1|xt) =

1

2

(
VMF(xt+1;xt, 10)

+ VMF(xt+1;−xt, 10)
)
.

To obtain Bingham distributions for all uncertainties for the
BF, we drew 100 000 samples from the individual distributions
and fitted Bingham distributions to them.

B. Estimates and Error Metric

The mean direction [17, Sec. 9.2.1], which is frequently used
to obtain point estimates on Sd, is undefined for antipodally
symmetric densities. To obtain point estimates from the results
of the filters, we start by converting all filter results into
Bingham distributions. For the PF, we fit the samples with a
Bingham distribution. Similarly, we interpret the grid points
of the SGF and HSGF as samples that are weighted according
to the grid values and fit them with a Bingham distribution.
For the HHGF, we generate a grid for the entire hypersphere
and set the grid values as described at the end of Fig. 4a. A
Bingham distribution is then fitted to the symmetric result.

Then, we determine one of the modes of the Bingham
distribution (it does not matter which) and use it as the point
estimate x̂10. To quantify the estimation error, we determine
the angular distance between the estimate and the true state x̃10

and the angular distance between the antipode of the estimate
(the second mode of the Bingham distribution) and the true
state. The minimum of the two angular distances is then our
error metric d. More formally, the error metric is defined as

d(x̂10, x̃10) = min(acos(x̂>10 x̃10), acos(−x̂>10 x̃10)) .

C. Evaluation Results

To obtain reliable results, we determined the errors and run
times for 1000 runs and calculated the means. The mean of the
errors are given for different numbers of parameters (using the
term parameter for both grid points and particles) in Fig. 5b for
the first scenario and in Fig. 6b for the second scenario. The
corresponding average run times are depicted in Figs. 5a and 6a.
The run times were measured on a laptop with an Intel Core
i7-7500U CPU and 16 GB of RAM running Matlab 2020a on
Windows 10. The run times for operations that only have to be
performed once in the beginning, such as determining the grid
values for the transition density or sampling from the initial
prior density, were not included.

In both scenarios, the HHGF performed best. Compared on
a per parameter basis, the HHGF achieved better results than
the PF, SGF, and HSGF in almost all configurations. For equal
numbers of parameters, the SGF was better than the PF in the
two-dimensional scenario. In the three-dimensional scenario,
the PF performed better than the HSGF for low numbers of



(a) Error over number of grid points or particles.

(b) Time over number of grid points or particles.

Fig. 5. Evaluation results for the two-dimensional scenario.

parameters. However, the HSGF converged faster to its optimal
performance. Since the system and measurement models are
identity models and the noise densities can be approximated
well using densities of a Bingham distribution, the BF (which
uses a fixed number of parameters) performs very well in the
three-dimensional scenario. While the grid filters need 500 grid
points to surpass the estimation quality of the BF, the PF does
not achieve a better estimation quality in the configurations
considered.

At some point, the filters stop improving. A probable cause
is that at this point, the filters yield almost the same estimate as
would be obtained based on the true posterior density. The speed
of convergence to the optimal result was similar for the SGF,
HSGF, and HHGF. However, the SGF and HSGF required more
grid points than the HHGF to achieve a comparable accuracy.
We believe this is a result of the worse placement of the grid
points. If the grid generated by the equal area partitioning
used in the SGF or HSGF is symmetric, half of the points are
wasted. One reason for this is that if a grid includes both a
certain point and its antipode, the grid values are supposed to
be identical for the two points. Further, even if a grid point is
not redundant, its placement may be suboptimal. To visualize
this, one can mirror all the grid points that were placed on the
lower hemisphere onto the upper hemisphere. The grid points
on the upper hemisphere will not be as evenly distributed as
the grid points used by the HHGF.

(a) Error over number of grid points or particles.

(b) Time over number of grid points or particles.

Fig. 6. Evaluation results for the three-dimensional scenario. The results of
the BF are shown as a straight line because the number of parameters cannot
be changed.

The run times of the SGF and HSGF were similar to those
of the HHGF. The run times of the grid filters were consistently
lower than those of the PF. While a renormalization step is
required in the update step of the grid filters, the PF needs to
perform a resampling step, which is more expensive. Further,
the PF needs to draw one sample of the noise density per
particle in the prediction step, which is particularly expensive.
Due to this expensive operation, the PF is relatively slow even
though its run time increases only linearly in the number of
particles. While the matrix–vector multiplication required for
the grid filters results in a quadratic increase in the run time
with increasing number of grid points, the operation can be
performed so efficiently that the grid filters are faster than the
PF in the configurations considered. While the grid filters were
faster than the BF in most of the considered configurations,
the PF was slower when using 50 or more particles.

By combining the errors for different numbers of parameters
with the respective run times, one can compare configurations
with comparable run times. When taking both the estimation
quality and run time into account, the HHGF is superior to
all the other filters. In the three-dimensional scenario, the grid
filters surpass the estimation quality of the BF at a lower run
time than the BF. Further, when comparing the estimation
quality at comparable run times, both grid filters are better
than the BF. However, the BF performed better than the PF



because the PF takes much longer to reach an estimation quality
comparable to that of the BF. When comparing configurations
with equal numbers of parameters, the HSGF performed worse
than the PF for low numbers of parameters in the three-
dimensional scenario. However, the HSGF is considerably
faster than the PF. When also considering the run times, the
SGF and HSGF perform better than the PF, which is the worst
filter in both scenarios.

V. CONCLUSION AND OUTLOOK

In this paper, we presented a novel filter for hyperhemi-
spheres. The filter can be used for almost arbitrary estimation
problems involving antipodally symmetric densities on hy-
perspheres. For example, it can be used for estimating the
orientation of an object in three-dimensional space based
on unit quaternions. In two evaluation scenarios, the filter
has not only proven to be accurate but also fast. While the
prediction step is in O(n2), the most expensive operation is a
matrix–vector multiplication, for which highly efficient routines
exist. The update step is always in O(n). In the evaluation
scenarios, the HHGF was both faster and more accurate than
the PF in configurations with equal numbers of parameters.
Further, the HHGF surpassed the estimation quality of the BF
at lower run times. Because the placement of the grid points
takes advantage of the symmetry of the densities, the HHGF
required fewer grid points and thus less run time than the SGF
and HSGF to achieve an estimation quality that is close to its
optimum.

While providing a continuous density based on the grid
values is never required in the actual filter, providing interpo-
lations of even higher quality (i.e., ones that are closer to the
true density) could be a subject of future work. A possible
approach could involve the use of hyperspherical harmonics.
After generating a symmetric grid on the entire hypersphere
based on the grid on the hyperhemisphere (as explained in
Sec. II-B), the grid values could be used to determine the
hyperspherical harmonic coefficients. The resulting smooth
interpolation has the potential to be closer to the true density
than the discontinuous interpolation that yields a function that
is constant in each region.

Another subject for future work would be to extend the filter
to increase its utility for practical applications. For example,
the HHGF could be used as the basis for a filter for SE(3) that
uses Rao–Blackwellization. This filter would be conceptually
similar to the filter proposed for SE(2) in [18]. Finally, the
Rao–Blackwellized filter could be generalized to support
arbitrary Cartesian products of bounded and linear domains.
This would, e.g., allow for integrating angular velocities (which
can be measured well using gyroscopes) into the state vector.
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