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Abstract—With the growing availability of high-resolution
sensors, processing more than one detection per target becomes
increasingly critical when tracking multiple extended objects.
However, contemporary sensors often generate spurious detec-
tions that need to be considered. Naïvely employing standard
multitarget trackers may result in poor tracking performance
for multitarget–multidetection tracking in cluttered environments,
and the relevant extensions are nontrivial. This paper introduces
a version of the kernel symmetric measurement equation (SME)
filter that considers both multidetections and clutter. For a
simulated scenario, our novel filter achieved a higher accuracy
than the global nearest neighbor (GNN) and a fast variant of the
joint probabilistic data association filter (JPDAF).

I. INTRODUCTION

Multitarget tracking is a well-researched problem with a long
history [1]. While each individual target can often be tracked
well with standard trackers, such as the Kalman filter or its
extensions, a lack of knowledge as to which target gives rise
to which measurement leads to great challenges. Multitarget
tracking is further complicated by clutter, i.e., measurements
that do not originate from an actual target. With increasing
sensor resolution, one may also obtain multidetections, i.e.,
multiple measurements of a single target, which stands in
contrast to the common assumption of point-shaped objects.
However, we do not explicitly model the shape of the object,
as is done in extended object tracking [2].

Straight-forward approaches perform a one-to-one associa-
tion decision between targets and measurements. An example is
the GNN, which maximizes the likelihood of association when
based on the squared Mahalanobis distances [3, Sec. 10.3.1.3].
Due to the Mahalanobis distances, clutter is only incorrectly
considered to be true measurements when they are more
likely (based on the prior) than the actual measurement.
Gating strategies are employed to discard measurements likely
not originating from targets early on, which significantly
reduces the computational complexity [4] Missed detections
are addressed by assigning each track a score that describes
the certainty of the existence of this track [5, Sec 6.1]. For
multidetections, only one measurement is utilized while the
remaining ones may be assigned to other targets, potentially

resulting in incorrect associations when targets are closely
spaced.

The Probabilistic Data Association Filter (PDAF) is a popular
approach for tracking single targets in cluttered environments [6,
Ch. 4]. It operates under the assumption that only one (or none
in the case of all being clutter) measurement originates from
the actual object. The Joint Probabilistic Data Association
Filter (JPDAF) [6, Ch.6] extends this concept to multiple
targets, accounting for the multitude of possibilities concerning
which measurement arises from which track. However, this
introduces a significant combinatorial complexity that is
commonly addressed using approximations, for instance in [7].
A noteworthy limitation of the JPDAF is that when it integrates
all compatible measurements nearby, closely spaced targets
can result in overlapping tracks, a phenomenon known as track
coalescence [8].

In the past decades, techniques that do not explicitly associate
tracks with targets have been proposed, including the probability
hypothesis density (PHD) filter [9] or the SME filter [10],
[11]. The underlying principle of SMEs is the generation of a
measurement equation that is permutation invariant with respect
to the measurements. An extension for multidetections based
on the original SME approach that relies on partitioning has
been proposed in [12].

As we detail later in this paper, the Kernel SME (KSME)
filter [13] extends the original SME approach by the considera-
tion of a kernel transformation. The transformation results in a
permutation-invariant representation of the measurements as a
Gaussian mixture, which is subsequently evaluated at distinct
test points.

In this paper, we propose an extension to the KSME filter
designed specifically for multitarget–multidetection tracking.
This extension facilitates the state estimation for multiple
targets, with each target gives potentially rise to multiple mea-
surements. For the novel approach, we present the derivation
of the analytic moments of the pseudo-measurements. An
extension to the KSME filter that considers clutter and missed
detections was previously introduced in [14]. Building upon
that foundation, we further expand the KSME filter in this



paper to inherently address clutter and multidetections in all
its filter equations. We use a Poisson distribution to model the
number of detections, thereby implicitly taking into account
instances of missed (i.e., zero) detections, without the need for
an explicit detection probability [15]. The key result of this
paper is the demonstration that the KSME for multidetections
can operate without the need for an explicit enumeration of
association hypotheses or measurement partitions, given the
number of measurements from an object follows a Poisson
distribution.

Finally, we present an evaluation of the proposed method
through a simulation study. In this evaluation, we focus
on scenarios involving closely spaced targets with crossing
trajectories in order to analyze potential track coalescence or
track repulsion.

The paper is structured as follows. We begin by formally
introducing the problem formulation in the next section.
Following this, in Sec. III, we elucidate the formulae for
the Kernel SME (KSME). Subsequently, Sec. IV presents a
simulation-based evaluation of our method, complemented by a
thorough discussion of the results. The final section concludes
the work.

II. PROBLEM FORMULATION

We consider a set of N targets Xk := {xl
k}Ni=1, where each

xl
k ∈ Rn. The state of each target evolves according to the

system equation

xl
k+1 = Al

kx
l
k +wl

k ,

with i.i.d. Gaussian noise wl
k ∼ N (0,Σwl

k ). At every time step,
each target can potentially give rise to multiple measurements
described by

Y l
k := {yl,1

k
, . . . ,yl,M l

k

k
} ,

where the numbers of measurement are Poisson distributed,
i.e., M l

k ∼ Pois(λl). Missed detections are considered by the
case M l

k = 0 with Y l
k = ∅. For each target, the probability of

a missed detection is P (M l
k = 0) = (λl)0

0! e−λl

= e−λl

. Each
measurement yl,i

k
is defined by the measurement equation

yl,i
k

= Hl
kx

l
k + vl,i

k ,

where the measurement noise is i.i.d. Gaussian with vl,i
k ∼

N (0,Σvl
k ). In addition to the measurements generated by the

targets, we consider clutter in each time step, which is described
by

Ck = {c1k, . . . , c
Mc

k

k } .

The number of false measurements is Poisson distributed with
M c

k ∼ Pois(λc) and all false measurements are independent
and uniformly distributed over the surveillance area.

The set of available measurements Yk = {y1
k
, . . . ,yMk

k
} for

each time step is described by

Yk =

N⋃
l=1

Y l
k ∪ Ck ,

where the number of available measurements is Mk =∑N
l=1 M

l
k +M c

k. The available measurements do not obey
a specific order and are indistinguishable (except for their
position). The objective of multitarget–multidetection tracking
is to estimate the targets’ true states based on the available
measurements.

III. KERNEL SME FILTER FOR
MULTITARGET–MULTIDETECTION TRACKING

For the Kernel SME filter, we consider a kernel transforma-
tion that modifies the measurement equation into a permutation-
invariant symmetric measurement equation. The original kernel
transformation [13]

SYk
(z) :=

N∑
l=1

N (z; yl
k
,Γ) ,

with kernel width Γ ∈ R+, was introduced under the assump-
tion of a fixed number of targets, where each target gives rise to
exactly one measurement, without the consideration of clutter
or missed detections. Note that the kernel width may be chosen
without direct consideration of the involved uncertainties,
though our research has shown that taking the uncertainties
into account improves the outcomes [16]. The resulting values
of SYk

(z) are referred to as pseudo-measurements. Thus, the
kernel transformation encapsulates the information about the
measurements as a Gaussian mixture, where each measurement
contributes to the pseudo-measurement. For the consideration of
clutter and missed detections, an extension has been proposed
[14] which uses a modified kernel transformation

SYk
(z) :=

N∑
l=1

dl
k · N (z; yl

k
,Γ) + SCk

(z) ,

where dl
k is a binary random variable with dl

k ∼ Bin(pd),
which indicates the detection of the measurement yl

k
and

SCk
(z) :=

∑
c∈Ck

N (z; c,Γ) ,

represents the contribution of the clutter to the pseudo-
measurement. In our approach, we extend the kernel trans-
formation further by considering multiple measurements for
each target. The resulting kernel transformation is described
by

SYk
(z) :=

∑
y∈Yk

N (z; y,Γ) =

N∑
l=1

SY l
k
(z) + SCk

(z) , (1)

where
SY l

k
(z) :=

∑
y∈Y l

k

N (z; y,Γ)

represents the proportion contributed by measurements of the
target xl

k to the pseudo-measurements. This representation is
a generalization of the previous approaches, where scenarios
with missed detections are described implicitly by events where
M l

k = 0 with probability P (M l
k = 0) = (λl)0

0! e−λl

= e−λl

.



It is important to note that the representation of the pseudo-
measurements by their components above make the concept
of the kernel transformation more comprehensible, the gen-
erated pseudo-measurements are not treated differently for
the individual measurements. However, this representation
will later be useful to derive the analytic moments for the
pseudo-measurements.

The kernel transformation represents the available measure-
ments as a Gaussian mixture. Thus, this representation cannot
be employed directly for the measurement update and needs
to be discretized first. To this end, we express the kernel
transformation at Mk(2n+ 1) discrete locations a1k, . . . , a

Na

k

with

al+i−1
k := yl

k
+
(√

nΓ
)
, a

l+2(i−1)
k := yl

k
−
(√

nΓ
)

,

for i = 1, . . . , n and l = 1, . . . ,Mk. The pseudo-measurements
sk = [s1k, . . . , s

Na

k ] are obtained by sik = SYk
(aik). We con-

sider a Gaussian approximation of the posterior density based
on the pseudo-measurements, i.e., p(xk|sk) ≈ N (xk;µ

x
k
,Σx

k).
The measurement update is obtained by a form of the Kalman
filter formulae

µx
k|k = µx

k|k−1
+Σxs

k (Σs
k)

−1
(
sk − µs

k

)
,

Σx
k = Σx

k|k−1 −Σxs
k (Σs

k)
−1Σsx

k .

The measurement update necessitates the analytic moments of
the pseudo-measurement, which we describe next.

The mean of the pseudo-measurements is given by

µs,i
k

=

N∑
l=1

λlPΓ
l (a

i
k) + λcN (aik;µ

c,Σc
k + Γ) ,

where

PΓ
l (z) := N (aik;H

l
kµ

xl

k|k−1
,Hl

kΣ
xl

k|k−1(H
l
k)

⊤ +Σvl
k + Γ) ,

µc and Σc
k are the mean and covariance of the clutter in

the surveillance area. The covariance matrix of the pseudo-
measurements is described by

Σ
si,sj
k =

N∑
l=1

λlPΓ
l (a

i
k)

N∑
m=1
m̸=l

λmPΓ
m(ajk)

+N (aik; a
j
k, 2Γ)

N∑
l=1

(λl)2P
1
2Γ

l

(
1

2
(aik + ajk)

)

+

N∑
l=1

λlPΓ
l (a

i
k) · λc · N (ajk;µ

c,Σc + Γ)

+

N∑
m=1

λmPΓ
m(ajk) · λ

c · N (aik;µ
c,Σc + Γ)

+ (λc)2 · N (aik;µ
c,Σc + Γ) · N (ajk, µ

c,Σc + Γ)

+ λc · N (aik; a
j
k, 2Γ) · N

(
1

2
(aik + ajk);µ

c,Σc + Γ

)
− µs,i

k
µs,j
k

.

The cross-covariance matrix is given by

Σx,si
k =

N∑
l=1

λl · PΓ
l (a

i
k)
(
µx
k|k−1

+Kl
k

(
aik −Hl

kµ
x
k|k−1

))
+ µx

k|k−1
· λc · N (aik, µ

c,Σc + Γ)

− µx
k|k−1

· µs,i
k

,

where

Kl
k =[Σx1,xl

k|k−1, . . . ,Σ
xN ,xl

k|k−1]

·Hl
k

(
Hl

kΣ
x
k|k−1(H

l
k)

⊤ +Σv
k + Γ

)−1

.

A rigorous derivation of the analytic moments of the pseudo-
measurement is presented in the appendix.

IV. EVALUATION

For the simulation experiment, we consider N = 3 moving
targets traveling along a trajectory, where the target motions
are predefined for each time step. The initial true location of
the targets are

x̃1
0 =

[
−5.0
0.8

]
, x̃2

0 =

[
−5.0
0.0

]
, x̃3

0 =

[
−5.0
−0.8

]
.

The motion of the target state vectors are represented by the
increments ∆xl

k, which can be described by the model

x̃l
k+1 = x̃l

k +∆xl
k .

The target motion increments ∆xl
k do not include information

about the velocity. This model enables the simulation of target
motions along specific trajectories. For our simulation, we
consider a scenario with closely spaced targets moving along
crossing trajectories. The multi-target probabilistic system
model is described by

xl
k+1 = xl

k +∆xl
k +wl

k ,

where wl
k is zero-mean Gaussian noise with covariance (σl

w)
2 ·

I2 (with I2 being the 2× 2 identity matrix) and σl
w = 0.03 for

l = 1, 2, 3. For the measurement model, we employ the identity
model, meaning that the measurements directly map from the
state space with some added noise. This can be represented as

yl,i
k

= x̃l
k + vl,i

k ,

where vl,i
k are independent zero-mean Gaussian noise terms

with covariance

Σvl
k = σv ·

[
1.0 −0.1
−0.1 1.0

]
,

and the noise level is set to σv = 0.12. The Poisson parameters
for the number of measurements are set to λl = 5 for l = 1, 2, 3,
and the false measurement rate is set to λc = 5. In each time
step, the measurement set Yk is permuted in each time step to
ensure that their order does not reveal any information about
the measurement origin.

In our evaluation, we compared our novel filter, which is
part of the Multitarget Tracking Toolbox1, with a GNN and the

1https://github.com/KIT-ISAS/Multitarget-Tracking-Toolbox

https://github.com/KIT-ISAS/Multitarget-Tracking-Toolbox
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Fig. 1. Top three plots: Trajectories of three target tracks for three different
methods. The fourth plot illustrates the available measurements, where each
color indicates the origin of the measurements, and gray dots represent false
alarms. Bottom plot: The OSPA error for each time step, averaged over 100
simulations.

linear-time JPDAF [7], where the gating probability was set to
pG = 0.999. The kernel width for our proposed method is set
to Γ = σv. We evaluated all methods based on the Optimal
Sub-Pattern Assignment (OSPA) metric [17], with order p = 2
and cut-off distance c = 1. Fig. 1 presents examples of the
tracks for each method, along with the average OSPA error
over 100 simulations. These plots illustrate the performance
of the methods in different phases. The GNN-based method
exhibits weaker performance, particularly during phases where
the targets are close. Specifically, incorrect associations can
lead to deteriorating tracking accuracy when the targets are in
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Fig. 2. Boxplot of the overall OSPA error of the considered methods for 100
simulations (a lower value indicates better performance).

close proximity. This is evident in Fig. 1, where the OSPA error
for the GNN-based method spikes during phases of crossing
target trajectories, indicating track repulsion. The linear-time
JPDAF suffers from track coalescence during the phases where
the targets are closely spaced. In contrast, the proposed method
remains unaffected during these phases. A boxplot detailing
the overall OSPA error across 100 simulations is shown in
Fig. 2. Notably, our proposed method exhibits significantly
better accuracy compared with the other methods.

V. CONCLUSION

In this paper, we have expanded upon the existing Kernel
SME filter to accommodate scenarios involving multiple
detections per target. The advantage of Kernel SME methods
lies in their ability to estimate target states without the need
for explicit enumeration of association hypotheses. In our
evaluation, we demonstrated the superior performance of our
proposed methods compared with baseline approaches. Unlike
other existing strategies, our method avoids common pitfalls
such as track coalescence. Therefore, our enhancement of the
Kernel SME Filter presents a promising and robust alternative
to current methodologies in multitarget–multidetection tracking.
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APPENDIX

A. Pseudo-Measurement Analytic Moments

In the following part, we derive the analytic moments of the
pseudo-measurements sik = SYk

(aik), as presented in Sec. III.
The key idea is to exploit the representation in equation (1)
and determine the moments part by part.

1) Pseudo-Measurement Analytic Mean µs,i
k

: The kernel
transformation used in our approach is defined by

SYk
(z) :=

∑
y∈Yk

N (z; y,Γ) =

N∑
l=1

SY l
k
(z) + SCk

(z) .

We now proceed to derive the analytic moments of these
measurements at the test points aik for both parts. Initially, we
focus on the clutter term

SCk
(z) :=

∑
c∈Ck

N (z; c,Γ) ,

with analytic mean

E [SCk
(z)] = E

∑
c∈Ck

N (z; c,Γ)


(∗)
= E [M c

k · N (z; c,Γ)]
(∗∗)
= E[M c

k] · E [N (z; c,Γ)]

= λcN
(
aik;µ

c,Σc
k + Γ

)
,

where in equation (∗) we replaced the sum with the number
of clutter measurements M c

k since the clutter locations are
distributed identically and hence can be treated equivalently in
the expectation. Furthermore, we leveraged the independence

of the number of clutter measurements M c
k and the clutter

location c in equation (∗∗). For the former part

N∑
l=1

SY l
k
(aik) :=

N∑
l=1

∑
y∈Y l

k

N (aik; y,Γ) ,

the mean can be determined by

E

[
N∑
l=1

SY l
k
(z)

]
= E

 N∑
l=1

∑
yl
k
∈Y l

k

N (aik;y
l
k
,Γ)


=

N∑
l=1

E

 ∑
yl
k
∈Y l

k

N (aik;y
l
k
,Γ)

 (1)
=

N∑
l=1

λl · E
[
N (aik;y

l
k
,Γ)
]

=

N∑
l=1

λl

∫
N (aik;H

l
kx

l
k + vk︸ ︷︷ ︸

yl
k
=

,Γ) · N (aik;µ
x
k|k−1

,Σx
k|k−1)

· N (vl
k; , µ

c,Σv
k)dx

l
k dvk

=

N∑
l=1

λlPΓ
l (a

i
k) ,

where in (1), we use the same argumentation for the number of
generated measurements and measurement locations as before
for the clutter and, furthermore, that the expected number of
measurements generated by each target is λl. Combining both
parts results in the analytic mean

µs,i
k

= E
[
SYk

(aik)
]
=

N∑
l=1

λlPΓ
l (a

i
k)+λcN (aik;µ

c,Σc
k+Γ) .

2) Pseudo-Measurement Analytic Covariance Σ
si,sj
k : The

covariance of the pseudo-measurements is defined by

Σsisj = E
[
SYk

(aik) · SYk
(ajk)

]
︸ ︷︷ ︸

(∗)

−µs,i
k

· µs,j
k

,

where we need to determine the value of the expectation (∗).
Therefore, we use the following decomposition

E
[
SYk

(aik) · SYk
(ajk)

]
= E

[(
N∑
l=1

SY l
k
(aik) + SCk

(aik)

)(
N∑
l=1

SY l
k
(ajk) + SCk

(ajk)

)]

= E

[
N∑
l=1

SY l
k
(aik)

N∑
m=1

SY m
k
(ajk)

]
︸ ︷︷ ︸

(1)

+E

[
N∑
l=1

SY l
k
(aik)SCk

(ajk)

]
︸ ︷︷ ︸

(2)

+ E

[
N∑
l=1

SY l
k
(ajk)SCk

(aik)

]
+ E

[
SCk

(aik)SCk
(ajk)

]
︸ ︷︷ ︸

(3)

.



We determine the analytic covariance of the pseudo-
measurements by each term. For the term (1), we have

E

[
N∑
l=1

SY l
k
(aik)

N∑
m=1

SY m
k
(ajk)

]

=

N∑
l=1

N∑
m=1

E
[
SY l

k
(aik)SY m

k
(ajk)

]
=

N∑
l=1

N∑
m=1

λlλmE
[
N (aik;y

l
k
,Γ)N (ajk;y

m
k
,Γ)
]

=

N∑
l=1

N∑
m=1
m̸=l

λlλmPΓ
l (a

i
k)P

Γ
m(ajk)

+N (aik; a
j
k, 2Γ) ·
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where we used the identity
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in the last equation.

For the mixed term in (2), we note that the clutter are
pairwise independent and identically distributed. Thus, the
expected value is given by

E

[
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For the term (3) we have to exploit the following decompo-
sition
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where we used that the clutter locations ck are identical
distributed and the independence of the number of clutter
M c

k and the clutter location ck. Furthermore, we used that the
expectation of E[M c

k(M
c
k−1)] for a Poisson-distribute random

variable M c
k ∼ Pois(λc) is given by (λc)2. Combining all

results in the analytic covariance for the pseudo measurements
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3) Pseudo-Measurement Analytic Cross-Covariance Σxsi
k :

For the cross-covariance of the pseudo-measurements and the
target states, we have
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k = E

[
xkSYk
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,



where we need to determine the value of the expectations in
E
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. Therefore, we use the following decomposition
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The value of the first term can be determined by

E

[
xk

N∑
l=1

SY l
k
(aik)

]
=

N∑
l=1

λlE
[
xk · N (aik;y

l
k
,Γ)
]

=

N∑
l=1

λl

∫
xk · N (aik;H

l
kx

l
k + vk︸ ︷︷ ︸

yl
k
=

,Γ)

· N (aik;µ
x
k|k−1

,Σx
k|k−1) · N (vl

k;µ
c,Σv

k)dx
l
k dvk

=

N∑
l=1

λl · PΓ
l (a

i
k)
(
µx
k|k−1

+Kl
k

(
aik −Hl

kµ
x
k|k−1

))

For the second term, we can use the independence of the clutter
and the target state, which results in
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Thus, the analytic cross-covariance is given by
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