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Abstract—Networks consisting of several spatially distributed
sensor nodes are useful in many applications. While distributed
processing of information can be more robust and flexible
than centralized filtering, it requires careful consideration of
dependencies between local state estimates. This paper proposes
an algorithm to keep track of dependencies in decentralized
systems where no dedicated fusion center is present. Specifically,
it addresses double counting of measurement information due
to intermediate fusion results as well as correlations due to
common process noise and common prior information. To limit
the necessary amount of data, this paper introduces a method
to bound correlations partially, leading to a more conservative
fusion result while reducing the necessary amount of data.
Simulation studies compare the performance and convergence
rate of the proposed algorithm to other state-of-the-art methods.

Index Terms—Decentralized estimation, data fusion, sensor
networks.

I. INTRODUCTION

Sensor networks consist of several spatially distributed sen-
sor nodes that can cooperatively perform a variety of different
tasks [1], e.g., tracking a moving target using a network
of cameras. While centralized processing of measurements
can be done optimally, network topology and communication
bandwidth often forbid processing measurements in a central
processing unit, since nodes are only able to communicate
with their closest neighbors. Distributed estimation allows
the processing of measurements in a local processing unit.
This local information is then communicated and fused with
information from neighboring sensor nodes. It has been shown
that distributed processing of sensor data can be more robust,
flexible, and scalable [2], but it introduces dependencies that
need to be addressed carefully to ensure consistent fusion
results.

Within the past forty years, many algorithms [3] have been
proposed to address the problems arising in distributed estima-
tion. This includes using the information form of the Kalman
filter [4]–[6] or formulating an optimally distributed Kalman
filter [7]–[9]. Since these algorithms require to continuously
communicate between sensor nodes, other approaches propose
to use local Kalman filters and fuse their respective state
estimates. Several publications address the correlations due to
common process noise and common prior information [10]–
[13]. When neglecting dependencies [14], fused estimates tend
to become inconsistent as the uncertainty is underestimated.
Covariance intersection [15]–[17] aims to find a conservative

fusion rule to always ensure consistent results. As these are
often too conservative, other approaches try to find closer
bounds, e.g., inverse covariance intersection [18], [19]. Specif-
ically for different network topologies, other algorithms such
as the channel filter [2], the information graph-approach [20]
or the information matrix fusion [21], [22] were proposed.

Another class of algorithms aims to converge to a global
estimate by iteratively exchanging information between neigh-
boring nodes. Prominent representatives include consensus
on measurements [23], consensus on information [24], [25],
or hybrid approaches [26], [27]. Consensus methods can be
regarded as a suboptimal fusion rule [28] where the averaging
of the information does not represent the actual information in
the network and does also not consider redundant information
systematically. For simpler network topologies, several ap-
proaches trying to reconstruct the cross-covariance matrix be-
tween state estimates using ensembles, e.g., the common past
invariant Ensemble KF (CPI-EnKF) [29], or using samples
[30]–[32] have been proposed. Furthermore, a reconstruction
of cross-covariance matrices using square-root decompositions
was proposed by [33], [34]. The reconstruction of cross-
covariances has advantageous properties as it allows for the
design of consistent fusion methods that are generally more
accurate and do not over- or underestimate the uncertainty.
Yet, it requires the communication of additional information
between sensor nodes leading to a trade-off between optimality
and network capacity.

The square-root decomposition as initially proposed in [34]
considers fusion in network topologies with only one dedicated
fusion center. In this paper, we apply the decompositions to
decentralized estimation tasks, where each node may sporad-
ically serve as a fusion center. Nodes can exchange their
estimates and fuse their local estimates with the received
information. For this purpose, each node must keep track
of correlations during its local processing steps. Not only
common process needs to be encoded in the square-root
decompositions, but also double counting of information poses
a problem in decentralized network topologies and needs to be
tracked. Due to the storage requirements and communication
load associated with the square-root decompositions, the nodes
can reach a compromise between fusion quality and resource
demands by introducing partial bounds on the correlations.
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Fig. 1: Different network topologies.

The paper is structured as follows. We first revisit the
problem of fusing several state estimates in a central fusion
node and introduce the square-root decomposition method
to reconstruct the cross-covariance matrix between estimates
Sec. II. Decentralized network topologies in the absence of a
dedicated fusion center are studied in Sec. III. The evaluation
in Sec. IV studies different scenarios and also provides a
comparison with consensus methods. Sec. VI concludes the
paper.

II. PROBLEM FORMULATION

We consider a discrete-time linear time-variant stochastic
dynamic system with time index k and state transition matrix
Ak, state vector xk of state dimension N , and zero-mean
white Gaussian system noise wk with noise dimension W =
N and covariance matrix Qk, i.e.,

xk+1 = Ak xk + wk ,with wk ∼ N (0,Qk) . (1)

The system is observed by a network of Ns sensor nodes,
where each individual node i receives measurements using the
observation model Ci and covariance Ri

k according to

zik = Ci xk + vik ,with vik ∼ N (0,Ri
k) . (2)

We assume that each node i computes a state estimate x̂ik|k
with error covariance matrix Pi

k|k.

A. Fusion of Estimates

Without loss of generality, we confine ourselves to the
fusion of two estimates as multiple estimates can be fused
sequentially. In the following discussions, we also omit the
time index k for the sake of clarity. The fusion of two state
estimates x̂i and x̂j can take place at an arbitrary time step
k and is a linear combination with the fusion gains Fi and
Fj . Depending on the chosen fusion algorithm, the gains can
be determined according to the Bar-Shalom/Campo formulas
but can also be fixed weighting matrices. The fused estimate
becomes

x̂f = Fi x̂i + Fj x̂j , (3)

with Fi+Fj=I and the corresponding error covariance matrix

Pf =
[
Fi Fj

]
J
[
Fi Fj

]T
. (4)

The joint error covariance matrix is

J =

[
Pi Pi,j

Pj,i Pj

]
,

where Pi,j =
(
Pj,i

)T
denote the cross-covariances and

characterize the dependencies between the state estimates.
State estimates can be correlated due to common process

noise and common prior information but also due to sharing of
measurements that may also be a result of intermediate fusion
results and loops within the sensor network. Only proper
treatment of these correlations allows correct and consistent
fusion results.

B. Correlations due to Common Process Noise and Common
Prior Information

In systems with a central fusion node, see Figure 1(a),
state estimates are correlated due to common process noise
and common prior information. When all processing steps
are known, the cross-covariances between state estimates can
be calculated recursively [10]. During the time update, the
process noise is incorporated and the cross-covariance matrix
is updated leading to the recursive formula

Pi,j
k|k−1 = E[(x̂ik|k−1 − xk)(x̂jk|k−1 − xk)T]

= AkPk−1|k−1A
T
k + Qk , (5)

where Pi,j
k−1|k−1 for time step k = 1 is the common prior

covariance P0|0. During the measurement update, the cross-
covariance is updated with the gain Lik = I−Ki

kC
i
k by

Pi,j
k|k = E[(x̂ik|k−1 − xk)(x̂jk|k−1 − xk)T]

= LikP
i,j
k|k−1(Ljk)T , (6)

where Ki
k is the Kalman gain used at node i. This recursive

formulation can also be rewritten explicitly as a sum of
dependent covariances

Pi,j
k|k = Ti

0,kP0|0(Tj
0,k)T +

k∑
τ=1

Ti
τ,kQτ (Tj

τ,k)T , (7)

where at every time step τ we include the new process
noise Qτ . The matrix Tτ,k denote the individual matrix
transformations that are result of the local Kalman filters (see
equations (5) and (6)). In large sensor networks, keeping track
of these correlations can be cumbersome and often infeasible
as it requires full communication of all processing steps.
Therefore, the methods in [33], [34] propose the use of square-
root decompositions to keep track of correlated dependent
noise terms.

C. Square-Root Decomposition of Common Process Noise

The recursive formula of (7) can be reformulated as a
square-root decomposition

Pi,j
k|k = Ti

0,k

√
P0|0(

√
P0)T(Tj

0,k)T

+

k∑
τ=1

Ti
τ,k

√
Qτ (

√
Qτ,k)T(Tj

τ )T

=

k∑
τ=0

Σi
τ,Q(Σj

τ,Q)T .



This square-root decomposition is stored in the matrix

Sik,Q =
[
Σi

0,Q,Σ
i
1,Q, . . . ,Σ

i
k,Q

]
and includes all noise terms until the current time step k and
has the dimension M = N ×D = N × (N + (k − 1)×W ).
The calculation of this matrix can be done recursively. At time
step k = 0, it is initialized with

Si0,Q = Σi
0,Q =

√
P0 ,

and the matrix is then linearly transformed by the time update
and a new noise term Σi

k,Q =
√

Qk is included. Further, the
matrix is then updated using the gain matrix of the Kalman
filter update Lik = I−Ki

kC
i
k which leads to

Sik,Q = Lik
[
Ai
kS

i
k−1,Q , Σi

k,Q

]
.

When the fusion step is reached, the cross-covariance matrix
between node i and node j can be reconstructed as

Pi,j
k,Q =

k∑
m=0

Σi
m,Q(Σj

m,Q)T = Sik,Q(Sjk,Q)T . (8)

By including a new process noise term at every time update,
the square-root decomposition matrix Sik,Q will continue to
grow linearly in size. Since communication bandwidth is
limited in sensor networks, we need to find a trade-off between
the optimal decomposition of dependent information and the
communication capacity.

D. Limiting the Number of Square-Root Decomposition Terms
for Process Noise and Common Prior Information

In order to keep the number of entries in the square-root
decomposition matrix constant, the square-root matrix will be
decomposed [34] into two parts

Sik =
[
Sik,T , S

i
k,Ω

]
,

where Sik,T is a moving horizon square-root decomposition
matrix

Sik,T =
[
Σi
k−T+1,Σ

i
k−T+2, . . . ,Σ

i
k] (9)

that will only include the dependent noise terms up to a user-
defined time horizon T . The remaining noise terms will be
removed from the square-root matrix and summarized in a
residual Sik,Ω. This residual has to be bounded in order to
obtain a consistent fusion result. To formulate the fusion rule,
we use the optimal joint covariance matrix

Jk =

[
Pi
k Pi,j

k

Pj,i
k Pj

k

]
.

We can now decompose this matrix into a part Pi,j
k,T that we

can reconstruct and a part Pi,j
k,Ω that is correlated but whose

exact correlation we cannot reconstruct anymore, i.e.,

Jk =

[
Pi
k Pi,j

k,T + Pi,j
k,Ω

Pj,i
k,T + Pj,i

k,Ω Pj
k

]
.

This residual can be calculated recursively and includes all
dependent noise terms not included in the square-root matrix
Sik,T . With the residual, we obtain

Sik,Ω
(
Sik,Ω

)T
= Ωi

k,Q . (10)

We now aim to find a bound according to[ 1
ωΩi

k,Q 0

0 1
1−ωΩj

k,Q

]
≥

[
Ωi
k,Q Pi,j

k,Ω

Pj,i
k,Ω Ωj

k,Q

]
.

Finally, we can now formulate the new suboptimal joint
covariance matrix

J̃k=

[
Pi
k−Ωi

k,Q Pi,j
k

Pj,i
k Pj

k−Ωj
k,Q

]
+

[ 1
ωΩi

k,Q 0

0 1
1−ωΩj

k,Q

]
, (11)

which we will use for the fusion step according to formulas (3)
and (4). The weighting factors ω can be found by minimizing
the trace or determinant of the fused covariance (4). Alter-
natively, an approximate solution such as the one proposed
by [33], [35] can be used.

III. CONTRIBUTION

The square-root decomposition enables the nodes to en-
code correlated process noise in a distributed fashion. The
central node in Fig. 1(a) does not need to keep track of the
correlations, processing steps, or number of nodes as all the
required information is provided by the nodes themselves.
Modifications to the square-root decomposition are necessary
when nodes are organized in hierarchical network topologies
as shown in Fig. 1(b), where intermediate fusion nodes exist.
Each fusion step alters the correlation structure among the
nodes, which has to be encoded properly and is discussed in
Sec. III-A. The decentralized network architecture depicted in
Fig. 1(c) exhibits cycles that lead to double counting of infor-
mation. Sec. III-B discusses how additional data structures can
be introduced to cover correlations caused by double counting.

A. Hierarchical Fusion

In a hierarchical fusion architecture, nodes may fuse esti-
mates and pass them the to the upper layer for a subsequent
fusion step. Such intermediate fusion nodes hence have to take
into account correlations for the fusion but simultaneously
have to compute an updated square-root decomposition for
the subsequent fusion steps. Each node i can fuse its estimate
with an estimate received from node j by using the fusion
formulas (3) and (4). The required cross-covariance matrices
Pi,j =

(
Pj,i

)T
are obtained by the square-root decomposi-

tion, i.e., by using (8).
For the subsequent fusion layer, the square-root decompo-

sition needs to encode the correlation structure of the fusion
result x̂f. The cross-covariance matrix for this fusion result x̂f

and the estimate x̂l of a third node l yields

Pf,l = E[(x̂f − x)(x̂l − x)T]

= E[(Fi x̂i + Fj x̂j − x)(x̂l − x)T]

= Fi Pi,l + Fj Pj,l .



The dependencies Pi,l and Pj,l are given by the corresponding
square-root decompositions, i.e.,

Pi,l = SiQ
(
SlQ
)T

and Pj,l = SjQ
(
SlQ
)T

.

Hence, the fused square-root decomposition for the Pf,l has
the form

Sf
Q = FiSiQ + FjSjQ , (12)

which gives Pf,l = Sf
Q(SlQ)T for any l.

For a finite horizon τ , Sf only partially covers the corre-
lations, and the fusion node also has to update the residual
term (10). According to the chosen weight ω in (11), the
residual becomes

Ωf
Q = 1

ωFiΩi
Q

(
Fi
)T

+ 1
1−ωFjΩj

Q

(
Fj
)T

(13)

≥ FiΩi
Q

(
Fi
)T

+ FiΩi,j
Q

(
Fj
)T

+ FjΩj,i
Q

(
Fi
)T

+ FjΩj
Q

(
Fj
)T

,

which is a bound since any information about Ωi,j
Q has been

discarded.

B. Double Counting

Double counting occurs when two nodes i and j fuse their
estimates for a second time. In other words, the information
sent out by node i circles back this node over possibly multiple
hops and processing steps. Not only common process noise
then leads to correlations, but also measurements incorporated
in the estimates reappear at the nodes and introduce additional
correlations. In the latter case, two estimates are to be fused
that share the same information. For this reason, each node i
keeps track of an additional list of measurement noise terms

Sik,Ri =
[
Σi

0,Ri ,Σi
1,Ri , . . . ,Σi

k,Ri

]
, (14)

to account for double counting of measurements. It is initial-
ized with

Si0,Ri = Σi
0,Ri = Ki

0

√
Ri

0 ,

where Ri
0 is the measurement covariance matrix of the first

measurement (2) acquired by node i. The matrix Ki
0 is the

Kalman gain used in this measurement update. The matrix
Sik,Ri is recursively updated according to

Sik,Ri = Lik
[
Ai
kS

i
k−1,Ri , Σi

k,Ri

]
(15)

with
Σi
k,Ri = Ki

k

√
Ri
k .

When two sensor nodes exchange estimates for fusion, they
also pass on all the square-root matrices. These matrices need
to be kept separate of each other in order to trace back possible
sources of double counting. Node i that receives an estimate
from node j then also keeps and manages the set Sik,Rj , which
is the corresponding set (15) from node j. The own and the

received square-root matrices are updated similarly to (12)
and (13) by

Sf
Ri = FiSiRi + FjSjRi ,

Sf
Rj = FiSiRj + FjSjRj .

Bookkeeping of the received Sik,Rj resembles (15). However,
it differs in that it is filled with zeros during further processing
according to

Sik,Rj = Lik
[
Ai
kS

i,j
k−1,Rj , 0

]
(16)

as the measurement noise affecting node j is uncorrelated with
the estimates at node i for the following time steps.

The square-root matrix Sik,Ri can be used in a later fusion
step to retrieve the cross-covariances stemming from the
previous fusion step by

Pi,j
k,R = Sik,Ri(S

j
k,Ri)

T + Sik,Rj (Sjk,Rj )T , (17)

where Sjk,Ri is the common information with node i that
has been tracked in node j. More precisely, Sjk,Ri is the
corresponding set to (16) that was generated by node j
when it received information from i. The reconstructed cross-
covariance matrix (17) has to be combined with Pi,j

k,Q repre-
senting the common process noise, which finally results an the
full cross-covariance matrix

Pi,j
k = Pi,j

k,Q + Pi,j
k,R .

The amount of data that need to be stored and updated by
each node grows linearly over time. Especially in networks
with many sensor nodes, conservative bounding techniques can
allow the nodes to surpass this burden.

a) Limiting the Number of Square-Root Decomposition
Terms for Measurement Noise: Following the concept in
Sec. II-D, we limit the number of processing steps encoded in
the square-root decompositions to a fixed horizon T and sum-
marize the remainder in a residual term Ωi

R. The matrix (14)
becomes

SiR = [Σi
R,k−T+1,Σ

i
R,k−T+2, . . . ,Σ

i
R,k,Ω

i
R] ,

which has a constant number of entries. When two estimates
are fused, a bound on the residual matrix as in (13) has to be
computed by

Ωf
R = 1

ωFiΩi
R

(
Fi
)T

+ 1
1−ωFjΩj

R

(
Fj
)T
.

This bound also has to be combined with the residual
bound (13) for the process noise.

b) Keeping Track of Uncorrelated Measurements: The
treatment of correlated measurement information and double
counting can be simplified by computing a more general bound
on the measurement covariance. This approach circumvent the
explicit bookkeeping (14) of the information shared through
the fusion of estimates.

The local covariance matrix of sensor node i is rewritten as

Pi = PQ,T + PQ,Ω + PR ,
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Fig. 2: Network topologies, magenta nodes are using one, blue
nodes the other measurement model.

where PQ,T accounts for the reconstructable cross-covariance
matrix using (9), PQ,Ω accounts for the residual (10), and PR

represents possibly correlated measurement noise. We further
separate this into

PR = P+
R + P−R ,

where P+
R denotes correlated measurement noise and P−R

uncorrelated measurement noise. We can safely assume that
measurements which have been obtained between fusion steps
and thus have not been shared are uncorrelated. Therefore,
only the part accounting for information that has been shared
with other sensor nodes before is correlated and needs to be
bounded. The uncorrelated measurement noise residual P−k,R
can be calculated recursively

P−k,R = LAP−k−1,RATLT + Ki
kR

i
1

(
Ki
k

)T
.

To ensure the correctness of this assumption, P−k,R will be
reset to the zero matrix when the fusion step has been executed
or the information has been shared with other sensor nodes.
The correlated measurement residual is calculated by

Ωi
R = Pi −Σi

Q

(
Σi
Q

)T −Ωi
Q −P−R .

The bounded part of the joint covariance matrix becomes

Ωi
k = Ωi

k,Q + Ωi
k,R .

The rest of the fusion step is analogous to (11).

IV. EVALUATION

The following section will feature three distinct examples
to highlight the performance of the proposed algorithm under
different conditions. First, we will discuss an example using
only two sensor nodes which constantly exchange information
and, therefore, leading to highly correlated estimates. Second,
we will discuss the convergence rate of the proposed algorithm
and compare it with standard consensus algorithms. Last, a
tracking example using 25 heterogeneous sensor nodes in a
sparse network but with synchronized fusion steps is analyzed.

A. Two Sensor Nodes

We consider two sensor nodes A and B, which observe
the discrete-time time-invariant linear stochastic system in (1)
with the parameters

A =

[
1 ∆T
0 1

]
, Q =

[
1 0
0 1

]
.

Both sensor nodes draw observations using the linear mea-
surement model (2), where every measurement is corrupted
by additive-white Gaussian noise vik with covariance matrix
RA = RB = 50 and measurement matrices

CA =
[
1 0

]
, CB =

[
0 1

]
.

The data exchange between the two nodes is performed as
follows

1) both sensor nodes execute a local filter update,
2) node A sends its local information to node B,
3) node B fuses information according to the selected fusion

method and reinitializes its local state and covariance
matrix with new fused information,

4) both sensor nodes execute a local filter update,
5) node B sends its local information to node A,
6) node A fuses information according to the selected fusion

method and reinitializes its local state and covariance
matrix with new fused information,

7) repeat from beginning.
Fig. 3(a) shows the averaged mean squared error (AMSE)
of both sensor nodes for 1000 Monte Carlo Runs (MCR).
The results are compared with the optimal central fusion
result, which shows the lowest MSE as expected. The MSE
of the naive fusion, which neglects the correlations between
state estimates, immediately diverges. The proposed square-
root decomposition (SqRD) is shown in several configurations.
The time horizon for the square-root matrix is T = 5. The
square-root decomposition without bounding (SqRDno) shows
a relatively high MSE as it does not account for older process
noise or any correlation due to measurement noise. Bounding
of process noise (SqRDQb) performs a bit better in comparison
as it does bound the process noise but also does not account
for possibly correlated measurements. Covariance intersection
performs better than SqRDno and SqRDQb, but its performance
is limited as it cannot account for uncorrelated parts. Using
the proposed algorithm with partial bounding of measurement
noise (SqRDRbp) shows better performance than covariance
intersection, as it can find a tighter bound.

Figure 3(b) shows the averaged normalized estimation error
squared (ANEES) over both sensor nodes. The ANEES is a
measure to determine whether the actual uncertainty matches
the expected uncertainty [36]. An ANEES below one indicates
a conservative fusion estimate while an ANEES above one
indicates an underestimation of the actual uncertainty. Naive
fusion diverges again very fast and is therefore not included
in the plot, and covariance intersection is overly conservative.
Both methods without bounding (SqRDno and SqRDQb) are
inconsistent as it would be expected. The algorithm with
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Fig. 3: Comparison of the fusion results of different algorithms
for 1000 Monte Carlo Runs.

partial bounding is close to one, meaning that the actual MSE
of the fused results matches the covariance matrix.

B. Consensus between States

In the following example, we discuss how fast the proposed
algorithm convergences towards a global consensus. We define
the averaged consensus estimate error (ACEE) that indicates
the degree of consensus among estimates from all nodes in
the network

ACEE =
1

Ns

Ns∑
i=1

(
x̂i − x̄

)
, x̄ =

1

Ns

Ns∑
i=1

x̂i .

We consider a network of ten sensor nodes with ring topology
(see Figure 2(a)). The system description is similar to the
one in Example 1 and the sensor nodes alternate between
the measurement model of node A and node B, which can
also be seen in the figure. The sensor nodes first perform
ten filtering steps independently and then communicate their
local information towards their neighbors multiple times. The
fusion algorithms are also compared with consensus algo-
rithms, specifically consensus on measurements [23] (ConsM),
consensus on information [25] (ConsI) and a hybrid consensus
method called DHIWCF [27]. We would like to point out
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Fig. 4: Convergence of state estimates towards a common
consensus and mean squared error for ring topology with 200
MCR.

that many consensus algorithms have been proposed in re-
cent years and that the utilized algorithms may not be best
tailored to the considered problem. Figure 4(a) shows the
convergence rate of the state estimates. Covariance intersec-
tion, naive fusion, and consensus on information show very
similar convergence rates. Consensus on measurements on the
other hand, converges much slower. The hybrid consensus
algorithm DHIWCF lies between consensus on measurements
and consensus on information. Furthermore, we see that the
square-root decomposition of the measurement noise clearly
improves the convergence rate. Keeping track of all measure-
ments (SqRDOpt) leads to the fastest convergence, followed



by the square-root decomposition with a time horizon T = 3
(SqRDRb1) and using a time horizon T = 1 (SqRDRb2).
Therefore showing, that even a small time horizon for the
measurement noise might make a huge difference. The time
horizon of the square root matrix keeping track of the process
noise is T = 11. Therefore, process noise and common prior
information are tracked completely. Looking at the averaged
mean squared error (AMSE) in Figure 4(b) we see again,
that the optimal track keeping of correlations achieves the
lowest AMSE fastest and almost approaches the result of the
centralized optimal fusion result. The square-root decompo-
sition with a smaller time horizon SqRDRb1 and SqRDRb2
also performs well. Lastly, in Figure 4(c), it can be seen
that the ANEES over all sensor nodes in the network is
close to the optimal fusion result for SqRDRb1, SqRDOpt, and
SqRDRb2. All square-root decomposition based algorithms,
that bound the measurement partially or fully are very close
to the performance of covariance intersection and, therefore,
overly conservative.

C. Large-Scale Sparse Network

In our last example, we consider a simple tracking example
featuring 25 sensor nodes in a sparse network as depicted in
Figure 2(b). Nodes always receive information from the three
closest sensor nodes. The movement of the tracked object is
described by

xk+1 = Ax + wk with wk ∼ N
(
0,Q

)
,

A =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 ,

Q = 0.1


1
3∆T 0 1

2∆T 0
0 1

3∆T 0 1
2∆T

1
2∆T 0 ∆T 0

0 1
2∆T 0 ∆T

 .
Referring again to Figure 2(b), the blue nodes observe the
bearing towards a moving target and the red nodes the range.
Their observation is described by a nonlinear measurement
function

yi
k

= hi(xk) + vk ,

where nodes alternate between measuring the bearing or the
range towards a moving target

hi(xk) =

atan2
(
xy,k − P iy , xx,k − P ix

)
if i is odd,√(

xx,k − P ix
)2

+
(
xy,k − P iy

)2
if i is even,

with measurement noise

Ri =
(
π

180

)2
if i is odd, or Ri = 0.01 m2 if i is even

at the sensor nodes position P i = [P ix, P
i
y]T. The nodes are

places at random on a 10 m×10 m field. They perform a
synchronized fusion step every 5th time step. Since the most

20 40 60 80
0

0.1

0.2

0.3

time steps k

A
M

SE

Naive CI SqDFQb

Optimal SqDFno SqDFRbp

(a) Averaged MSE of all 25 Sensor Nodes.
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Fig. 5: Comparison of the fusion results of different algorithms
for 100 Monte Carlo Runs.

recent five measurements are hence uncorrelated, a square-
root decomposition of the measurement noise is not needed as
only older measurements are correlated and their influence is
increasingly becoming weaker. Therefore, we will utilize the
additional information about uncorrelated measurements for
the fusion. The time horizon for keeping track of process noise
is T = 5. The results of the partial bounding SqRDRbp and the
square-root decomposition without accounting for correlated
measurements SqRDQb have the lowest MSE. As expected, the
partial bounding SqRDRbp is more conservative than SqRDQb
as indicated by the ANEES. We also observe that SqRDQb is
even consistent, i.e., the ANEES is close to one, which can
be due to correlations that cancel each other out because of
symmetries within the considered setup.

V. RESULTS AND DISCUSSION

The results of the second example show that the con-
vergence rate is improved when cross-covariances can be
reconstructed accurately. Yet, the fusion can lead to numerical
issues when sensor nodes are highly correlated since the
joint covariance matrix cannot be inverted properly. While
the additional square-root decomposition of the measurement
noise is beneficial, it leads to additional communication that
grows with the number of sensor nodes. It might be possible
to discard parts of these square-roots, when they travelled too
far from their source. Therefore, correlations would only be
tracked within a certain influence circle of a node, which might
improve scalability of the algorithm. The choice of the time



horizon determining the number of encoded dependent noise
terms highly depends on the application and needs thorough
consideration.

VI. CONCLUSION

This paper demonstrated the utilization of square-root de-
compositions to keep track of dependent information in de-
centralized sensor networks. The experiments confirm that the
proposed algorithm produces more accurate fusion results and
converges faster to a global consensus. Further, the algorithm
can be tailored to many applications as it is able to find a trade
off between accuracy and communication requirements.
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