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Abstract—In the past years, algorithms for 3D shape tracking
using radial functions in spherical coordinates represented with
different methods have been proposed. However, we have seen
that mainly measurements from the lateral surface of the target
can be expected in a lot of dynamic scenarios and only few
measurements from the top and bottom parts leading to an error-
prone shape estimate in the top and bottom regions when using
a representation in spherical coordinates. We, therefore, propose
to represent the shape of the target using a radial function in
cylindrical coordinates, as these only represent regions of the
lateral surface, and no information from the top or bottom parts
is needed. In this paper, we use a Fourier-Chebyshev double
series for 3D shape representation since a mixture of Fourier
and Chebyshev series is a suitable basis for expanding a radial
function in cylindrical coordinates. We investigate the method
in a simulated and real-world maritime scenario with a CAD
model of the target boat as a reference. We have found that shape
representation in cylindrical coordinates has decisive advantages
compared to a shape representation in spherical coordinates
and should preferably be used if no prior knowledge of the
measurement distribution on the surface of the target is available.

Index Terms—3D shape tracking, Fourier-Chebyshev double
series, LiDAR.

I. INTRODUCTION

With the high resolution of nowadays sensors such as
LiDAR, RADAR, or depth cameras, a vast amount of measure-
ments per time step are generated from a target. Processing
these measurements in a filtering algorithm leads to the field
of extended object tracking (EOT) [1], [2] where the extent
or shape is estimated concurrently to the kinematic state of
the target (see Fig. 1). Tracking extended objects can have
a huge effect on a lot of applications such as autonomous
systems since the surrounding can be described in more detail.
Furthermore, modules based on environment perception such
as planning and control can operate with higher precision.
The motion commands in autonomous applications, for ex-
ample, can only be executed if the extent parameters of the
dynamic objects in the environment are known. A lot of
these applications require high-precision information in 3D
space and modern sensors inherently provide those. A filtering
algorithm and especially the measurement model predicting
the measurement sources must therefore also operate in 3D
space. Designing a flexible, robust, efficient, and suitable

Fig. 1: Result of “Solgenia” shape tracking with artificial
measurements at a specific time step. CAD as black surface.

measurement model in 3D space is, however, a challenging
task.

In the past, effort has been made to handle 3D measurements
in various measurement model approaches. In [3], a modified
Random Hypersurface Model (RHM) [4] has been designed
to track objects using a cylindrical shape. In [5], this approach
has been extended to a scaled extrusion RHM for a circular
base shape, and for a few more shapes in [6]. In [7], a
human body model constructed by different cylinders for every
body part is presented. Another model can be found in [8],
where non-uniform rational B-splines (NURBS) surfaces are
used for a flexible shape representation. All these models
have in common that a predefined shape must be chosen as
prior knowledge before the tracking filter can be initialized.
If the target, however, does not fit this shape, poor tracking
results can be the consequence. A solution to this problem
can be either to choose an appropriate shape on-line or to
track the shape itself. In shape tracking, modeling the shape
as star-convex radial function in spherical coordinates has
been a common approach in the past years. In doing so,
a sufficient representation of the shape function has to be
chosen and the shape coefficients have to be estimated. In
[9]–[12], spherical double Fourier series (DFS), Gaussian
processes (GP), and spherical harmonics (SH) have been used
for shape representation. When using spherical DFS or SH,
the continuous shape function f : R2 → R , [θ, ϕ]T 7→ r is
expanded in different bases and the shape can be tracked by
estimating the coefficients of the expansion. For the GP model,



the shape function is discretized and the function distribution
is modeled as f(γ) ∼ GP (µ(γ), k(γ, γ′)) with mean function
µ(γ), kernel function k(γ, γ′), and γ = [θ, ϕ]T .

Shape tracking in spherical coordinates, however, raises a
problem: if mainly measurements from the lateral surface of
the target are gathered, information from the top and bottom
parts of the target is missing and estimates can be error-
prone in these areas. This can naturally be solved if the radial
function for shape representation is defined in cylindrical
instead of spherical coordinates. In [13], cylindrical DFS
(CDFS) as a solution to a boundary value problem of the
Laplace equation are used for expanding a cylindrical radial
function. In this study, we found that a shape representation
in cylindrical coordinates should preferably be used if mainly
measurements from the lateral surface of the target can be
expected. Using DFS, an expansion for a radial function in
cylindrical coordinates can be obtained if the function is 0
at the top and bottom, and piecewise continuous, i.e. closed
and therefore periodic in the height parameter. In practice,
however, most shapes are not periodic. A desirable shape
expansion, therefore, comprises a periodic basis in the angular
and a non-periodic basis in the height parameter.

In this paper, we propose to use a Fourier-Chebyshev
double series (FCDS) for shape representation in cylindrical
coordinates. Chebyshev series [14] yield a basis for expanding
non-periodic functions in the interval [−1, 1], while Fourier
series are well known for expanding periodic functions in
the interval [0, 2π]. The contributions of the paper are the
following:
• We propose a measurement model for 3D shape tracking

using FCDS.
• We investigate an efficient extended Kalman filter (EKF)

implementation [15] for inference.
• We present a comprehensive study using simulated and

real-world LiDAR data in a maritime environment for
comparing our approach to shape tracking in spherical
coordinates and our previous approach [13].

The research vessel “Solgenia” of the HTWG Konstanz is
utilized as target in both, the real-world and the simulated
investigation. In the simulated investigation, a CAD model is
used to generate simulated LiDAR measurements (see Fig. 1).

II. SHAPE REPRESENTATION

A. Chebyshev Polynomials
Chebyshev Polynomials Tn(u) of the first kind [14] are

defined by

Tn(u) = cos(nθ), n ∈ N0, θ ∈ [0, π], (1)

with u = cos(θ). This relation forms a series of orthogonal
polynomials in the interval u ∈ [−1, 1]. The polynomials can
either be calculated using the recursion

Tn(u) = 2uTn−1(u)− Tn−2(u) (2)

with the initial conditions T0(u) = 1 and T1(u) = u, or with
the explicit expression

Tn(u) = cos(n arccos(u)). (3)
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Fig. 2: Chebyshev Polynomials up to order n = 5.

The explicit derivative subject to u yields

T ′n(u) =
n sin(n arccos(u))√

1− u2
. (4)

The first five polynomials and their derivatives that are needed
in the derivation of the EKF are explicitly given by

T1(u) = u T ′1(u) = 1 (5)

T2(u) = 2u2 − 1 T ′2(u) = 4u (6)

T3(u) = 4u3 − 3u T ′3(u) = 12u2 − 3 (7)

T4(u) = 8u4 − 8u2 + 1 T ′4(u) = 32u3 − 16u (8)

T5(u) = 16u5 − 20u3 + 5u T ′5(u) = 80u4 − 60u2 + 5 (9)

and depicted in Fig. 2. Using these polynomials, any non-
periodic and piecewise smooth and continuous function g(u)
in the interval u ∈ [−1, 1] can be expanded as

g(u) ≈
nu∑
n=0

anTn(u) (10)

using appropriate coefficients an.

B. FCDS Radial Function

In our model, we aim to represent the shape of the target
using a radial function in cylindrical coordinates. An illus-
tration of such a radial function can be found in [13]. The
shape is meant to be non-periodic in the height parameter
u ∈ [−1, 1] and periodic in the angular parameter θ ∈ [0, 2π].
In [13], the shape function was periodic in both parameters.
With an estimated height of the target, the height parameter
u can easily be calculated. By combining Fourier series and
Chebyshev polynomials, the radial function can be expressed
as

f(θ, u) =
a00
4

+
1

2

nu∑
n=1

an0Tn(u) +
1

2

nθ∑
m=1

Ψ0m(θ) (11)

+

nu∑
n=1

nθ∑
m=1

Tn(u)Ψnm(θ),

where Ψnm(θ) is the Fourier series

Ψnm(θ) = anm cos(mθ) + bnm sin(mθ). (12)

This representation of the shape requires 1+nu+2nθ+2nunθ
coefficients. If the shape should involve a vertical plane of



symmetry aligned to the orientation and the direction of
motion of the target, the Fourier series can be forced to be
even by truncating the sinusoidal components as

Ψnm(θ) = anm cos(mθ). (13)

In doing so, the number of coefficients for shape representation
reduces to 1 + nu + nθ + nunθ. The expansion containing a
vertical plane of symmetry is of special interest since only
the side of the target facing the sensor is measured in a lot
of applications. Then, the unseen backside can be assumed
as being symmetric to the front side which is appropriate
for a lot of targets. Additionally, this representation requires
considerably fewer coefficients. In the rest of the paper, we
will therefore only use a shape representation involving a
vertical plane of symmetry for our investigation.

Modeling the shape using a radial function in cylindrical
coordinates instead of spherical coordinates has decisive ad-
vantages. First of all, it can naturally handle the problem that
mainly measurements from the lateral surface are gathered in
applications such as autonomous systems. Furthermore, the
representation is more flexible. A radial function in spherical
coordinates can only represent star-convex shapes whereas
radial functions in cylindrical coordinates have to be star-
convex only for a slice at a specific height. This makes our
approach, to the best of our knowledge, the most flexible shape
tracking procedure in 3D space presented so far.

III. MEASUREMENT MODEL

A. System State Space

In this paper, the system state xk comprises the position
mk, the orientation φk in the xy-plane, the kinematic state
components wk containing velocity and turn rate, the height
hk, and the shape parameters p

k
and is given as

xk =
[
mT
k , φk, w

T
k , hk, p

T
k

]T
. (14)

Since we assume a symmetrical shape in the further course of
the paper, the parameter vector

p
k

= [a00, . . . , a10, . . . , a01, . . . , a11, . . .]
T (15)

only contains the coefficients of the cosine components of the
Fourier series Ψnm(θ).

B. Measurement Equation

In our application, we assume that a measurement set

Yk =
{
y
k,l

}nk
l=1

(16)

of nk measurements is gathered every time step k. To estimate
the hidden system state xk using the measurement set Yk, a
measurement equation that relates the system state to a mea-
surement is needed. In this paper, we assume a measurement
source model [16]

y
k,l

= zk,l + vk,l (17)

with measurement source zk,l and white Gaussian zero-mean
noise term vk,l ∼ N

(
0,Cv

)
. The measurements of a specific

measurement set are assumed to be mutually independent.
Therefore, it is sufficient to define the measurement model
for a single measurement and to perform nk updates in the
update step of the EKF. Using (11) and (17), a measurement
source on the lateral surface of the target can be expressed as

y
k,l

= mk + Rφk

 f(θk,l, uk,l) cos(θk,l)
f(θk,l, uk,l) sin(θk,l)

uk,lhk

+ vk,l (18)

with the rotation matrix Rφk , the angular parameter θk,l ∈
[0, 2π], and the height parameter uk,l ∈ [0, 1] of a specific
measurement source. With the range of the height parameter
uk,l, the position mk is modeled as being at the bottom of the
target.

C. Measurement Source Association

In EOT, the exact measurement source [θk,l, uk,l]
T is un-

known and we are therefore faced with the measurement
source association problem [17]. For a measurement source
model (18), three different association schemes in 3D space are
known in the literature: a greedy association model (GAM), an
extrusion RHM, and a partial information model (PIM) [16].
All these models yield different procedures for estimating the

measurement source parameters
[
θ̂k,l, ûk,l

]T
. Since a mea-

surement source in 3D space is described with two parameters,
different association models can arbitrarily be combined for
those two parameters.

When applying an explicit likelihood for the parameter u
in combination with a GAM for the parameter θ, named
extrusion RHM, it was shown in [3] that the parameter u
in (18) can be interpreted as multiplicative noise term. A
height estimation with this combination can be expected to be
unbiased [18]. In [19], [20], it was seen that the Kalman Filter
and its nonlinear variants are inconsistent for systems modeled
using a multiplicative noise term. A proposed solution to
this is to apply a quadratic extension in the measurement
equation. This extension, however, can only be applied to
linear equations. If f (θk,l, uk,l) = 1 in (18), i.e. the shape is
modeled as a cylinder, the quadratic extension can be applied
for the linear z-coordinate of the measurement equation. In
our model (18), however, the multiplicative noise not only
affects the z-coordinate but also the xy-coordinates leading
to inconsistency of the Kalman Filter in these coordinates
as well. In [21], a polynomial approximation of a nonlinear
measurement equation was presented for filtering systems
corrupted by multiplicative noise. This or similar approaches
were, to the best of our knowledge, however, never adapted
to EOT. Another possibility to implement an extrusion RHM
for our shape tracking model would be to apply a nonlinear
filter that can handle arbitrary non-Gaussian and non-additive
noise with no assumption for the mean value.

Due to the complex filtering and the ensuing high com-
putational costs of an extrusion RHM, we propose to adapt
a GAM for both shape parameters. The likelihood for both



models can for example be found in [5], [16], [22]. Therefore,
the measurement

ỹ
k,l

= R−1φk (y
k,l
−mk) (19)

in local coordinates with ỹ
k,l

=
[
ỹxk,l, ỹ

y
k,l, ỹ

z
k,l

]T
has to be

calculated. Then, the angular associate

θ̂k,l = atan2
(
ỹyk,l, ỹ

x
k,l

)
(20)

and the height parameter

ûk,l =


0 ỹzk,l < 0
ỹzk,l
hk

0 ≤ ỹzk,l ≤ hk
1 ỹzk,l > hk

(21)

equally to [13] can be examined. Since the Cheby-
shev polynomials are defined for the range ûk,l ∈
[−1, 1] we need to perform the parameter transform
f
(
θ̂k,l, û

∗
k,l

)
= f

(
θ̂k,l, 2ûk,l − 1

)
to shift ûk,l to the desired

range.
In [5], [17], [22], the measurement source is greedily

associated to the nearest point on the contour with respect
to the measurement. This point is assumed to be the most
likely measurement source that has created the measurement.
In 2D space, this can be done efficiently for arbitrary shapes by
approximating the contour as a polygonal chain. In 3D space,
an exact calculation for a specific shape is for example given in
[22]. For arbitrary shapes in 3D space, however, calculating the
nearest point on the contour is a nontrivial challenge. We have
seen that our association of the measurement source is very
efficient and gives good results. Approximating the nearest
point on the contour as measurement source is, therefore, left
for future work.

IV. IMPLEMENTATION

In this paper, we use an EKF for filtering rather than a
sigma-point filter such as the unscented Kalman filter (UKF)
[23] or its extensions [24]. The EKF was chosen since the
filter performs quite accurately as will be seen later in Sec. V.
Additionally, it is a very efficient filter in terms of computation
time. Due to the fact that the xy-coordinates in (18) are
expressed by a nonlinear function, a second-order EKF [25],
[26] could be beneficial for future investigations.

The EKF equations are well-known in the literature [15] and
are therefore not shown here in detail. Given a predicted sys-
tem state x̂k|k−1, the linearized measurement model is given
as the Jacobian Hk = ∇xT y(x)|x=xk|k−1

. The derivatives for
the Jacobian can be found in the appendix. In EOT, multiple
measurements are gathered by the sensor. The update for the
measurement set Yk can then be performed sequentially or in
a single update step. When sequentially updating the system
state for each measurement, the results differ with different
orderings of the measurements. We, therefore, perform a
single update step for reproducible results. An overview of
the procedure can be found in Algorithm 1.

Algorithm 1 Fourier-Chebyshev Shape Tracking EKF Update

1: Initialize stacked predicted measurement array and stacked
Jacobian matrix.

2: for l = 1, . . . , nk do
3: Measurement ỹ

k,l
in local coordinates using (19).

4: Angle parameter θ̂k,l using (20).
5: Height parameter ûk,l using (21).
6: Radius f

(
θ̂k,l, ûk,l

)
using (11).

7: Measurement prediction using (18) and saving in
stacked predicted measurement array.

8: Measurement Jacobian using appendix (24) to (44) and
saving in stacked Jacobian matrix.

9: end for
10: Single EKF update using stacked predicted measurement

array and stacked Jacobian matrix.

When implementing the Chebyshev polynomials, we used
a list for the polynomials themselves and their derivatives (5–
9) [14] rather than the explicit formulas (3) and (4) due to
numerical issues.

V. RESULTS

To evaluate our proposed shape tracking algorithm, we
analyze the performance in a simulated and a real-world
scenario, both in a maritime environment. We compare our
method to shape tracking using a radial function in spherical
coordinates represented as spherical DFS (SDFS) [9], GP [10],
[11], and SH [12], and to our previous work [13] using CDFS.
All four reference methods are implemented using a smart
sampling Kalman filter (S²KF) [24]. In both scenarios, the
performance is quantified using the intersection-over-union
(IOU) measure [10], [27]. The IOU gives a good measure of
the overall performance since the position and shape estimate
can be ambiguous. In both scenarios, the CAD model of the
“Solgenia” is applied as a reference. As motion model, a
coordinated turn (CT) model [28] is deployed.

A. Simulation Results

In the simulated scenario, we generated a reference trajec-
tory with 300 time steps and a measurement rate of 10 Hz over
30 s using the CT model. The CAD model of the “Solgenia”
is moved along this trajectory and a simulated LiDAR sensor
generates the surface points of the boat without any noise.
The isotropic measurement noise with a standard deviation of
σv = 0.05 m is then added to the surface points generated by
the artificial LiDAR. Every filter is initialized using the first
measurement set. As xy-position, the mean

mxy
1 =

1

n1

∑
y
1,l
∈Y1

yxy
1,l

(22)

using the xy-coordinates yxy
1,l

of the measurements is applied.
The z-position mz

1 and height h1 are initialized using the
minimum and maximum z-values. The covariance matrix

Cm = Cov
(
yx
1
, yy

1

)
(23)



Fig. 3: Tracking results of the simulated scenario. CAD as black surface. Time steps k = 5, 45, 85, . . . are shown.

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

10
0

FCDS

CDFS

SH

SDFS

GP

0 5 10 15 20 25 30
0

100

200

300

Fig. 4: IOU, computation time, and number of measurements
of the MC simulation.

is used for the covariance initialization of the xy-position and
the orientation of the covariance ellipse for the initialization of
the yaw angle φ1. The first coefficient of the shape parameters
is set to be a001 = 2 while the rest of the coefficients are set to
be 0. The kinematic state is initialized as w1 = [2 m/s, 1◦/s]T

for velocity and yaw rate, and the variances as Cm for
the position in xy, 0.2 m for the position in z, 5◦ for the
orientation, 0.2 m/s for the velocity, 5◦/s for the yaw rate, and
0.3·I for the shape parameters. In future work, the initialization
could be conducted by using a maximum likelihood estimator
with the first measurement set. For GP, the initialization
procedure proposed in [10] is adapted.

In Fig. 3, the simulation environment with the sensor
position and the estimates for a specific scenario is depicted.
The scenario starts on the right and ends on the left. The first
time step shown on the right is at k = 5, then every 40th
measurement set, reference, and estimate are shown. For the
FCDS with a vertical plane of symmetry, the parameters are

set to nu = 6, and nθ = 8 resulting in 63 coefficients. The
first time step shown in the figure still exhibits larger outbursts
of the estimated shape. Due to the applied EKF, the state is
linearized in the shape parameters and thus takes some time to
adapt the correct shape coefficients. The procedure, however,
reliably converges to a plausible shape estimate after a few
time steps.

For a better overall investigation of the proposed method, a
Monte Carlo (MC) simulation with 100 runs was performed.
In this simulation, the reference trajectory of Fig. 3 was ap-
plied. The measurement noise, however, was drawn randomly
in every simulation run. The shape tracking procedures for
comparison were initialized with the same procedure presented
before. For SH, we used 169, for spherical DFS 43, and
for CDFS 54 coefficients. The difference in the number of
coefficients can be tied to the fact that each algorithm requires
more or fewer coefficients to achieve the same complexity in
the shape representation. For GP, we used 250 basis points
and restricted the elevation angle to the interval [40◦, 140◦] as
proposed in [11] to force the GP to focus more on the lateral
surface where enough measurements can be expected. The
number of coefficients was set to give good results for each
method, but was not tuned. In practice, this tuning parameter
highly depends on the application and maximum permissible
computation time.

The results of the MC simulation can be seen in Fig. 4. In
this figure, the mean IOU and mean update step computation
time for every time step and the number of simulated mea-
surements are depicted. It can be seen that FCDS has the best
overall performance and the lowest computation time com-
pared to the other methods. In the beginning, the procedure
takes some time to converge but ends up being very consistent
in accuracy. The IOU measure is the highest between 3s and
10s since most measurements are gathered in this period. The
computation for GP is the highest since most shape coefficients
are within the system state for this method. On the other hand,
computation time is the lowest for FCDS not only due to the
fact that fewer coefficients are needed for shape representation



Fig. 5: Tracking results of the real-world scenario. CAD as black surface. Time steps k = 1, 100, 200, 300 are shown.

Fig. 6: Picture of the real-world scenario.

but also because the EKF is more efficient than the S²KF.
Compared to our previous work [13], FCDS performs more
accurately since the shape parametrization better fits the target
than CDFS. The simulation was conducted using MATLAB
R2022b on an Intel(R) Xeon(R) X5680 CPU with 3.33 GHz.

B. Real Data Results

For the real-world experiment, a multilayer LiDAR sensor
with 128 Layers, 360° horizontal and 40° vertical field of view,
a measurement range of up to 245 m, a frame rate of 10 Hz, a
minimum angular resolution of 0.1◦, and a horizontal angular
resolution between 0.1◦ and 0.4◦ [29] was placed statically
on the Rhine river bank in Constance. The research vessel
“Solgenia” drove from right to left through the field of view
of the LiDAR sensor. As a reference for the state of the
“Solgenia”, an RTK-GPS was placed on the roof of the vessel.
Another RTK-GPS was placed on the sensor assembly where
the LiDAR was mounted as well. Using the GPS positions
and GPS times, we were able to transform the measurements
and the reference position to the same coordinate system and
interpolate the data to the same time steps. In Fig. 6, the
“Solgenia” on the Rhine river recorded from a camera mounted
on the sensor assembly can be seen.

In this investigation, we examined a scenario of 300 time
steps over 30 s like in the simulated scenario. The motion
prediction was performed using a CT model [28] with a
standard deviation of 3 m/s in the velocity and 5 ◦/s for the
yaw rate. The z-position is modeled to be constant with
a standard deviation of 0.2 m. The isotropic measurement
noise was set to have a standard deviation of σv = 0.025 m.
The initialization procedure was taken from the simulated
scenario. Also in the real-world scenario, we compared our

shape tracking method to all shape representations presented
before in the simulated scenario and used the same amount of
coefficients for every procedure.

In Fig. 5, the qualitative results of this scenario are depicted.
The CAD model of the “Solgenia” is again deployed as a
reference. The blue trajectory in the figure is the position
estimate. The scenario starts on the right with the first time
step k = 1 and ends on the left with the last time step k = 300.
In between, the time steps k = 100 and k = 200 are shown.
The measurements shown were only recorded in the respective
time step. The shape estimate is already very reasonable in the
first time step and has high accuracy in the whole scenario.
However, a difference between the CAD model and the real
“Solgenia” is that the real one has a flagpole mounted on
the stern of the boat that is not included in the CAD model.
Since the radial function in cylindrical coordinates (11) is
star-convex on every height section, the area above the rear
of the boat is included in the overall shape estimate due
to the measurements gathered by the flagpole. This causes
the estimation performance of the real-world scenario to be
slightly worse than in the simulated one. Visually, however,
the estimation accuracy can be considered similar.

In Fig. 7, the quantitative results of the real-world scenario
are depicted. For this, we applied the same measures, namely
IOU and computation time, as in the simulated scenario before.
The CAD model of the “Solgenia” is applied as a shape
reference. The IOU measure using FCDS is slightly worse
than in the simulated scenario. This, however, can be explained
by the flagpole not included in the CAD model. Besides,
the figure shows a reasonable tracking result of our proposed
method over the whole scenario. The approaches with radial
functions in spherical coordinates show very poor performance
in this scenario. In comparison to the simulated scenario, a part
of the boat is underwater leading to no measurements from the
bottom part of the boat. In this area, the shape estimate with a
radial function in spherical coordinates has very large outbursts
and can never converge. This result illustrates very clearly the
advantage of a shape function in cylindrical coordinates over a
function in spherical coordinates. Our previous approach [13]
diverges in this scenario since the shape parametrization using
CDFS does not fit the target properly. Besides being the most
accurate method, our shape tracking procedure is also one of
the most efficient in this comparison. The calculations were
performed with the same computer as before.



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0 5 10 15 20 25 30

10
0

FCDS

CDFS

SH

SDFS

GP

0 5 10 15 20 25 30
500

1000

1500

2000

Fig. 7: IOU, computation time, and number of measurements
of the real-world scenario.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new representation for 3D
shapes using a radial function in cylindrical coordinates ex-
panded as FCDS. Moreover, we utilized an EKF for shape
tracking with a GAM for the measurement source association.
Although an extrusion RHM is known to be more accurate
for height estimation than a GAM, we have seen that our
method performs very well in this regard. We pointed out
several reasons why an extrusion RHM is much more costly
in terms of computation time and complex to implement.
We investigated our method in a simulated and a real-world
scenario and compared it to shape representations using a
radial function in spherical coordinates. We have seen that
in both scenarios our method shows the best performance in
terms of the largest IOU measure and is the most efficient
one among the tested algorithms. Especially in the real-world
scenario, our method had no problems in tracking the shape
while the other investigated algorithms performed very poorly.

For future work, we would like to point out several op-
tions. First of all, we have seen that an EKF performs very
well in this application. Theoretical investigations [25], [26],
however, have shown that a second-order EKF calculates
the correct mean and covariance when applying nonlinear
systems. We, therefore, assume an even higher accuracy in
our shape tracking procedure when applying a second-order
EKF. Secondly, we suppose that we have a high redundancy in
the measurements that contribute to the shape information over
time. Especially for high-resolution sensors like multilayer Li-
DARs, procedures for selecting those elements from the whole
measurement set with the highest information content would
be highly recommended. Finally, a performance evaluation
with more complex and faster maneuvers and under worse
visibility conditions is also of high interest.

APPENDIX
MEASUREMENT MODEL JACOBIAN

The stacked Jacobian for a measurement set Yk of nk
measurements is given as

Hk =
∂

∂ xk

[
yT
k,1
, · · · , yT

k,nk

]T
, (24)(

∂ y
k,l

∂ xk

)T
=

[
∂ y

k,l

∂ mk

,
∂ y

k,l

∂ φk
,
∂ y

k,l

∂ wk
,
∂ y

k,l

∂ hk
,
∂ y

k,l

∂ p
k

]
, (25)

where
∂ y

k,l

∂ wk
= 0. In the following, the time index k is omitted.

The derivatives with respect to the position m are given as

∂ y

∂ m
= I + Rφ


∂ f(θ̂,û∗)
∂ m cos(θ̂) + f(θ̂, û∗)∂ cos(θ̂)∂ m

∂ f(θ̂,û∗)
∂ m sin(θ̂) + f(θ̂, û∗)∂ sin(θ̂)∂ m

∂ û∗

∂ m h

 ,
(26)

with the expressions

∂ f(θ̂, û∗)

∂ m
=

[
∂ f(θ̂, û∗)

∂ θ̂
,
∂ f(θ̂, û∗)

∂ û∗

][
∂ θ̂
∂ m
∂ û∗

∂ m

]
, (27)

∂ f(θ̂, û∗)

∂ θ̂
=

1

2

nθ∑
m=1

∂Ψ0m(θ̂)

∂ θ̂
(28)

+

nu∑
n=1

nθ∑
m=1

Tn(û∗)
∂Ψnm(θ̂)

∂ θ̂
,

∂Ψnm(θ̂)

∂ θ̂
= −manm sin(mθ̂), (29)

∂ f(θ̂, û∗)

∂ û∗
=

1

2

nu∑
n=1

an0T
′
n(û∗) (30)

+

nu∑
n=1

nθ∑
m=1

T ′n(û∗)Ψnm(θ̂),

for the radial function f(θ, u), where

∂ θ̂

∂ m
=
∂ θ̂

∂ ỹ

∂ ỹ

∂ m
,
∂ û∗

∂ m
=
∂ û∗

∂ ỹ

∂ ỹ

∂ m
,
∂ ỹ

∂ m
= −R−1φ , (31)

∂ θ̂

∂ ỹ
=

[
− ỹy

ỹx2 + ỹy2
,

ỹx

ỹx2 + ỹy2
, 0

]
, (32)

∂ û∗

∂ ỹ
=

[
0, 0,

{
0 0 > ỹz > h
2
h else

]
, (33)

∂ cos(θ̂)

∂ m
= − sin(θ̂)

∂ θ̂

∂ m
,

∂ sin(θ̂)

∂ m
= cos(θ̂)

∂ θ̂

∂ m
. (34)

The derivatives with respect to the orientation φ are given as

∂ y

∂ φ
=
∂Rφ

∂ φ

 f(θ̂, û∗) cos(θ̂)

f(θ̂, û∗) sin(θ̂)
uh

 (35)

+ Rφ


∂ f(θ̂,û∗)

∂ φ cos(θ̂) + f(θ̂, û∗)∂ cos(θ̂)
∂ φ

∂ f(θ̂,û∗)
∂ φ sin(θ̂) + f(θ̂, û∗)∂ sin(θ̂)

∂ φ
∂ û∗

∂ φ h

 ,



with the expressions

∂ f(θ̂, û∗)

∂ φ
=

[
∂ f(θ̂, û∗)

∂ θ̂
,
∂ f(θ̂, û∗)

∂ û∗

][
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∂ φ
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∂ φ

]
, (36)

∂ θ̂

∂ φ
=
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∂ φ
,

∂ û∗

∂ φ
=
∂ û∗

∂ ỹ
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, (37)

∂ ỹ

∂ φ
= −

∂R−1φ
∂ φ

(y −m), (38)

∂ cos(θ̂)

∂ φ
= − sin(θ̂)

∂ θ̂

∂ φ
,

∂ sin(θ̂)

∂ φ
= cos(θ̂)

∂ θ̂

∂ φ
. (39)

The differentiation of the rotation matrix can be performed
element-wise. The derivative with respect to the height h is
given as

∂ y

∂ h
= Rφ

 ∂ f(θ̂,û∗)
∂ h cos(θ̂)

∂ f(θ̂,û∗)
∂ h sin(θ̂)
∂û∗

∂h h+ û∗

 , (40)

with

∂ f(θ̂, û∗)

∂ h
=
∂ f(θ̂, û∗)

∂ û∗
∂ û∗

∂ h
, (41)

∂ û∗

∂ h
=

{
0 0 > ỹz > h

− 2ỹz

h2 else
(42)

and for the shape parameter p as

∂ y

∂ p
= Rφ


∂ f(θ̂,û∗)

∂ p cos(θ̂)

∂ f(θ̂,û∗)
∂ p sin(θ̂)

0

 , (43)

with

∂ f(θ̂, û∗)

∂ p
=

[
1

4
,

1

2
T1(û∗), · · · , 1

2
cos(θ̂), · · · (44)

T1(û∗) cos(θ̂), · · ·
]

for a symmetrical shape.
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