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Abstract—In extended object tracking, basic parametric shapes
such as ellipses and rectangles or non-parametric shape rep-
resentations such as Fourier series or Gaussian processes can
be utilized as shape priors. However, flexible non-parametric
shape representations can be disproportionately detailed and
computationally intensive for many applications. Therefore, we
propose to adopt deformable superellipses for a low-dimensional
and flexible representation of basic parametric shapes in this
paper. We present a measurement model in 2D space that can
cope with boundary and interior measurements simultaneously
by recursively estimating an artificial noise variance for interior
measurements. We investigate and compare the model in a
simulated and real-world maritime scenario with the result
that the combination of deformable superellipses and artificial
measurement noise estimation performs better than state-of-the-
art methods.

Index Terms—Extended object tracking, 2D space, superel-
lipse, boundary-interior measurements.

I. INTRODUCTION

With ever-increasing resolutions of RADAR, LiDAR, and
other sensor devices, extended object tracking (EOT) [1]
became an essential part of many surveillance systems such
as advanced driver assistance in automotive or maritime ap-
plications. Due to the high resolution of the aforementioned
sensors, multiple sensor cells detect the same target, which
results in a few to thousands of measurements per time step,
depending on the sensor device and distance of the sensor to
the target. The goal of EOT is thus to process measurements
in an extended object measurement model. This model then
maps the space of system states, comprising kinematic and
extent state, to the measurement space.

An essential part of deriving a measurement model in EOT
is the definition of the shape class to be used within the
measurement model. If the shape class of the target to be
tracked is known a priori, it can be used directly in the
measurement model. In 2D space, the most popular basic
parametric shape to be applied in EOT is an ellipse. Hence,
many elliptical EOT measurement models have been proposed
in the past years. The most well-known is the random matrices
(RM) approach [2]. In the RM framework, measurements
are assumed to be scattered normally distributed around the
center of the target. This assumption results in a robust,
efficient, and easy-to-implement algorithm that has been used

Figure 1: Superellipses with squareness parameters
ε = [0.5, 1, 2, 3, 5, 10, 100]T . The red square has ε = 100.

in many applications and improved in various papers [3]–
[5]. Another approach that seeks to estimate an elliptical
extent is the random hypersurface model (RHM) proposed in
[6]. In the RHM approach, measurements are assumed to be
scattered from a scaled version of the boundary. Hence, the
scaling factor is modeled as a user-definable random variable,
which makes the RHM approach more flexible than the RM
approach. Further elliptical models can be found in [7], [8].
Other basic parametric shapes in 2D space are rectangles, espe-
cially applied to describe the extent of vehicles in automotive
applications. Popular models for rectangular EOT can be found
in [9], [10]. If no prior knowledge of the shape class of the
target is available, non-parametric shape-tracking procedures
can be applied. In 2D space, the RHM framework can be
utilized to track star-convex shapes. The shape can then be
represented using Fourier series [11], Gaussian processes [12],
or lengths of radial segments [13].

In summary, when designing an EOT measurement model,
there is a choice between basic parametric shape representa-
tions and flexible non-parametric shape-tracking procedures.
When using parametric shapes, the reason is often the lower
dimensionality of the extent state, which is contained in the
system state, and the resulting lower computational effort
required for estimation. If no prior knowledge of the shape
class of the target is available, the designer is however forced
to use non-parametric shape-tracking procedures or to apply



multiple model approaches [3], [14] that can distinguish be-
tween basic parametric shapes. In this paper, we close the
gap between using an efficient parametric shape measurement
model compared to non-parametric shape-tracking procedures.
Therefore, we propose to use deformable superellipses as
shape representations. Superellipses are a class of closed
curves that contain a rhombus, an ellipse, and a rectangle
as special cases [15]. An illustration of different superellipse
shapes can be seen in Fig. 1. Superellipses have been applied
for state estimation of articulated extended objects in [16]
and for segmentation and shape fitting in [17]. However, both
approaches propose optimization-based algorithms that do not
take object dynamics into account compared to the Bayesian
tracking filters that we use.

A problem in EOT that arises in real-world applications is
related to the assumptions that are made for the measurement
source distributions in the aforementioned models. In [2], [7],
specific assumptions about the measurement source spatial
distributions are made. In the RHM approach [6], [11], the
distribution of the scaling factor has to be specified before
running the algorithm. Finally, in models such as [10], the
measurements are assumed to originate exclusively from the
boundary of the target. However, if these assumptions do not
hold, an estimation bias is introduced. It has been shown in
[18], that often a mixture of boundary-interior measurements
are present, for example, if 3D measurements are projected
to the 2D horizontal plane. In [19], the measurement source
distribution is modeled as truncated Gaussian processing mea-
surements either gathered from the boundary or the interior of
the target. In this paper, we extend the approach presented
in [18] and recursively learn an artificial measurement noise
variance for measurements from the interior of the target.

The main contributions of the paper can be summarized as
follows:
• We present a measurement model in 2D space to estimate

a deformable superellipse shape for mixed boundary-
interior measurements.

• We present an approach to recursively learn an artificial
measurement noise variance to efficiently process mea-
surements from the interior of the target.

• We investigate our approach in a comprehensive compar-
ison to fixed parametric shape models and flexible non-
parametric shape-tracking procedures in a simulated and
real-world scenario.

In addition, we present an easy-to-implement and efficient
approach to state estimation with interval constraints suitable
for superellipse extent parameters.

II. PROBLEM FORMULATION

In EOT, the task is to estimate the extent or shape of the
target simultaneously with the kinematic state at each time
step k using the measurement set

Yk =
{
y
k,l

}nk

l=1
. (1)

The measurements y
k,l

are spatially distributed providing
information about the location, extent, and shape of the target.

The number of measurements nk ≥ 1 can vary over time. In
this paper, we present a measurement model in 2D space for
y
k,l
∈ R2. Extensions to process 3D measurements are left

for future work.
The system state to be estimated is described as

xk =
[
xTkink , x

T
extk

]T
(2)

with the kinematic state xkink =
[
mT
k , φk, x

T
velk

]T
comprising

the position mk ∈ R2, the orientation φk, and the velocity
components xvelk . The orientation φk is modeled to be aligned
with the velocity vector. The extent state xextk will be dis-
cussed in Sec. IV.

In this paper, we apply the measurement source model

y
k,l

= zk,l + vk,l (3)

with measurement source zk,l and white Gaussian zero-mean
noise term vk,l ∼ N

(
0,Cv

)
as measurement generating

process. In this approach, the measurement is assumed to be
a noise-corrupted observation of a point located on the target.
Since the measurement source zk,l is typically unknown, we
are faced with the well-known measurement source association
problem [1]. In Sec. IV and Sec. V, we present an approach to
solve the measurement source association problem for mixed
boundary-interior measurements using a greedy association
model together with a recursive noise estimation procedure.

III. SUPERELLIPSES

Superellipses, also known as Lamé curves, are a special
class of curves that give a compact representation of basic
parametric 2D shapes [15], [20]. Implicitly, a superellipse can
be given as the set

S(p, a, b, ε) =

{
p ∈ R2

∣∣∣∣F (px, py, a, b, ε)

=
∣∣∣px
a

∣∣∣ε +
∣∣∣py
b

∣∣∣ε − 1 = 0

} (4)

with p = [px, py]T , and a, b > 0 being the major and minor
semi-axes defining the extent of the superellipse, and the
squareness parameter ε the shape. The implicit representation
(4) describes the closed curve centered at the origin and
aligned with the coordinate axes. The squareness parameter
ε ≥ 0 defines the shape of the curve. With 0 ≤ ε < 1,
the superellipse describes pinched rhombus shapes with a
cross at the limit case of ε = 0. At ε = 1 or ε = 2, the
shape results in a rhombus or an ellipse, respectively. With
ε > 2, the superellipse shape gives a rectangle with rounded
corners and an actual rectangle at the limit case of limε→∞.
An illustration of the superellipse shape with respect to the
squareness parameter ε can be seen in Fig. 1.

Another representation of the superellipse shape can be
given explicitly using the parameter 0 ≤ θ < 2π as

px(θ) = a sign
(

cos(θ)
)
|cos(θ)|

2
ε , (5a)

py(θ) = b sign
(

sin(θ)
)
|sin(θ)|

2
ε , (5b)



Figure 2: Tapered superellipse and measurement source as-
sociation. Squareness parameter ε = 4. Tapering parameter
ty = −0.5. Measurements as circles, inverse tapered measure-
ments as squares, and measurement sources on non-tapered
shape as crosses. Related items are displayed in the same color.

where sign() represents the signum function. The explicit
representation can be used to plot the superellipse.

In addition to the squareness transformation, a tapering
transformation [21] for each axis can be introduced to be
able to taper the shape in each direction. In doing so, shapes
such as triangles and trapezoids can also be represented using
superellipses. A tapering transformation T

(
p
)

can be given
as

T
(
p
)

=
[(
tx
py
b

+ 1
)
px ,

(
ty
px
a

+ 1
)
py

]T
(6)

using the tapering coefficients tx, ty ∈ [−1, 1]. An inverse ta-
pering transformation will be denoted as T−1 in the following.
A tapered superellipse can be seen in Fig. 2.

IV. MEASUREMENT MODEL

In this section, we present the measurement model for track-
ing targets with a superellipse shape using measurements in 2D
space. We present the measurement model for measurements
stemming from the target boundary as measurements from the
interior are processed using the recursively estimated artificial
measurement noise variance presented in Sec. V.

A. Preliminary considerations

Our model is not restricted to specific applications or
sensors. When exclusively measurements from the boundary
are expected, the model presented in this section can directly
be used. When mixed boundary-interior measurements are
expected, e.g., when projecting 3D LiDAR data to the 2D
horizontal plane, the recursive measurement noise estimation
can be added to the update step. In the measurement model
derivation, we omit the time and measurement indexes k
and l for the sake of simplicity. Since measurements are
assumed to be mutually independent, the measurement model
can be applied to each measurement individually. Details on
the implementation are given in Sec. VI.

The extent state in (2) can be defined individually depending
on the desired flexibility of the model. More and more
parameters can be added to achieve an increasingly flexible
model. Following, three possibilities for defining the extent
state are given:

• xext = [a, b]
T : The least flexible model in 2D space

estimates only the extent of a specific superellipse with
a fixed squareness parameter ε. However, we want to
highlight that this option can be very powerful as well
if prior knowledge of the class of the target shape is
available. With tx = ty = 0, which is equal to no tapering
transformation, and ε = 10 for example, a rectangle with
rounded corners similar to [10] can be described.

• xext = [a, b, ε]
T : By adding the squareness parameter ε to

the extent state, scaled versions of the shapes from Fig. 1
can be estimated.

• xext = [a, b, ε, tx, ty]
T : By also adding the tapering coef-

ficients tx, ty to the extent state, tapering deformations,
as can be seen in Fig. 2, of the superellipse shape can be
estimated.

In our investigation in Sec. VII we set the extent state as com-
prising the semi-axes a and b and the squareness coefficient
ε together with the tapering coefficient ty to allow tapering
deformations in the y-axis. In local target coordinates, omitting
the tapering coefficient tx introduces a line of symmetry in
x-direction, which is aligned to the direction of movement
in sensor coordinates. This restriction is reasonable for many
targets in various tracking scenarios.

In this paper, we describe the boundary of the superellipse
shape in local target coordinates as the set (4). Ideally, this
implicit representation could be used in a measurement equa-
tion similar to [22]. However, investigations already showed
that the nonlinear nature of the squareness parameter ε makes
parameter estimation very difficult [15]. This result was sup-
ported by an own implementation of an implicit measurement
equation, which also showed very unstable estimation results.
Therefore, we derived an explicit measurement equation.

B. Measurement equation
To derive an explicit measurement equation, the mea-

surement source model (3) can be applied. However, the
unknown measurement source has to be approximated. We
approximate the measurement source as the intersection of the
boundary and the connecting line between the center of the
superellipse and the inverse tapered measurement. In contrast
to the orthogonal projection, this approximation enables an
efficient analytical calculation of the measurement source. An
illustration of the association scheme is given in Fig. 2. To
be able to predict the measurement source, the first step is to
transform the measurement to local target coordinates as

ỹ = R−1
φ

(
y −m

)
(7)

using the rotation matrix Rφ. If a tapering transformation is
applied, the next step is to inversely taper the measurement
in local coordinates. The inverse tapering transformation for
measurements in local coordinates can be given as

ỹ := T−1
(
ỹ
)

=

[
ỹx

tx
ỹy
b + 1

,
ỹy

ty
ỹx
a + 1

]T
(8)

with ỹ = [ỹx, ỹy]T . Given the inverse tapered measurement in
local coordinates ỹ, the implicit superellipse representation (4)



and the association scheme described before, the intersection

point z̃
(
ỹ
)

=
[
x̃s

(
ỹ
)
, ỹs

(
ỹ
)]T

in local coordinates can
then analytically be given as

x̃s

(
ỹ
)

= sign (ỹx)

(
|a|−ε +

∣∣∣∣ ỹy

b ỹx

∣∣∣∣ε)−
1
ε

, (9a)

ỹs

(
ỹ
)

= x̃s

(
ỹ
) ỹy

ỹx
(9b)

with ỹ = [ỹx, ỹy]T . If only one or no tapering transformation
is applied, the intersection point can be calculated using the
measurement in local coordinates directly. Given the inverse
tapered measurement source in local coordinates z̃

(
ỹ
)

and
the inverse tapered measurement in local coordinates ỹ, a
measurement equation in local coordinates for 2D boundary
measurements can be formulated as

ȳ = h
(
x,T−1(ỹ)

)
+ v

= z̃
(
T−1(ỹ)

)
−T−1

(
ỹ
)

+ v (10)

= z̃
(
ỹ
)
− ỹ + v

with ȳ being the innovation error. Due to the nonlinearities in
the measurement equation, a nonlinear Kalman filter must be
applied for state estimation. Details are given in Sec. VI.

V. RECURSIVE NOISE ESTIMATION

In the previous section, we presented a measurement equa-
tion to process measurements gathered from the boundary of
the target. In real-world applications, however, measurements
often occur in a mixed boundary-interior measurement fashion.
In [18], the spatial distribution of LiDAR measurements is
investigated by calculating the distribution of an RHM scal-
ing parameter under an assumed radial measurement source
association for multiple instances of real-world targets. It is
seen that many measurements stem from the boundary of the
target and also that the assumption of a uniformly distributed
squared scaling factor, which is often assumed in RHMs, is not
valid for real-world data. The solution proposed in [18] is to
use a measurement equation for boundary measurements and
to heuristically calculate an asymmetric measurement noise
variance for measurements lying inside the predicted target
boundary. In this paper, we adopt the approach presented in
[18], but recursively estimate the variance of an artificial mea-
surement noise for measurements that lie within the boundary,
rather than heuristically setting a specific value.

Determining whether a measurement lies within the pre-
dicted boundary can efficiently be calculated using the im-
plicit superellipse representation F (px, py, a, b, ε) in (4) that
is also termed “inside-outside” function [20]. Using the inverse
tapered measurement in local coordinates ỹ that can be
calculated with the predicted system state xk|k−1, the “inside-
outside” information can approximately well be generated as

F (ỹx, ỹy, ak|k−1, bk|k−1, εk|k−1)


> 0 : outside
= 0 : boundary
< 0 : inside
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Figure 3: Illustration of the ”inside-outside” information.

for a low measurement noise. For measurements inside the
boundary, we then calculate the artificial measurement noise
variance. An illustration of the “inside-outside” information at
a specific time step can be seen in Fig. 3. A discussion about
incorrectly assigned measurements and the effects on the state
estimate can be found in [18].

For the artificial measurement noise, we assume isotropy in
both directions and that the measurements inside the boundary
stem from the same measurement-generating process with
a single measurement noise variance rather than a heuristic
variance for each measurement. Also, we assume the artificial
measurement noise to have zero mean. Given the innovation
error ȳ for every time step until k, the artificial measurement
noise variance can be given as

σ̂
(i)
k =

1

2 Σ
(i)
k

k∑
m=1

n
(i)
k∑
l=1

ȳ(i)2

xm,l
+ ȳ(i)2

ym,l
(11)

with ȳ(i) =
[
ȳ

(i)
x , ȳ

(i)
y

]T
, using the standard maximum likeli-

hood variance estimator. In this equation, the superscript (i)
represents quantities of measurements inside the boundary.
Furthermore, the notation Σ

(i)
k :=

∑k
l=1 n

(i)
l indicates the

number of measurements inside the boundary from time step
1 to k summed up. Given the variance estimator (11) for the
measurement sets up to time step k, a recursive estimator can
be derived as

σ̂
(i)
k =

1

1 +
2n

(i)
k

2 Σ
(i)
k−1

σ̂
(i)
k−1 +

1

2 Σ
(i)
k

n
(i)
k∑
l=1

ȳ(i)2

xk,l
+ ȳ(i)2

yk,l
. (12)

In this recursive estimator, measurements from the first and
the last time step equally contribute to the variance estimation.
This is, however, not preferable as the distribution can vary
over time, e.g., when the viewing angle of the target changes.
Therefore, we introduce a forgetting factor τ replacing 2Σ

(i)
k−1

similar to [23] that can be interpreted as the number of
measurements from the past that still contribute to the recur-
sive variance estimation. The final recursive estimator of the
artificial measurement noise is then given as

σ̂
(i)
k =

1

1 +
2n

(i)
k

τ

σ̂
(i)
k−1 +

1

τ + 2n
(i)
k

n
(i)
k∑
l=1

ȳ(i)2

xk,l
+ ȳ(i)2

yk,l
. (13)



In our investigations in Sec. VII we use a forgetting factor of
τ = 200 for every scenario. In the update step of the Kalman
filter, the measurement noise covariance matrix can then be
calculated as

Cvk,l
=

{
diag

(
σ̂

(i)
k , σ̂

(i)
k

)
if inside

diag(σ2
v , σ

2
v) else

(14)

with σ2
v being the sensor measurement noise variance that can

be taken from the sensor data sheet. In future work, we will
discuss and investigate the assumptions of isotropic noise and
a zero mean value in more detail.

VI. IMPLEMENTATION DETAILS

The implementation of the model presented in the previous
sections can be performed using linear regression Kalman
filters such as the UKF and the S2KF [24], [25]. Both
implementations are compared in the results in Sec. VII.
In this section, additional information on implementing the
superellipse-shaped extended object measurement model is
given.

A. Single time step measurement processing

As described in Sec. II, measurements from a single time
step are mutually independent and can be processed in a
sequential measurement update as was done in [7]. Another
option would be to process measurements in a stacked mea-
surement update as presented in [26]. The advantage of a se-
quential measurement update is the lower computational effort
resulting from the inversion of a small innovation covariance
matrix in the Kalman filter update. The disadvantage of a
sequential measurement update is that the final state estimate
strongly depends on the order in which the measurements are
processed due to the inherent linearization in the Kalman filter
update. On the other hand, the size of the innovation covari-
ance matrix and the resulting computation time in a stacked
measurement update depends on the number of measurements
recorded in a single time step. The final state estimate is,
however, reproducible since all measurements are processed
at once. To combine the advantages and disadvantages of
both approaches, we propose to process a specific amount
of measurements in a stacked measurement implementation
and repeat this procedure in a sequential update until ev-
ery measurement is handled. In our implementations, we
always process 10 randomly selected measurements in a single
stacked measurement update.

B. State interval constraints

One issue with many EOT approaches is the fact that extent
or shape parameters are often subject to interval constraints. In
our superellipse model, the semi-axes a and b should be within
the interval a, b ∈ (0,∞] to prevent the extension from becom-
ing negative. The squareness parameter ε produces concave
shapes for ε < 1 and convex shapes for the opposite interval.
Concave shapes are not preferable for EOT. Therefore, we
would like to have the squareness parameter within the interval
ε ∈ [1,∞]. Finally, the tapering coefficients should be within

the interval tx, ty ∈ [−1, 1] since higher or lower values would
produce loops in the shape which are not preferable.

In standard Kalman filtering, interval constraints can not be
introduced, since a Gaussian distribution, which is applied as
state distribution, has an unbounded domain. In the literature,
several approaches can be found to modify nonlinear Kalman
filtering to be able to handle state interval constraints. In
[27], for example, multiple procedures for the UKF can be
found. In this paper, we use a simple approach that allows
the Kalman filter to estimate unconstrained state variables
and also provides constrained extent parameter estimates. We
define several monotonically increasing state transformation
functions that have an unbounded domain and a bounded
codomain. The unbounded state variables are then transformed
through these functions before using the parameters in the
filter processing or before using the filter estimate in an eval-
uation. By applying monotonically increasing transformation
functions, we ensure a unique assignment between constrained
and unconstrained variables. This procedure results in a very
efficient and effective method to handle state interval con-
straints without changing the process of the Kalman filter.

Since we have three different interval constraints in our
superellipse model, we also need three different transformation
functions t to transform the respective extent parameters to a
bounded codomain. The bounds for the tapering coefficients
tx, ty can be achieved using a modified arctangent function.
The transformation function

t1(x) =
2

π
arctan(x) (15)

generates bounded tapering coefficients t
(b)
x , t

(b)
y within the

interval t
(b)
x , t

(b)
y ∈ [−1, 1]. The semi-axes a and b are

restricted to nonzero values. These constraints can be achieved
using the piecewise continuous function

t2(x) =

{
exp(x) x < 0

x+ 1 else
(16)

that generates bounded semi-axes a(b), b(b) within the inter-
val a(b), b(b) ∈ (0,∞]. Please note, that the transformation
function t2(x) linearly increases for x > 0, which simplifies
state estimation. In addition, the function is differentiable
and could therefore also be used in an extended Kalman
filter implementation. Finally, the squareness parameter ε is
restricted to values greater than one. This constraint can be
achieved by simply shifting t2(x) as

t3(x) = t2(x) + 1, (17)

which generates a bounded squareness parameter ε(b) within
the interval ε(b) ∈ [1,∞]. Please note, that this transformation
function has the same advantages as t2(x).

VII. RESULTS

In this section, we compare our approach to several other
state-of-the-art models in a comprehensive simulated and real-
world investigation. In both scenarios, we investigate the su-
perellipse measurement model with recursive noise estimation
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Figure 4: IoU and computation time results of the simulated scenario.

for mixed boundary-interior (BI) measurements using an UKF
and an S2KF implementation. We compare our model with the
superellipse model, where only boundary measurements are
assumed for the entire measurement set without discarding
any measurements, using also an UKF (UKF-B) and an
S2KF (S2KF-B) implementation. The S2KF implementations
utilize 10 samples per dimension. Additionally, we apply
the multiplicative error model (MEM-EKF*) [7], the virtual
measurement model (VMM) approach [3], the ellipse and
star-convex RHMs [6], [11], and the Gaussian process (GP)
model [12] as comparison. The star-convex shape in the RHM
implementation is represented using 7 shape coefficients for
the Fourier series expansion. For the GP model we use the
same parameters as in [12], except for the length scale, which
we set to l = π/2 to favor smoother shapes. Also, we use
20 basis angles in the GP system state. The RHMs are all
implemented using an UKF, the GP, and MEM-EKF* models
using an EKF as proposed by the authors. To get a better
intuition on the impact of the scaling factor in the RHM,
we also compare several specifics of the RHM approach.
First, we apply implementations of both RHMs where only
boundary measurements are assumed (RHM-B). Furthermore,
we compare implementations of the RHM models assuming
interior measurements with a known distribution (I-KD) of
the scaling factor with implementations where we have an
unknown spatial distribution of the interior measurements (I-
UD). The same investigations are provided for the GP model
[12]. In the case of an unknown scaling factor distribution, we
assume a uniformly distributed squared scaling factor in the
interval [0, 1] as the best guess.

Both scenarios, the one with simulated data and the one with
real-world data, were already used and described in [28]. Also
in both scenarios, measurements from a 3D LiDAR sensor [29]
are recorded in a maritime scenario. Measurements are always
taken from our research vessel “Solgenia” at HTWG Konstanz.

For the simulated scenario, we utilized a CAD model of the
vessel. Since we propose a measurement model for 2D data in
this paper, we project the measurements onto the 2D horizontal
plane, which results in mixed boundary-interior measurements.
We initialize every filter using the first measurement set as
already presented in [28].

In both investigations, we apply a coordinated turn model
[30] as motion model. We compare the measurement model
performances using the intersection over union (IoU) measure
[31]. The IoU measure is given as

IoU =
area(St ∩ Se)
area(St ∪ Se)

(18)

with the true shape St and the estimated shape Se. In 2D space,
an arbitrary shape can be approximated using a polygonal
chain. Intersection shapes, union shapes, and respective areas
can then easily be calculated. We extract the reference shape
St as 2D convex hull from the CAD model. Additionally,
we measure the computation time. Every calculation was
conducted using MATLAB R2023b on an Intel(R) Xeon(R)
X5680 CPU with 3.33 GHz.

A. Simulation results

Using the measurements in the simulated scenario, we
calculate the mean and variance values of the scaling factor
assuming a radial association for the RHM-I-KD implementa-
tions. We first transform the simulated measurement sources
of the whole scenario in a local coordinate system. After-
wards, the predicted measurement sources are calculated as
the intersection points of the line through the origin and the
measurements with the convex hull of the CAD model. The
scaling factors can then be calculated as the ratio between the
simulated measurement sources and the predicted ones. The
mean and variance values of the scaling factor can afterwards
be calculated using standard maximum likelihood estimation.
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For the evaluation, we perform Monte Carlo (MC) simu-
lations with 100 runs. The same trajectory is used in every
run. Additionally, the simulated measurement sources are left
unchanged in every run. Only the measurement noise with a
standard deviation of σv = 0.1 m is redrawn for every mea-
surement in every MC run. The results of the MC simulation
can be seen in Fig. 4. Every curve depicts mean values over all
MC runs. It turns out that the star-convex RHM with known
scaling parameter distribution and the two superellipse models
with recursive noise estimation show the best overall perfor-
mance with respect to the IoU measure. The ellipse model with
known scaling parameter distribution shows very good results
as well. However, when applying a uniformly distributed
squared scaling factor, the performance drastically decreases
for both RHM models. Even the RHM models only assuming
boundary measurements have a better performance than the
implementations applying incorrectly assumed scaling factors.
The MEM-EKF* also shows poor results since the assumption
of uniformly spatial distributed measurements does not hold
in this scenario. The VMM shows very good results and can
reflect the mixed boundary-interior measurement distribution
in the estimation procedure. Additionally, the VMM shows

very stable computation time not depending on the number
of measurements in a specific time step. The GP model with
known scaling parameter distribution shows very stable results
together with the highest computation in comparison. How-
ever, the performance also drastically drops when applying a
uniformly distributed squared scaling factor. When comparing
the computation time of the superellipse models with recursive
noise estimation, the UKF implementation is considerably
faster than the S2KF implementation. In future work, an
improvement in the computation time for both approaches
could be achieved by downsampling the measurements, which
reduces the redundancy in the measurement set [32]. In total,
the superellipse UKF with recursive noise estimation shows
the best overall performance since the RHM implementations
with known scaling parameter distribution need prior know-
ledge for achieving a comparable performance.

B. Real-world results

For the real-world investigation, we only evaluate a single
scenario. Using an RTK-GPS on the roof of the vessel and
another device attached to the stationary sensor array at the
river bank, we recorded a high-precision reference pose. In
combination with the CAD model, we also have a reference for
the shape of the vessel. According to the sensor data sheet, we
set the measurement noise standard deviation as σv = 0.025 m
in this scenario. For the RHMs with known scaling factor
distributions, we use the same mean and variance values that
were calculated in the simulated scenario before. The results
of the real-world scenario are depicted in Fig. 5. It can be
seen that again both implementations of the superellipse model
with recursive noise estimation show very good results. Also,
the VMM model shows very good IoU results in combination
with the lowest computation time, compared to the other
approaches. In contrast, the RHM with a uniformly distributed
squared scaling factor as well as the MEM-EKF* model



show poor results in comparison. The application of the better
fitting scaling factor or only assuming boundary measurements
drastically improves the performance of the RHM implementa-
tions. Unfortunately, the GP models applying different scaling
factors both fail in this scenario. Overall, both superellipse
implementations with recursive noise estimation show very
good results without the need for prior knowledge. The UKF
implementation again shows a faster computation time than the
S2KF implementation. An exemplary shape estimate for both
superellipse implementations with recursive noise estimation
at a specific time step can be seen in Fig. 6. It can be
seen that the deformable superellipse provides a reasonable
shape approximation of the vessel and that both boundary and
interior measurements can be processed using the recursive
noise estimation.

VIII. CONCLUSION

In this paper, we proposed a measurement model for
EOT using deformable superellipses as shape representation.
Furthermore, we presented a recursive variance estimation
procedure for an artificial measurement noise to be able to
process a mixture of boundary and interior measurements.
To ensure state constraints in the extent state estimate, we
proposed an efficient and easy-to-implement constraining pro-
cedure in which unconstrained state estimates are transformed
by transformation functions with bounded codomains. We
investigated and compared our method in a simulated and
real-world maritime scenario to several fixed basic parametric
shape and flexible non-parametric shape-tracking models. We
have seen that our approach gives the best IoU results without
the need for prior knowledge.
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