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Abstract—We propose a novel update step of a Gaussian
mixture particle filter for nonlinear state estimation. The update
procedure works as follows: First, unweighted samples are drawn
in an optimal deterministic sense from a prior Gaussian mixture.
These samples are then assigned weights from the likelihood
function, and we compute higher-order moments from this sample-
based posterior. These moment approximations converge with
L−1 instead of L−1/2 as our samples are optimal deterministic.
Finally, the continuous posterior approximation is determined as
the Gaussian mixture that has minimal Fisher information under
the constraint of having the aforementioned moments. To achieve
this, we employ a closed-form solution of the Fisher information
that involves Gaussian root mixture densities.

Index Terms—Bayesian inference, nonlinear filtering, Fisher
information, Gaussian sum filter, Gaussian mixture filter, de-
terministic sampling, Monte Carlo, quasi-Monte Carlo, density
approximation,

I. INTRODUCTION

A. Context

We consider the classical general state estimation problem,
in particular, the filter step or measurement update, as Bayesian
inference: Given prior information is fused with new measure-
ment information through a nonlinear, uncertain measurement
model.

B. Considered Problem

The Bayesian inference can be solved in closed form only for
limited types of measurement models and prior densities, called
conjugate priors [1]. For example, we have the Kalman filter [2]
for linear measurement models in conjunction with Gaussian
densities or mean and covariance as state representation, and
the Wonham filter [3] for discrete state spaces.

In all other cases besides the special cases mentioned, the
number of parameters accurately representing the resulting
density increases over time with every new measurement, or
there is no closed-form representation at all. On the upside, the
actual shape of the true state density does not get more and
more complicated since uncertainty is added in the alternating
prediction step, making it more “Gaussian-like”, according to
the central limit theorem. Therefore it is a good idea to employ
approximate state estimation.

C. State of Art

Linear Regression Kalman Filters: One popular class
of filters are the Linear Regression Kalman filters (LRKFs).

Thereby, the system models are always linearized in some
way to apply the Kalman filter equations, the linear filter for
linear systems. For example, the Extended Kalman Filter (EKF)
linearizes the models with tangents, making it susceptible to
the choice of the linearization point. Alternatively, one may
choose, in an s-dimensional problem, L = s + 1 samples
forming a simplex that supports a secant as linearization [4].
The supporting points’ spacing can be chosen according to the
extent of the prior uncertainty.

Higher numbers of samples bring us to the actual regression.
Very popular is the Unscented Kalman Filter (UKF) with
L = 2s + 1 samples [5]. More advanced sampling methods
can give arbitrary numbers of deterministic samples, enabling
an adaption to the induced nonlinearity of the problem at hand.
The Smart Sampling Kalman Filter (S2KF) [6], [7], [8] uses
a library of samples obtained by matching their Localized
Cumulative Distribution (LCD) [9] to the LCD of the Gaussian
density [10], [11]. Alternatively, uniform low-discrepancy point
sets, like the Fibonacci lattice, can be transformed to certain
densities, yielding deterministic Gaussian samples [12], [13].

All these methods have in common the 2nd Gaussian
assumption. That is, the probabilistic measurement equation
is represented as multivariate Gaussian density in the joint
state and measurement space. This facilitates very much the
inversion of the linearized measurement model but also limits
the expressiveness of the state-measurement relationship.

Particle Filters: Particle filters use weighted samples or
Dirac mixture representations of the state density which can
be processed by nonlinear model equations much easier than
continuous densities. A major advantage is that no linearization
of the relation between state and measurement takes place. We
start from the Bayesian paradigm (as opposed to the linear
filter for linear systems), again introducing approximations to
make it tractable: For a particle-based prior approximation,
samples are re-weighted with the likelihood function in order
to obtain the posterior density (in particle form). The major
problem of particle filters is particle starvation: the weights of
most particles tend to go to zero over time, reducing the spatial
expressiveness of the remaining particles. Therefore, a central
element of every particle filter is a resampling procedure, where
weighted samples are replaced with unweighted ones.

Assumed Density Particle Filters: Assumed density parti-
cle filters perform resampling by continually fitting a continuous



Fig. 1: Block diagram of the proposed filter step.

density to the weighted samples, and then drawing new,
unweighted samples from that continuous density. For example,
the Gaussian Particle Filter (GPF) [14], [15] re-approximates
the weighted samples with a Gaussian, which can be done very
efficiently via the empirical mean and covariance. If too many
samples are assigned negligible weights, the progressive GPF
[16], [17] provides a remedy: The filter step is subdivided into
several progression steps where only part of the measurement
information is introduced, respectively. The PGF 42 [18]
contains an additional twist and can be applied even when
the measurement model cannot be transformed to a likelihood
function.

Even without the second assumption on the joint density of
state and measurement, the assumption of a Gaussian posterior
still limits the expressiveness of the posterior to unimodality and
Gaussian shape. This restriction can be removed by switching
to the Gaussian Sum Particle Filter (GSPF) [19]. A progressive
GSPF has been proposed in [20]. It can represent non-Gaussian
and multimodal densities. The major problem of the GSPF is
fitting a Gaussian mixture (GM) to the weighted samples [21].
Even k-means clustering is NP-hard [22], so finding algorithms
that quickly compute a local optimum is very important. In
the present work, we explore an alternative method for fitting
a GM: The method of moments.

II. KEY IDEA

In re-approximating probability densities, regularization is a
critical component. Of the infinitely many possible densities,
we want to select the one that includes all information from
the given data but introduces no information beyond that. We
propose to regularize via minimizing the Fisher information
(FI), an information-theoretic measure for the roughness of
densities. A simple expression for the FI is available for root
densities [23], [24], and a closed-form expression exists for
Gaussian root mixtures (20). We present a GSPF where the
GM reapproximation of the posterior Dirac mixture (DM),
i.e., the likelihood-reweighted samples, is done via minimizing
the FI under the constraints of matching a prespecified set of
higher-order moments between posterior DM and the posterior
GM approximation.

In particular, the proposed GSPF works as follows: From the
prior GM representation, we compute L unweighted optimal
deterministic samples xi via inverse transform sampling. We

determine moments (e.g., E1, E2, E3, E4) of the likelihood-
reweighted samples. Then we compute a Gaussian root mixture
(GRM) by minimizing the FI, i.e., solving a constrained
optimization problem, additionally enforcing the just mentioned
moments as constraints on the corresponding GM. The GM
is thereby obtained by squaring the GRM. The result of the
optimization is the desired posterior GM. See Figure 1 for a
block diagram.

For numerical reasons, we can only calculate moments up
to a certain (low) order that do not uniquely characterize the
posterior GM. Therefore, we employ the regularization via
minimizing the FI.

III. GAUSSIAN (ROOT) MIXTURES
AND FISHER INFORMATION

This work focuses on the 1D case. For some of its aspects,
higher-dimensional generalization is not straightforward and
will be examined in future works. In particular, higher-
order moments involve m-dimensional tensors, and optimal
deterministic GM sampling is still subject to active research
in 2D and higher.

A. Gaussian Density

The Gaussian density is defined as

N (x;µ,Σ) =
1√
2πΣ

exp

{
−1

2

(x− µ)2

Σ

}
, (1)

with mean µ and variance Σ. The cumulative density function
(CDF) F of a density f is defined as

F (x) =

∫ x

−∞
f(t) dt , (2)

and for the Gaussian density, it is

F (x) =
1

2

[
1 + erf

(
x− µ√
2Σ

)]
, (3)

with the error function

erf(z) =
2√
π

∫ z

0

exp
{
−t2

}
dt . (4)

We will also need the Gaussian derivative, which is

d

dx
N (x;µ,Σ) = −x− µ

Σ
N (x;µ,Σ) . (5)



B. Gaussian Root Mixture

We define the GRM r(x)

r(x) =

R∑
i=1

vi N (x; ρi, Pi) (6)

with weights vi, mean values ρi, and variances Pi. As it can
be negative and does not sum to ones, the GRM r is not itself
a density, but its square f

f(x) = r2(x) (7)

is a valid density, the corresponding GM.

C. Gaussian Mixture From Gaussian Root Mixture

The conversion of a GRM r(x) to its corresponding GM
f(x) is

f(x) = r2(x) =

R∑
i=1

R∑
j=1

wi,j N (x;µi,j ,Σi,j) , (8)

with weights wi,j

wi,j = vivj N (0; ρi − ρj , Pi + Pj) , (9)

mean values µi,j

µi,j =
Pjρi + Piρj
Pi + Pj

, (10)

and covariances Σi,j

Σi,j =
PiPj

Pi + Pj
. (11)

In summary, the GM f corresponding to GRM r can be
represented as

f(x) =

K∑
k=1

wk N (x;µk,Σk) , (12)

with K = R2. Exploiting symmetry in (9) to (11), it can be
reduced to K = R · (R + 1)/2 components. Furthermore,
components with small weights wk can be removed. See
Figure 2 for a visualization of a GRM and corresponding
GM.

D. Moments

The central moments of a Gaussian density N (x;µ,Σ) are
given by

Cm = E{(xxx− µ)m} =


0 , m odd ,

Σ
m
2 ·

m−1∏
j=1,
j odd

j , m even , (13)

and the non-central moments by

Em = E{xxxm} =

m∑
i=0

(
m

i

)
Cm−i µ

i , (14)
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Fig. 2: GRM r(x) with R = 3 components (top), and its
corresponding GM f(x) = r2(x) with 9 components (middle).
In addition, we show the “score function” (bottom) whose
integral is the FI (17).

for m ∈ N0, respectively. The first central moments Cm and
non-central moments Em are therefore given by

C0 = 1 , E0 = 1 ,

C1 = 0 , E1 = µ ,

C2 = Σ , E2 = µ2 +Σ ,

C3 = 0 , E3 = µ3 + 3µΣ ,

C4 = 3Σ2 , E4 = µ4 + 6µ2 Σ+ 3Σ2 ,

C5 = 0 , E5 = µ5 + 10µ3Σ+ 15µΣ2 ,

C6 = 15Σ3 , E6 = µ6 + 15µ4Σ+ 45µ2Σ2 + 15Σ3 .

Moments of a GM (8) are

Em =

K∑
k=1

wk E
(k)
m , (15)



where the E
(k)
m are the moments of the individual mixture

components N (x;µk,Σk).

E. Fisher Information

The FI is defined as [23]

IF (f) =

∫
x∈R,f>0

(
f ′(x)

)2
f(x)

dx (16)

= IRF (r) = 4

∫
x∈R

(
r′(x)

)2
dx , (17)

where its representation (17) in terms of the GRM r =
√
f is

much more convenient and allows for a closed-form solution.
The integrand of the FI is called the “score function”, see
Figure 2 for a visualization.

We obtain for the derivative of the GRM (6)

r′(x) =

R∑
i=1

(
−x− ρi

Pi

)
vi N (x; ρi, Pi) , (18)

and the square of that(
r′(x)

)2
=

R∑
i=1

R∑
j=1

x− ρi
Pi

x− ρj
Pj

wi,j N (x;µi,j ,Σi,j) (19)

=

R∑
i=1

R∑
j=1

x2 − (ρi + ρj)x+ ρiρj
PiPj

wi,j N (x;µi,j ,Σi,j) .

Note the mixed notation using both GRM parameters (v, ρ, P )
as well as GM parameters (w, µ,Σ) from the corresponding
GM, see Section III-B. The FI (17) can now be written in
closed form

IF (f) = IRF (r) (20)

= 4

R∑
i=1

R∑
j=1

wi,j

PiPj

(
E

(i,j)
2 − (ρi + ρj)E

(i,j)
1 + ρiρj

)
,

again using mixed notation employing parameters from the
GRM and the corresponding GM. Additionally, we need the
GM moments

E(i,j)
m =

∞∫
−∞

xm N (x;µi,j ,Σi,j) dx (21)

that are available in closed form as well, see (14).

F. Gaussian Mixture Fitting

We can now specifically compute a GRM r that, if squared,
yields a GM f̂ that exhibits certain given properties but contains,
loosely speaking, as little additional (Fisher) information as

possible. We do this by solving the nonlinear constrained
optimization problem

r = argmin
{vi,ρi,Pi}R

i=1

IRF (r) (22)

subject to
R∑
i=1

R∑
i=1

wi,j = 1 , (23)

wi,j ≥ 0 , (24)
Pi ≥ 0 , (25)

where the desired properties of f are then enforced by
additional equality constraints like moments Em of f . In other
words, this method fits a GM (via its corresponding GRM)
precisely to the given constraints while otherwise keeping it as
uninformative as possible. We employed the implementation of
the interior point Newton method (IPNewton) in Julia’s Optim
library [25].

G. Numerical Improvements

The positivity constraint for the GM weights can be imposed
more efficiently than enforcing (24) by the optimizer. Note that
the GM wi,j weights are computed as products of all pairs of
the GRM weights vi, times a positive factor (9). Therefore, for
all wi,j to be positive, the vi have to be either all positive or
all negative. Thus, we can replace wi,j ≥ 0 with vi ≥ 0 which
is a box constraint that is much easier for the solver than an
inequality constraint on a nonlinear equation. Furthermore, we
can avoid the constraint altogether by equivalently replacing it
with a transformation: optimize surrogate variables ṽi and take
vi = |ṽi|. In the same way, we can replace the box constraint
(25) via optimizing over surrogates P̃i and taking Pi =

∣∣∣P̃i

∣∣∣.
The equality constraint for the density normalization (24)

can be fulfilled in closed form by proper scaling as follows:
optimize the unconstrained surrogate parameters ṽi, then
normalize them according to

vi =
ṽi√∑R

i=1

∑R
i=1 ṽiṽj N (0; ρi − ρj ,Σi +Σj)

. (26)

Then one of the ṽi can be excluded from optimization and set
to an arbitrary constant value.

Usually, one of the additional custom constraints is a first-
moment constraint∫ ∞

−∞
x · f(x) dx !

= Ef
1 . (27)

It can be replaced equivalently with a closed-form transfor-
mation as follows: optimize the surrogate parameters ρ̃i and
translate them according to

ρ = ρ̃+ Ef
1 −

R∑
i=1

R∑
i=1

wi,j
Pj ρ̃i + Piρ̃j
Pi + Pj

. (28)

Again, one of the ρ̃i can then be set to an arbitrary constant
value. Note that the GRM weights normalization (26) is not
affected by this transform, since ρi − ρj = ρ̃i − ρ̃j .



Finally, a possible second-order non-central moment con-
straint ∫ ∞

−∞
x2 · f(x) dx !

= Ef
2 (29)

can also be replaced with a suitable closed-form transformation.
We have (15)

Ef
2 =

R∑
i=1

R∑
i=1

wi,j ·
(
µ2
i,j +Σi,j

)
, (30)

and from this, we find that the transformation

P = P̃ ·
Ef

2 −
∑R

i=1

∑R
i=1 wi,j ·

(
P̃jρi+P̃iρj

P̃i+P̃j

)2
∑R

i=1

∑R
i=1 wi,j · P̃iP̃j

P̃i+P̃j

, (31)

with P being the GRM component variance and P̃ its
optimization surrogate, can be used instead of the constraint.
Again, one of the P̃i can then be set to an arbitrary constant
value. However, note that this Ef

2 -normalization changes the
Σi + Σj in (26), so another normalization of the vi and in
turn the ρi and in turn the Pi becomes necessary and so on,
resulting in a gradient-free, expectation–maximization (EM)
style optimization procedure to fulfill the Ef

0 , Ef
1 , and Ef

2

constraints simultaneously.

IV. OPTIMAL DETERMINISTIC
GAUSSIAN MIXTURE SAMPLING

In this section, we describe the computation of moments

Em(f e) =

∞∫
−∞

xmf e(x) dx (32)

from the posterior densitiy f e(x) that are used to propagate
information from the posterior DM to the posterior GM. The
posterior is defined due to Bayes’ theorem

f e(x) = c · Λ(x) · fp(x) , (33)

with prior density fp(x), the likelihood

Λ(x) = f(ŷ | x) , (34)

where ŷ is the measurement, and normalization factor c.
Here, we assume that the likelihood can be derived from
the measurement equation y = h(x, v) in closed form.
Calculating the analytic likelihood function Λ corresponding
to the measurement equation is always possible in the additive
noise case. Otherwise, it depends on the specific form of h(·, ·).

In summary, we have for the posterior moments

Em(f e) = c ·
∞∫

−∞

xm · Λ(x) · fp(x) dx . (35)

In the Assumed Density Particle Filter approach, we first draw
L unweighted samples xi from the prior density fp and then
assign weights wi from the likelihood function

wi = Λ(xi) , i ∈ {1, 2, . . . , L} , (36)

resulting in a DM representation of the posterior

f e,DM(x) = c

L∑
i=1

wi δ(x− xi) , (37)

with c =
(∑L

i=1 wi

)−1

and the Dirac delta function δ(x).
This gives a tractable approximation of (35)

Em

(
f e,DM

)
= c

L∑
i=1

wi x
m
i . (38)

The quadrature error

ϵ =
∣∣Em

(
f e,DM

)
− Em(f e)

∣∣ (39)

now depends on the way the prior samples xi are chosen,
which we will examine in the following.

To analyze the integration error (39), we transform the
moment-computing integral (35) via the substitution

F (x) → u , x ∈ R , u ∈ [0, 1] , (40)

where F is the CDF of f . This gives us the equivalent problem

Em(f e) = c ·
1∫

0

(
F−1(u)

)m · Λ
(
F−1(u)

)
du . (41)

The corresponding sample-based quadrature is

Em

(
f e,DM

)
=

L∑
i=1

g(ui) , (42)

where the ui are uniformly distributed in [0, 1], and

g(u) = c ·
(
F−1(u)

)m · Λ
(
F−1(u)

)
, (43)

c =

(
L∑

i=1

Λ
(
F−1(ui)

))−1

.

Since we now integrate over the unit interval [0, 1], we can
directly apply standard methods to analyze the integration error.

A. Monte Carlo Quadrature

For samples that are independent identically distributed (iid),
the sample-based approximate integration (42) is called a Monte
Carlo method. According to the Central Limit Theorem (CLT)
[26, Sec. 2.1], [27, p. 244], the integration error

ϵ =

∣∣∣∣∣∣
∞∫

−∞

g(u) du−
L∑

i=1

g(ui)

∣∣∣∣∣∣ (44)

is characterized via

ϵ ∼ N
(
ϵ; 0,Σ · L−1/2

)
, (45)

with Σ =
∫ 1

0

(
g(u)−

(∫ 1

0
g(ũ) dũ

))2
du. What depends on

L is the standard deviation of the integration error (45). This
tells us that the moment approximations converge at a rate of
only L−1/2.
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Fig. 3: Sampling of GM (blue) with two components. Proposed deterministic samples (green) and conventional random iid
samples (red). L = 50 samples are drawn, respectively.

B. Quasi-Monte Carlo Quadrature

We propose not to use uniform unweighted iid, but uniform
unweighted equidistant samples

ui =
2i− 1

2L
, i ∈ {1, 2, . . . , L} . (46)

The benefit of these deterministic samples is quantified by the
Koksma-Hlawka inequality that gives an upper bound on the
integration error [28, Sec. 2], [29]

ϵ ≤ discr({ui}) · V (g) , (47)

where

V (g) =

1∫
0

|g′(t)|dt , (48)

discr({ui}) = sup
t∈[0,1]

∣∣x− F{ui}(x)
∣∣ , (49)

with F{ui} being the CDF of the samples, a staircase function.
For equidistant samples as proposed, we have

discr({ui}) = L−1 . (50)

Therefore, the moment approximations now converge at a rate
of L−1.

C. Inverse Transform Sampling

We can formulate the quasi-Monte Carlo quadrature equiv-
alently via inverse-transforming the equidistant samples ui,
yielding optimal deterministic non-uniform samples

xf
i = F−1(ui) ∼ f(x) . (51)

The integrand g(u) from (43) then simplifies to

g(x) = c · (x)m · Λ(x) , c =

(
L∑

i=1

Λ(xi)

)−1

. (52)

Thus, just by switching from random samples to optimal
deterministic samples, we improved the convergence rate from
L−1/2 to L−1.

D. Optimal Deterministic Gaussian Sum Sampling

Applying this to GM densities, we begin with equidistant
uniform samples ui (46) and find xf

i ∼ f such that

ui = F
(
xf
i

)
. (53)

The CDF F of a GM f is available in closed form

F (x) =

x∫
−∞

K∑
k=1

wk√
2πΣk

exp

{
−1

2

(t− µk)
2

Σk

}
dt (54)

=

K∑
k=1

wk

2

[
1 + erf

(
x− µk√
2Σk

)]
. (55)

In total, we have

2i− 1

2L
−

K∑
k=1

wk

2

[
1 + erf

(
xf
i − µk√
2Σk

)]
!
= 0 . (56)

We solve this equation for xf
i , i = 1, . . . , L , with an efficient

bisection-based root finding algorithm [30]. This is easily
possible because F is monotonous. See Figure 3 for a visual
example.
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V. DEMONSTRATION

We define a nonlinear measurement model

y = h(x) + v , h(x) =
1

10
x3 − x (57)

with measurement noise

v ∼ N (v;µv = 0,Σv = 2) . (58)

This results in the likelihood

N (x; ŷ − h(x),Σv) , (59)

where we choose ŷ = 2 in the example. Furthermore, we
choose some prior GRM with three components and perform
the proposed filter step. The result is shown in Figure 4.

VI. CONCLUSION

We present a Bayesian update step for GMs. It computes
posterior moments via optimal deterministic samples. We show
that the choice of optimal deterministic samples over iid
samples improves the Monte Carlo (MC) convergence of e.g.
moment approximations from L−1/2 to L−1.

Several posterior moments serve as constraints to fit a
posterior GM in the next step. As the moments do not contain
enough information to characterize the posterior GM fully, we
regularize by minimizing the FI. As the FI can be expressed
more easily in terms of the GRM [23] (and not in terms of
the GM), we introduce an internal GRM representation that is
used for FI optimization. We provide closed-form solutions for
the FI of GRMs. Constrained optimization of the FI provides

an elegant way to “interpolate” a continuous mixture density
from a few given constraints like moments.

Source code of our implementation in the Julia programming
language will be published alongside this paper on IEEE Xplore
through Code Ocean.
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